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Abstract
Measuring the similarity among molecules is an important task in various chemically oriented problems. This elusive concept 
is hard to define and quantify. Moreover, the complexity of the problem is elevated by bifurcating the notion of molecular 
similarity to structural and chemical similarity. While the structural similarity of molecules is being extensively researched, 
the so-called chemical similarity is being mentioned scarcely. Here, we propose a way of converting the physico-chemical 
properties into molecular fingerprints. Then, using the apparatus of measuring the structural similarity, the chemical similarity 
can be assessed. The proof of a concept is demonstrated on a set of molecules that induce diverse physiological responses.
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Introduction

A naturally occurring result from observing two objects is 
the extent of similarity among them [1]. Although we deal 
with this elusive concept daily, it is challenging to properly 
define similarity or quantify it because of its multidimen-
sional character. The similarity between molecules plays a 
key role in cheminformatics [2, 3]. Furthermore, it is also 
significant in modern drug design and the material industry 
[4–6]. For example, Krasowski and coworkers have used the 
similarity approach to assess the structural similarity for a 
wide spectrum of clinically important drugs to the target mol-
ecules of DOA/Tox screening tests [7]. Also, the authors in 
[8] have shown that compounds producing cross-reactivity in 
steroid hormone immunoassays have a high degree of struc-
tural similarity to the target hormone. Additionally, a simi-
larity approach was used to design novel zeolite materials 
for separations based on adsorption [9]. Such a big interest 
in molecular similarity may be especially accounted to the 
one renowned postulate, i.e., to similarity property principle 
(SPP) [10]. Namely, this viewpoint of the structure–property 
relationship implies that compounds with high structural sim-
ilarity are likely to have similar physico-chemical properties. 
From this statement, it is obvious that SPP has a simple and 
logical foundation. However, a relationship between struc-
tural features and a physico-chemical property (or some type 
of activity) of the corresponding molecule is complex and 
it is not always so apparent. Therefore, there are stumbling 
stones within SPP, such as activity cliffs [11–14].

To measure the similarity of two molecules, a quantifica-
tion of molecular structure is a necessary step. For this rea-
son, diverse ways of encoding structural information have 
been proposed. Presently, an enormous number of molecu-
lar descriptors is available, with an increasing tendency [15, 
16]. Types of descriptors range from simple, such as count-
ing descriptors, up to complex quantum-chemical molecular 
descriptors [17]. The molecular descriptors are usually cat-
egorized according to the dimensionality of molecular rep-
resentation needed for the calculation of a descriptor. Thus, 
there are 1D, 2D, 3D, and higher-dimension descriptors. 
Besides similarity investigations, molecular descriptors have 
also found important applications in QSPR/QSAR studies [18, 
19]. A special place in the similarity-related calculations is 
reserved for structural fingerprints [20, 21]. In their simplest 
form, these are numerical strings constructed by zeros and 
ones. More precisely, one in a bit-string represents the pres-
ence of a certain structural feature in a molecule, while zero 
signifies its absence, in this way producing molecule-specific 
linear bit patterns. With this, the molecular structure is con-
verted into a binary vector that may be manipulated with. This 
type of reasoning was used to create a novel method for repre-
senting and analyzing 3D protein–ligand binding interactions. 

In other words, a binary fingerprint was constructed to model 
intermolecular connections, where 1 denotes a certain bond 
between protein and ligand and 0 assigns the lack of a bond. 
These are called interaction fingerprints [22, 23]. One of the 
most popular structural fingerprints is the extended-connectiv-
ity circular fingerprint [24]. Even though this descriptor was 
not originally developed as a binary sequence, if necessary, it 
can be transformed into a binary analog.

The similarity of two molecules is usually perceived as 
the amount of coherency between their structural features. 
However, there is another aspect of molecular similarity, 
usually referred to as chemical similarity. The most obvious 
manifestation of the chemical similarity between molecules 
is in the case of compounds that exert similar activities 
but are structurally quite different. Moreover, the opposite 
situation is more frequent, i.e., when structurally similar 
molecules do not show similar physico-chemical proper-
ties or activities [25, 26]. For example, Boström and others 
have found that there is a significant probability that minor 
modifications on one ligand, in a pair of structurally simi-
lar ligands, will produce high changes in the binding sites, 
hence, the changes in their activities [27]. The main obsta-
cle regarding chemical similarity is its quantification. While 
structural similarity has been heavily studied, the chemical 
similarity is poorly understood. Several attempts were made 
to examine the chemical similarity of some molecules. One 
of them was made by Xenides and coworkers, who have 
applied the information theory approach to generate clusters 
of chemically similar compounds [28].

In this study, a novel method was introduced to quan-
titatively determine the chemical similarity of molecules. 
More precisely, a plain binary fingerprint of a molecule was 
developed by encoding its physico-chemical properties. 
Within the present paper, we examine the chemical similar-
ity of compounds depicted in Fig. 1. This set consists of 
13 molecules that induce diverse physiological responses 
and was also studied in paper [28]. These compounds cause 
pleasant, euphoric, and analgesic effects. Several published 
papers have shown that some of these molecules are produc-
ing similar effects, or they are acting as antagonists [29–32]. 
Since these molecules are well-known and widespread, and 
some of them are consumed daily, it is of utmost interest to 
examine relationships among them, i.e., to quantify their 
chemical similarity. In the following section, we are going 
to expose a procedure that enables this.

Computational methodology

Construction of a fingerprint

The very first step in constructing binary fingerprints for 
assessing the chemical similarity of compounds is to provide 
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several physico-chemical properties for underlying mol-
ecules. The more diverse properties are supplied, the better 
the chemical description of a molecule is conceived. Due to 
the limitation of available experimental data, this might be a 
tricky task. Therefore, experimental values may be replaced 
with the properties provided by, e.g., quantum chemistry 
computations at a sufficiently high level of theory. For our 
set of compounds, melting point (MP), logP, and pKa exper-
imental values were used for this purpose and are collected 
in Table 1. These values were retrieved from PubChem [33] 
and DrugBank [34] chemistry data repositories. A reason for 
using these sets of physico-chemical properties is that these 
experimentally determined properties were available for all 
thirteen molecules under the consideration. Moreover, both 
logP and pKa are known as high-quality indicators of physi-
ological effects. In order to avoid fingerprint dependance on 
dataset size, in this approach we do not apply standardiza-
tion of the physico-chemical properties. The advantage of 
this is twofold, the resulting molecular fingerprint remains 
the same within any dataset of compounds with the use of 
the same physico-chemical properties arranged in the same 
order, and the developed fingerprint is highly informative. 
Regarding the latter, this means that the obtained fingerprint 
is not sparse, which might be the case when min–max scal-
ing is applied, for example. Therefore, we have developed 
fingerprints based on the physico-chemical properties in the 
following manner.

To encode as much chemical information as possible, 
values from Table 1 are rounded up to two decimals and 
then multiplied by  102. In this way, experimental values are 
converted into integers without losing valuable information. 
Then, for each property five digits are reserved for encoding 
into a string, since our values are no bigger than five digits. 
If the obtained integer has less than 5 digits, then one or 
more zeros are added at the beginning of an experimen-
tal value to get a string of five digits. By completing this 
step, all used values are encoded into a numerical string 
made of five digits. Further construction of molecular fin-
gerprints based on physico-chemical properties demands the 
transformation of these integer strings into binary strings. 
This step is done using the binary coded decimal (BCD) 
system. Namely, in this type of encoding every digit in a 
five-digits-string (even zero) is replaced by the correspond-
ing 4-bits-long binary code (see Table 2). This conversion 
is transforming the experimental value into a binary string 
with a length of 20 bits.

An additional bit is added at the beginning of a string to 
encode the sign of an experimental value. Zero denotes posi-
tive, while one stands for the negative sign. In this way, every 
physico-chemical property from Table 1 is transformed into a 
21-bits-long binary code. Finally, by merging obtained strings 

for MP, logP, and pKa, in this order, the molecular fingerprint 
based on the physico-chemical properties, with the length of 
63 bits, is constructed. In Fig. 2 this procedure is depicted in 
the case of the molecule of cocaine.

The authors of the paper [35] have studied similarity coef-
ficients that are usually utilized in cheminformatics investi-
gations. They have found that some of the examined metrics 
exhibit better characteristics than others. Namely, out of all 
coefficients that yield the similarity results within [0,1]-range, 
Jaccard (Ja) [36], Jaccard-Tanimoto (JT) [37], Gleason (Gle) 
[38], Sokal-Sneath (SS) [39], and Consonni-Todeschini (CT) 
[40] have shown satisfactory performance in similarity calcu-
lations related to real and simulated cheminformatics binary 
data. They are defined as follows:

In Eqs. (1)–(5) a is the frequency of bits 1 that finger-
prints of molecules A and B have in common, b is the fre-
quency of bits 1 present in fingerprint A but not in B, and c 
is the frequency of bits 1 found in fingerprint B but not in 
A. As can be seen, most of these indices differ only in the 
weights that they give to some parts of the fingerprints dur-
ing comparative analysis. Namely, JA and Gle coefficients 
highlight the same features in fingerprints, while SS empha-
sizes their differences. To analyze the chemical similarity 
of compounds depicted in Fig. 1, we have employed Ja, JT, 
Gle, SS, and CT asymmetric similarity indices to measure 
the coherence between fingerprints based on physico-chem-
ical properties. For all these computations, a Python script 
was coded with an implementation of the RDKit chemin-
formatics package [41]. In addition, we have calculated the 
extended versions of our similarity indices. The extended 
similarity indices allow simultaneous comparison of more 
than two molecules at the same time. These similarity coeffi-
cients are entirely general, and they do not depend on the fin-
gerprints used [42, 43]. In the original paper, their features 
were investigated by sum of ranking differences (a statistical 
method that we also use here to get better insight into our 

(1)Ja =
3a

3a + b + c

(2)JT =
a

a + b + c

(3)Gle =
2a

2a + b + c

(4)SS =
a

a + 2b + 2c

(5)CT =
ln(1 + a)

ln(1 + a + b + c)
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results) and ANOVA. The definition of the extended form 
of Ja, JT, Gle, SS, and CT and the corresponding Python 
scripts for their calculation are freely available at: https:// 
github. com/ ramir andaq/ Multi pleCo mpari sons.

Sum of ranking differences (SRD)

The SRD is a novel general-purpose statistical procedure to 
compare models, methods, analytical techniques, etc. [44]. 
So far, it has been successfully used on many different prob-
lems, e.g., for the correct split of training and test sets in 
QSAR, column selection in supercritical fluid chromatogra-
phy, and analysis of chromatographic retention data [45–47]. 
Here, we use this tool to compare the results of the similarity 
obtained by different metrics. This technique is available 

Fig. 1  The compounds with physiological effects

Table 1  The experimental physico-chemical properties that are used 
to construct binary fingerprints

Molecule MP (°C) logP pKa

Cocaine 98.00 2.30 8.61
Codeine 155.00 1.39 8.20
Caffeine 236.00 − 0.07 14.00
Methadone 235.00 3.93 9.20
Mescaline 35.50 0.78 9.56
Heroin 173.00 1.58 7.95
Adrenaline 211.50 − 1.37 8.59
Morphine 255.00 0.87 8.21
LSD 82.50 2.95 7.80
Nicotine − 79.00 1.17 8.50
THC 200.00 5.65 10.60
Sucrose 185.50 − 3.70 12.60
Fentanyl 83.50 4.05 8.99

Table 2  The BCD system is 
used to encode digits

Binary code Digit

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

https://github.com/ramirandaq/MultipleComparisons
https://github.com/ramirandaq/MultipleComparisons
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as MS Office Excel macro at http:// aki. ttk. hu/ srd/. In the 
input matrix, the objects (in the present case molecules) are 
arranged in rows and the variables (models or methods, in 
the present case similarity coefficients) are arranged in the 
columns. The results are ranked for each method (similar-
ity coefficient) to the ranking of experimental or reference 
values. If the standard value is not available, like in this 
case, then the mean value for all methods (similarity indi-
ces) may be used. With the scaling of SRD values between 
0 and 100, it is possible to compare these values to different 
methods/models. The full description of SRD calculation 
and its validation may be found elsewhere [44, 48]. In gen-
eral, the closer the SRD value is to zero (i.e., the closer is 
the ranking to the golden standard), the better is the method. 
The proximity of SRD values indicates the similarity of the 
methods, thus in our case, the similar performance of tested 
similarity coefficients.

Results and discussion

The developed plain binary fingerprints based on phys-
ico-chemical properties of compounds depicted in Fig. 1 
have been mutually compared using Ja, JT, Gle, SS, and 
CT similarity coefficients and by their extended versions. 
The calculated similarities, in percentages, are given in 
Figs. 1S-5S in Supporting Information as heatmaps, while 
Table 3 summarizes obtained results. As one may see, all 
five applied metrics yielded comparable results, that is, the 
same trends have been identified, especially in the case of 
extended indices. This is expected considering the closeness 
of their definitions. With an average value of 57%, the high-
est similarities are obtained by the CT  coefficient, while the 
SS index gives the lowest mean value (14%). In the case of 
extended indices, the chemical similarity of four indices 

is 50%, while the extended CT index shows a similarity of 
63%. The Ja and CT indices yielded comparable results by 
both approaches, standard pairwise and extended, while for 
the other measures higher similarities are obtained by their 
extended versions. As for the data variation, most of the 
similarity values demonstrate comparable scattering. The 
highest standard deviation is obtained for the  Ja index, 
while the lowest data dispersion gives SS coefficient. It was 
found that, on average, the chemically most similar com-
pound to other molecules is adrenaline. Its mean chemical 
similarities by Ja, JT, Gle, SS, and CT are 58%, 32.7%, 
48.5%, 19.8%, and 66.5%, respectively. On the other hand, 
with 39.8%, 18.9%, 30.9%, 10.7%, and 50.7% of similar-
ity, LSD is the least similar to the other compounds. Also, 
comparable to LSD, the low similarity is obtained for THC 
by SS and CT indices.

All five similarity coefficients have found that morphine 
and methadone are chemically the most similar compounds, 
while cocaine and caffeine show the lowest chemical simi-
larity. Namely, the obtained values for Ja, JT, Gle, SS, and 
CT for morphine-methadone similarity are 77%, 53%, 69%, 
36%, and 80%, respectively, while these values for cocaine-
caffeine similarity amount 14%, 5%, 10%, 3%, and 23%, 
respectively. Such a high chemical similarity between meth-
adone and morphine is in accordance with the experimental 
findings, where these two opioids are found to have similar 
physiological responses. Moreover, both have an analgesic 
effect, and they are used as substitution pain killers [49]. 
This finding supports the assumption that molecules with 
similar physico-chemical properties should stimulate similar 
physiological reactions. On the other hand, such similarity 
between methadone and morphine, within this set of mol-
ecules, is quite surprising, considering the high structural 
similarity of morphine and codeine. Namely, it is reason-
able to expect that morphine and codeine show the highest 

Fig. 2  The procedure of con-
structing binary 63-bits-long 
fingerprint based on physico-
chemical properties of cocaine 
molecule

http://aki.ttk.hu/srd/
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chemical similarity since their structures differ in only one 
methyl group. However, the chemical similarity of these two 
compounds ranks as the fifth highest, among all similarities, 
by all coefficients and it amounts to 68%, 41%, 58%, 26%, 
and 72% according to Ja, JT, Gle, SS, and CT index, respec-
tively. Such result may be attributed to the big differences in 
MP and logP, while their pKa values disagree by only 0.01. 
Even though both molecules cause analgesic effects in the 
human body, it was found that the magnitude and lasting of 
these effects significantly differ [50].

The other two molecules that also exhibited high chemi-
cal similarity (ranked as the second highest) are adrenaline 
and nicotine. Both compounds are known as euphoric feel-
ing inducers and their similarities calculated by Ja, JT, Gle, 
SS, and CT are 73%, 48%, 65%, 31%, and 78%, respectively. 
Even though these two molecules share some structural fea-
tures, like an aromatic ring and a nitrogen atom, structural 
coherence between adrenaline and mescaline, for example, is 
more noticeable. However, their chemical similarity is ~ 9% 
lower on average, compared to adrenaline-nicotine similar-
ity. On the other hand, the effects of nicotine on the heart 
and systemic blood pressure are almost identical to those of 
adrenaline [51].

The lowest chemical similarity was detected for cocaine 
and caffeine by all five metrics, as stated above. For exam-
ple, the SS gives only 3% of similarity between these two 
molecules. Such a finding is expected considering big dif-
ferences in all three physico-chemical properties (Table 1). 
Also, they belong to different types of drugs regarding the 
sensation they cause in our body, i.e., cocaine is classified 
as a “hard” drug, while caffeine is marked as a “soft” drug.

As we previously mentioned, the same trends are identi-
fied by all coefficients and the differences come only from 
the amount of computed similarity. Since the Jaccard-Tan-
imoto coefficient is the most used index in the cheminfor-
matics community, therefore, we decided to present the 
similarity assessments obtained by this metric. In Fig. 3 

chemical similarity of our compounds is depicted. The graph 
is constructed to reflect the similarity of molecules in the 
cases where it amounts to ≥ 40%. Namely, an edge is estab-
lished between two nodes (molecules) only if their chemical 
similarity is ≥ 40%. This high threshold is chosen to show 
molecules with a high chemical similarity since the average 
similarity calculated by JT is 25% (Table 3). At the level 
of 40%, around 50% of molecules are connected, and two 
clusters of similar molecules are observed. The first group 
consists of methadone, morphine, and codeine that exhibit 
a high chemical similarity among themselves. The second, 
a loosely connected group includes adrenaline, nicotine, and 
fentanyl. These two clusters of molecules are related through 
the connection between methadone and nicotine.

In Table 4 the correlation coefficients (R) between simi-
larity results calculated by Ja, JT, Gle, SS, and CT are pre-
sented. The similarities obtained by these coefficients are 
highly correlated. The highest linear correlation is observed 
between Ja and Gle with R = 0.9981, while the lowest cor-
relation, R = 0.9545, is between SS and CT. Such a good 
correlation between Ja and Gle comes from the fact that 
these indices differ only by the weights they set on the same 
features, i.e., on the bits 1 present in the same place in two 
fingerprints.

To get better insight into obtained similarity results, we 
have employed the SRD statistical procedure. As described 
in Sect. 2.2, this tool enables us to compare similarity coeffi-
cients. Since the reference value is not available, the average 
value for all five indices has been used as an “ideal” stand-
ard for each molecule, for ranking purposes. The calculated 
SRD values, of every similarity coefficient, are presented in 
Table 3. The Ja, JT, Gle, and SS indices yielded the same 
SRD values, while the SRD for the CT was 92. This find-
ing shows that our coefficients are useful for the similarity 
assessment of fingerprints based on physico-chemical prop-
erties, especially the first four indices since they produced 
SRD values that are close to zero. Also, these results reveal 

Table 3  The results of 
chemical similarity analysis of 
compounds from Fig. 1 by five 
different metrics

The minimum (min), maximum (max), mean, and standard deviation (s) values in %, were obtained for 
each similarity coefficient. The SRD stands for the sum of ranking differences value, the scaled SRD data 
are scaled between 0 and 100 and they are given in %. The ext. indices column shows similarity among all 
molecules (in %), which is calculated by the extended forms of similarity measures [42, 43]

Coefficient Min Max Mean s SRD Scaled SRD Ext. indices

Ja 14 77 48 14 6 0.1972 50
JT 5 53 25 10 6 0.1972 50
Gle 10 69 38 13 6 0.1972 50
SS 3 36 14 7 6 0.1972 50
CT 23 80 57 11 92 3.0243 63
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Fig. 3  The chemical similarity of compounds calculated by the 
Jaccard-Tanimoto similarity coefficient. Note that the graph is con-
structed to reflect the similarity of molecules in the cases where their 

amounts ≥ 40%. The edges are labeled with the percentage of similar-
ity between two compounds

that Ja, JT, Gle, and SS show similar performance, compared 
to CT, which is in accordance with their definitions but can-
not be concluded from the previous results. It is interesting 
to note that Ja, JT, Gle, and SS indices produce different 
rankings in the case of interaction fingerprints in virtual 
screening scenarios [23]. The validation of the SRD pro-
cedure has been carried out by performing the comparison 
of ranks with 78 random numbers (CRRN). This is a rand-
omization test that gives a distribution of SRD values with 
randomized ranks. Based on this validation, it can be con-
cluded whether the SRD value characterizing a coefficient 
overlap with the use of random numbers (in that case, the 
coefficient is statistically not distinguishable from randomly 

assigned ranks). The obtained results are depicted in Fig. 4 
with a magnified view.

As can be seen, the scaled SRD of similarity coefficients 
is extremely low, compared to random SRD. Most impor-
tantly, there is no overlap between the left side (real num-
bers) and the right side (random numbers). The location of 
the scaled SRD for similarity coefficients (located between 
0 and 4) is far from the SRD for random numbers (located 
between 50 and 81). It can be concluded that the probability 
that the real variables are random is negligible.
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Fig. 4  X and left Y axes: The 
percentage of scaled SRD for 
different similarity coefficients 
(scaled between 0 and 100, i.e., 
put on the same scale as the 
random numbers). The scaled 
SRD for Ja, JT, Gle, and SS 
is 0.1972% (red) and for CT is 
3.0243% (blue). Right Y-axis: 
The frequencies of random SRD 
are plotted (the black curve 
corresponds to random SRD 
distribution)

Conclusion

Chemical similarity is an important aspect of similar-
ity between two molecules. Here, we have examined the 
chemical similarity of 13 compounds with the physiological 
response. To do so, we have developed plain binary finger-
prints based on physico-chemical properties, i.e., on melting 
point, logP, and pKa. The Jaccard, Jaccard-Tanimoto, Glea-
son, Sokal-Sneath, and the Consonni-Todeschini similarity 

coefficients have been used to calculate the similarity of fin-
gerprints. It was found that adrenaline on average is the most 
similar to other molecules, while LSD and THC are the least 
similar to other compounds. All five similarity coefficients 
have found that morphine and methadone are chemically the 
most similar compounds, while cocaine and caffeine show 
the lowest chemical similarity. The sum of ranking differ-
ences statistical procedure has shown that applied similarity 
indices can be successfully used for similarity analysis of 
developed binary fingerprints. The advantage of the applied 
methodology is that it summarizes the information on the 
physico-chemical features in a simple and straightforward 
way, which enables the calculation of the chemical similar-
ity of the compounds. Therefore, this approach is a useful 
tool that can provide information on the amount of chemical 
similarity of molecules only using several available physico-
chemical properties.

Table 4  The Pearson correlation coefficients between similarity val-
ues computed by five different metrics

Ja JT Gle SS CT

Ja 1.0000
JT 0.9879 1.0000
Gle 0.9981 0.9955 1.0000
SS 0.9741 0.9973 0.9860 1.0000
CT 0.9931 0.9717 0.9872 0.9545 1.0000
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