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Abstract
A fragment-based drug discovery (FBDD) approach has traditionally been of utmost significance in drug design studies. It 
allows the exploration of large chemical space to find novel scaffolds and chemotypes which can be improved into selective 
inhibitors with good affinity. In the current work, several public domain chemical libraries (ChEMBL, DrugCentral, PDB 
ligands, COCONUT, and SAVI) comprising bioactive and virtual molecules were retrieved to develop a fragment library. 
A systematic fragmentation method that breaks a given molecule into rings, linkers, and substituents was used to cleave the 
molecules and the fragments were analyzed. Further, only the ring framework was taken into the consideration to develop 
a fragment library that consists of a total number of 107,614 unique fragments. This set represents a rich diverse structure 
framework that covers a wide variety of yet-to-be-explored fragments for a wide range of small molecule-based applications. 
This fragment library is an integral part of the molecular property diagnostic suite (MPDS) suite that can be used with other 
modeling and informatics methods for FBDD approaches. The fragment library module of MPDS can be accessed at http://​
mpds.​neist.​res.​in:​8085.
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Introduction

Drug discovery is one of the great challenges and molec-
ular modeling approaches that aim to identify lead com-
pounds. A typical chemical space size is estimated to be 
1060 molecules, and screening these molecules experimen-
tally for the identification of lead molecules is a mammoth 
task. Virtual screening applies a series of filters to identify 
potential lead compounds from a huge pool of compounds 
[1–3]. Many commercial and open-source drug discov-
ery software are available for drug discovery to minimize 
time and cost. Development of open-source drug discovery 
software along with disease-specific information, a robust 
compound library, and fragment library is essential for the 
identification of potential lead compounds with improved 
activity. One such effort from our group is the development 

of open-source computational drug discovery software 
MPDS [4, 5].

Fragment-based drug design (FBDD) is an effective 
method for quick and precise identification of chemical 
moieties to design selective lead molecules with high affin-
ity [6, 7]. The outcome of FBDD is directly influenced by 
the composition of the fragment library being used [8, 9]. 
Several methods are available for the fragmentation of mol-
ecules and they are broadly categorized into four categories 
based on the pattern of fragmentation such as (a) hierarchi-
cal and systematic, (b) retrosynthetic, (c) knowledge-based, 
and (d) random fragmentation. All these four methods use 
the molecular connectivity for generating fragments. The 
systematic graph fragmentation and computer-generated 
fragments based on retrosynthetic rules are the two most 
widely used methods for constructing the fragment libraries 
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in FBDD. The graph fragmentation cleaves the molecules 
at topologically defined positions such as the bond between 
a ring and its substituents, whereas computer-generated 
retrosynthesis uses defined rules based on the chemical 
reactions and fragments, such as amide bonds. Bemis and 
Murcko have examined the feature of drug molecules based 
on the rings, linkers, frameworks, and side-chain atoms as 
well as based on the atom type, hybridization, and bond 
order of molecules [10, 11]. They emphasized the most 
common frameworks that represent the structural varia-
tion in the drug molecule dataset. According to Murcko, 
(i) ring systems are cycles that share the edges, (ii) atoms 
that connect two ring systems are linkers, (iii) substituents 
are atoms that are neither ring nor linkers. Physiochemical 
properties-based rules are also employed by many people to 
construct fragment libraries. Congreve et al. [12], discov-
ered the “rule of three,” viz. (a) Molecular weight (MW) 
≤ 300 Da; (b) Hydrogen bond donor (HBD) and Hydrogen 
bond acceptor (HBA) ≤ 3; (c) LogP ≤ 3.42 to define the 
physiochemical properties of a molecule. Several molecular 
fragmentation techniques are being developed by researchers 
to obtain synthetically feasible chemical motifs/fragments 
(Table S1). Among these fragmentation methods, RECAP 
and BRICS are retrosynthetic fragmentation methods. In 
RECAP, molecules are fragmented based on a group of 
eleven defined bond categories, and make certain rings that 
are key structural moieties of molecules. However, BRICS 
rules are the expansion of the RECAP rules that consider 
the environment of every bond type and its surrounding 
substructures [13, 14]. In addition, some other fragmenta-
tion methods and unexplored fragments spaces are need to 
be explored [15–17]. Consequently, many fragmentation 
techniques for FBDD have been developed which consider 
binding site and fragment connection information from a 
macromolecule-ligand complex [18–25]. Our group has also 
made a series of fragment and structure-based studies using 
the traditional computer-aided drug design, artificial intel-
ligence, and machine learning approaches in probing the 
molecular or structural properties of small molecules, mac-
romolecules, and other complexes [26–33]. The applicability 
of these fragmentation methods depends on the specific pur-
pose for which they are being used or implemented. Several 
approaches have been developed for the construction of frag-
ment libraries and most of the commercial fragment libraries 
were found to obey widely accepted “rule of three.” Over 
the years, various computer programs were also developed 
to enumerate the molecules, and currently, databases of the 
order of 1020 are created and considered ultra-large chemical 
repositories [34, 35]. Our approach is based on the identi-
fication of several types of fragments through a systematic 
fragmentation method that breaks a given molecule into 
rings, linkers, and substituents to understand the diversity of 
chemical space. We explored the vast chemical libraries that 

includes known and bioactive molecules namely ChEMBL 
[36], DrugCentral [37], PDB ligands [38], COCONUT [39], 
and molecules from the SAVI database [40]. Most of these 
fragmentation tools are not publicly available as web ser-
vices and thus cannot be used by many computational drugs 
design. Elead3D and ACFIS, screen inbuilt fragment librar-
ies against targets for FBDD are the few available compu-
tational drug design web services [41, 42]. While virtual 
screening facilities are available for fragments, there is a 
lack of a web server that offers fragment library construction 
tools, inbuilt fragment libraries, and screening facilities all 
together in a single platform. This impelled us to develop 
and integrate the FBDD module in the molecular property 
diagnostic suite (MPDS) suite of web portal [3–5].

Materials and methods

Data curation and fragment generation

The bioactive molecules from ChEMBL (2,105,464), Drug-
Central (4099), and PDB ligands (36,209), a set of natural 
products from COCONUT (406,747), and theoretically gen-
erated molecules from the SAVI database (~ 1 Billion) were 
retrieved. The database identifiers for all these molecules 
were retained and molecules from each of these databases 
were individually subjected to fragmentation for obtaining 
a set of rings, linkers, and substituents using an in-house 
python script that uses the “fragmentonbonds” function in 
RDkit. As the ring systems obtained from the fragmentation 
represent rigid entities that create the scaffold of a com-
pound, all further analyses focused only on rings. The frag-
mentation algorithm in RDkit cleaves the bond between the 
atoms that are part of a ring and atoms that are not a part of 
the ring which results in the generation of small fragments 
[43]. We have filtered out the fragments based on the rule of 
three [12] thus reducing the number to a limited number for 
detailed analyses. All the ring fragments were further classi-
fied into structural categories, such as monocyclic, bicyclic, 
tricyclic, tetracyclic, and polycyclic. The complete proce-
dure used in this study is depicted in Scheme 1.

De‑duplication of ring fragments and fingerprint 
generation

After fragmentation, the SMILES of the ring fragments con-
tained the patterns like “[*1]” or “[*10]” that indicated the 
position where the bond was cleaved. Hence, these SMILES 
were first cleaned to remove all such patterns, and thereaf-
ter it was subjected to the computation of InChIKey using 
OpenBabel3 [44]. A two-step redundancy removal was 
carried out, first at the database level, and second in the 
structural category groups using an in-house python script. 
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As InChIKey is considered to be unique for a molecule, it 
was aptly used to de-duplicate all the redundant ring frag-
ments while the database ids of all the duplicate rings were 
retained. The information from the database ids was used 
to generate a 5-Bit fingerprint, and the value ‘1’ shows the 
availability and ‘0’ for the non-availability of the particular 
ring fragment in all the five databases.

Probing the unique and overlapping ring fragments

The diversity of ring fragments were further analyzed at 
both the database and structural category level using the 
fingerprints. At the database level, rings that were com-
mon or found in 2 or more databases, and rings that were 
unique to a specific database were identified. While at the 

structural level, the biologically active and ring systems 
generated through de novo approaches were analyzed. The 
Tanimoto coefficient scores were calculated using Data-
Warrior tool [45] and the scores were extensively used to 
fetch the top diverse fragments as well as their frequency 
of occurrence.

Similarity analysis

The unique set of rings that were identified after de-dupli-
cation were also analyzed on the basis of the Morgan fin-
gerprints. Tanimoto coefficient was computed to generate 
a matrix, which was further analyzed for ranking the rings 
based on similarity scores.

Scheme 1   The integrative 
methodology used for the gener-
ation of the fragment library
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Results and discussion

Generation of the molecular fragments

The molecular dataset were retrieved by compiling several 
public domain databases such as ChEMBL, DrugCentral, 
PDB ligands, COCONUT, and SAVI. Further, using an in-
house python script these molecules were fragmented into a 
set of rings, linkers, and substituents. The cyclic fragments 
(interconnected ring systems) were classified into a set of 
monocyclic, bicyclic, tricyclic, tetracyclic, and polycy-
clic categories which was necessary for introspecting the 
structural diversity of fragments. A total of 107,614 non-
redundant ring fragments were obtained and based on the 
database identifier, a 5-Bit fingerprint was generated. These 
bit positions indicate each database, starting from ChEMBL, 
followed by COCONUT, DrugCentral, PDB Ligands, and 
SAVI. An example of a fragmentation procedure is shown 
in Fig. 1.

Analysis using the fingerprint

The 5-bit fingerprint was used to map both the unique and 
common set of molecules that overlapped among 2 or more 
databases. We were able to observe which type of ring frag-
ment was very unique and which fragments were spread 
across the databases through this analysis. Figure 2 shows 
the pie-plot showing the percentage of overlap of fragments 
among the databases, and this indicates that the maximum 
overlap is from the tricyclic (62.3%), followed by bicyclic 
(20.1%), tetracyclic (10.70%), monocyclic (4.3%), and poly-
cyclic (2.5%) groups. The number of overlapped fragments 
between ≥ 2 databases is listed in Table S2. A large overlap 
was observed between ChEMBL and COCONUT database, 

with a total of 45.53% compounds, followed by the overlap 
between ChEMBL and SAVI, and so on (Table S2). It is 
also noted that the rings from DrugCentral and PDB-Ligand 
datasets have least or no overlap with other databases, indi-
cating that the core scaffolds of drugs and drug-like mol-
ecules share very less structural similarity. Thus, exploring 
novel scaffolds from COCONUT, ChEMBL, and SAVI, fol-
lowed by detailed analysis for its targets will be a promising 
task to endeavor in small molecule-based drug discovery 
approaches.

Analysis of unique fragments

Structurally classified fragments are summarized in Table 1, 
Table S3, and Fig. 3. It can be observed that the maximum 
of the ring fragments is from the tricyclic (48,842) followed 
by tetracyclic (42,944), polycyclic (8069), bicyclic (7195), 
and monocyclic (564) groups. Subsequently, database-wise 
distribution of these fragments showed that the maximum 

Molecule Scaffolds Fragments (Rings, Linkers, Substituents)Skeletons

Fig. 1   Process of generation of fragments from molecules into rings, linkers, and substituents

2.5%
10.7%

62.3%

20.1%

4.3%

 Monocyclic  Bicyclic  Tricyclic  Tetracyclic  Polycyclic

Fig. 2   The percentage of common fragments based on its structural 
diversity
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number of unique fragments have been obtained from SAVI 
(74,014), followed by ChEMBL (24,065), COCONUT 
(8799), PDB ligands (698), and DrugCentral (38). This anal-
ysis suggests that SAVI, ChEMBL, COCONUT, and PDB 
ligands databases are very important in terms of structural 
diversity, and they are key resources that can be used for the 
development of a highly diverse fragment library.

Analysis of structural diversity and frequency 
of occurrence

The diversity of non-redundant fragments was investigated 
by comparing the fragments to each other and calculating 
the all-by-all similarity matrix using the Tanimoto coef-
ficient. Analysis and interpretation of the resultant matrix 
(107,614 × 107,614) is difficult and therefore we have gen-
erated a separate matrix for only fused fragments. Subse-
quently, the data point of the matrix has been arranged in a 
2D plane by grouping the distribution of Tanimoto scores, as 
shown in Figure S1. The results exhibited that the Tanimoto 
score of ~ 80% and ~ 18% of the fragments are nearly 0.1 
and 0.2, respectively, i.e., ~ 98% of the fragments are highly 

dissimilar, suggesting that the generated library of the ring 
fragments (20,225) is very diverse.

It showed that tricyclic ring fragments are a more diverse 
dataset followed by tetracyclic, polycyclic, and bicyclic 
ring fragments in terms of the Tanimoto coefficient. Fol-
lowed by these analyses, the diverse fragments are ranked 
within each structurally classified group using algorithms 
implemented in the DataWarrior software and the highly 
ranked fragments are subjected to the frequency of occur-
rence analysis against the ChEMBL database. In Fig. 4, the 
top ten most frequent unique fragments from monocyclic, 
bicyclic, tricyclic, tetracyclic, and polycyclic groups that 
are biologically active as found in the ChEMBL database 
are represented. The highest occurrence is observed for the 
monocyclic ring fragments followed by the tricyclic, bicy-
clic, tetracyclic, and polycyclic ring fragments. Among the 
top ten fragments from each of these groups, the highest 
occurrence is found in the monocyclic group with 0.684% 
(14,391) fragments, and the lowest occurrence is found in 
the polycyclic group with 0.003% (59) fragments. It is also 
observed that in all the structural categories, the 10 most fre-
quent ring fragments are dominated by the hetero-aliphatic 

Table 1   The population of 
different types of structurally 
unique fragments

Dataset Monocyclic Bicyclic Tricyclic Tetracyclic Polycyclic Total

ChEMBL 355 202 14,452 7398 1658 24,065
COCONUT 173 2156 3018 2098 1354 8799
DrugCentral 0 33 3 0 2 38
PDB Ligands 16 280 259 127 16 698
SAVI 20 4524 31,110 33,321 5039 74,014
Total 564 7195 48,842 42,944 8069 1,07,614
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Fig. 3   Percentage distribution of the ring fragments in the dataset based on A type of ring and B different databases
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Fig. 4   Ten most frequent unique 
fragments from monocyclic, 
bicyclic, tricyclic, tetracyclic, 
and polycyclic groups against 
the ChEMBL database. The 
occurrence of these fragments 
in the ChEMBL dataset is indi-
cated in the normal font and the 
percentage in bold font
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rings in comparison to carbo-aliphatic rings. However, the 
hetero-aliphatic and carbo-aliphatic rings seemed to be 
highly comparable in the case of large ring size fragments. 
The observation is in good accordance with the observation 
made for GSK medicinal compounds [46]. The dominance 
of hetero-aliphatic rings may be preferred because of their 
higher hydrophilicity which often leads to improving the 
solubility of the chemical compounds [47], and also due 
to being functional in the forming of hydrogen bonds and 
other interactions with the biological systems. As the hetero-
aliphatic rings are observed to be an important component 
of biologically important molecules, we have extended 
our analysis towards examining the count of different het-
eroatoms such as N, P, O, and S in the ring structure, as 
shown in Fig. 5 and Table S4. Results showed that the pres-
ence of N and O or the combination (N + O) are the highly 
occurred heteroatoms (i.e., 75.37%) in the ring fragments 
followed by the ring containing N in combination with S 
(17.58%). Interestingly, it has been observed that the distri-
bution of carbo-cyclic ring structures is higher (0.79%) than 
the hetero-aliphatic rings containing S or P or O + S or the 
ring containing more than two heteroatoms (Fig. 5). This 
distribution of carbo-cyclic ring structure might be coming 
from the set of bigger ring size fragments as the occurrence 
of carbo-aliphatic rings seemed to be highly comparable to 
hetero-aliphatic rings in the case of bigger ring size frag-
ments (Fig. 5). Overall, results suggested that the diversity 
of ring fragments is majorly offered by the hetero-aliphatic 
rings and the N and O containing rings are among the most 
significant structural component.

Incorporation of fragment library module 
in molecular property diagnostic suite

Molecular property diagnostic suite is a galaxy-based open-
source computational drug discovery software developed 

in our group. The MPDS has been generated for different 
diseases namely tuberculosis [3, 4], diabetes [5], COVID-
19, etc. The modules in MPDS are classified into disease-
dependent and disease-independent modules. The disease-
dependent modules are customized to specific diseases 
and gene information, drug information, etc., are majorly 
available in this module. The disease-independent modules 
are majorly drugged discovery modules such as molecular 
docking and binding site prediction. The MPDS also has 
a compound library of million compounds with structural 
classification.

The identified fragments have been incorporated into the 
MPDS under the MPDS fragment library section. A total of 
107,614 fragments are classified into monocyclic, bicyclic, 
tricyclic, tetracyclic, and polycyclic. Different properties 
such as molecular weight, no. of hydrogen bond donors, 
no. hydrogen bond acceptors, molar refractivity, number of 
heavy atoms, number of rotatable bonds, logP, and topologi-
cal polar surface area (TPSA) have been calculated for each 
fragment and incorporated into the MySQL database. The 
users can select types of rings (i.e., monocyclic, bicyclic, 
tricyclic, etc.) in the drop-down menu and the correspond-
ing fragments and the structures will be displayed in the 
MPDS platform.

Conclusions

This work resulted in the development of ring fragments 
library with high diversity from the hetero-aliphatic ring 
structures. This library can allow the sampling of large 
chemical spaces comprising molecules with known bio-
logical activity, natural products, and theoretically gener-
ated molecules. The information provided from the analy-
sis of the generated frsagment library can help in finding 
novel drug molecules which is a critical step for biomedical 
research. In this context, this library module is available 
in the MPDS web portal (http://​mpds.​neist.​res.​in:​8085) to 
assist in molecule design, especially for computer-aided 
drug design. This module provides an inbuilt fragment 
library database to extract molecular fragments (classified 
as rings, linkers, and substituents), an open-source fragmen-
tation tool, and a virtual screening tool. The fragment library 
in MPDS will be continuously updated in regular intervals 
with fragments from new chemical entities offering varied 
skeletons and scaffolds for designing molecules. We hope 
that this module will allow the scientific community to use 
the FBDD approach more effectively in the computational 
design of molecules.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11030-​022-​10506-5.

Fig. 5   Distribution of unique fragments based on heteroatoms
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