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Abstract
In this study, a one-pot reaction between β-keto esters or dialkyl acetylenedicarboxylates with hydrazines, carbon disulfide, 
and dialkyl acetylenedicarboxylates in the presence of triethylamine is reported. This reaction proceeded at room temperature 
and was completed within 6 h to produce functionalized pyrazolone-1,4-dithiafulvene hybrids in good yields.
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Introduction

Pyrazolones represent important structural motifs in hetero-
cyclic chemistry and are found in many biologically active 
molecules used in the pharmaceutical and agrochemical 
industries. Pyrazolones show anti-tuberculosis [1], anti-viral 

[2], anti-hypertension [3], anti-oxidation [4], neuroprotec-
tion [5], anti-diabetic [6], anti-inflammatory [7], and anti-
cancer [8] activities. They are also used as ligands [9] in 
complexes with catalytic activity. Some pyrazolones are 
used as wool, cotton, and silk dyes [10]. In addition, deriva-
tives of sulfur heterocycles show significant biological and 
pharmaceutical activities [11]. 1,3-Dithiol-2-ylidenes deriv-
atives have attracted much attention due to their excellent 
electron donation characteristics as a component in elec-
tronic materials [12, 13]. Also, sulfur-containing heterocy-
cles such as 1,3-dithiole derivatives have been considered 
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potential new substances due to their superconducting, opti-
cal, and electrical switching capabilities [14].

Various methods for preparing 1,3-dithiole derivatives 
have been published [15–19]. Among the dithiols, 1,4-dithi-
afulvenes bearing ester groups have attracted much attention 
as building blocks of electronic materials [20, 21]. The most 
common methods reported for the synthesis of 1,4-dithiaful-
venes containing ester groups are the use of Wittig reac-
tion between aldehydes or ketones with phosphonium salts 
[22–24]. These reactions are usually carried out at − 78 °C 
under argon atmosphere and in the presence of strong base 
such as butyl lithium. On the other hand, preparation of 
phosphonium salts also includes several steps [25]. In this 
study, we attempted to prepare 1,4-dithiafulvenes containing 
ester groups using ketene dithioacetal intermediates under 
easier conditions.

Ketene dithioacetals are used as efficient intermediates in 
the synthesis of 1,3-dithiol derivatives. Ketene dithioacetals 
can generate from the reaction between carbon nucleophile 
and carbon disulfide [26]. The reaction between ketene dith-
ioacetals and dual electrophilic species such as dihaloal-
kanes [27, 28], or α-halo carbonyl compounds produce sul-
fur-containing heterocycles with two sulfur atoms [29, 30].

Laboratory studies show that the biological activities of 
bioactive molecules are usually recovered if two or more bio-
active units are grouped in a single molecule [31]. Therefore, 
hybrid molecules of various heterocycles with pyrazolones 
contain more effective biological activities [32]. Edaravone 
(I) has practical medicinal effects on a variety of diseases, 
including cardiovascular diseases [33], and Lanoconazole 
(II) shows significant antifungal activity [34]. Besides that, 
the 1,4-dithiafulvene unit (III) has a strong electron-donat-
ing property [21–24, 35] and is frequently used as a donor 
unit in donor–acceptor systems (Fig. 1).

Due to potential of sulfur-containing heterocycles and 
pyrazolones as mentioned above, we became interested 
in the synthesis of hybrid molecules containing pyrazolo-
nes and 1,4-dithiafulvenes. Following our research on the 
one-pot synthesis of new heterocyclic compounds [36–39] 
herein, we report the facile one-pot synthesis of pyrazolone-
1,4-dithiafulvene hybrids 5 from the reactions between 
β-keto esters 1 or dialkyl acetylenedicarboxylates 2 with 
hydrazines 3, carbon disulfide, and dialkyl acetylenedicar-
boxylates 4 (Scheme 1).

Fig. 1  Structures of pyrazolone 
and sulfur-containing molecules 
applied in medicine (I, II) and 
1,4-dithiafulvene unit (III) 
applied in the material industry
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Scheme 1  One-pot reaction for the synthesis of pyrazolone-1,4-dithiafulvene hybrids 5 
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Results and discussion

Synthesis and optimization of reaction conditions

The one-pot reaction between ethyl acetoacetate 1a, phenyl 
hydrazine 3a, carbon disulfide, and dimethylacetylenedicar-
boxylate 4a was selected as a model reaction to produce 
pyrazolone-1,4-dithiafulvene hybrid 5a (Table 1). At first, 
the reaction was carried out in the water in the presence of 
two equimolar of  Et3N at room temperature. The progress 
of the reaction was monitored by TLC. After compilation of 
the reaction, product 5a was separate as orange powder by 
filtration. The reaction yield was 25%. To optimize the reac-
tion conditions, the reaction was carried out in the presence 
of various bases and solvents, and the results are collected in 
Table 1. As illustrated in Table 1, the reaction was not done 
in the presence of KOH,  K2CO3, and pyridine in water, and 
the reaction yield in the presence of 1,4-diazabicyclo[2.2.2]
octane (DABCO) was negligible (Table 1, entries 1–5). 
Therefore, the  Et3N was selected as the appropriate base for 
this reaction. The use of  CH2Cl2 and EtOH as the solvent 

could not increase the reaction yield (Table 1, entries 6, 7). 
When the reaction was performed in THF or DMSO, the 
reaction yield increased, but the increase of reaction yield 
in acetonitrile was more significant (Table 1, entries 8–10). 
Further studies investigating the effect of temperature on the 
reaction yield showed that when the reaction was carried 
out in refluxing acetonitrile, the reaction yield was reduced 
because of the generation of complex by-products (Table 1, 
entry 11). Therefore, it is found that room temperature is 
the optimum temperature for the synthesis of pyrazolone-
1,4-dithiafulvene hybrid 5a. In addition, the study of the 
effect of the amount of base on the reaction yield showed 
that the two equimolar of the base is the optimum amount of 
base for this reaction (Table 1, entries 10, 12–14).

In this reaction, no detectable by-products were formed. 
In addition to the desired product, small amounts of acetoni-
trile-soluble dark materials were formed which were sepa-
rated from the main product by filtration. To evaluate the 
scalability of the reaction, the model reaction was performed 
at double and quadruple scale in optimal conditions and no 
significant change in the reaction yield was observed.

Table 1  Optimization of the reaction conditions for the synthesis of compound 5a 

a Isolated yield
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Entry Solvent Base (mol%) T(°C) Time (h) Yield% of 5aa

1 H2O Et3N (200) r.t 24 25
2 H2O KOH (200) r.t 12 N.R
3 H2O K2CO3 (200) r.t 12 N.R
4 H2O Pyridine (200) r.t 12 N.R
5 H2O DABCO (200) r.t 12 Trace
6 EtOH Et3N (200) r.t 24 25
7 CH2Cl2 Et3N (200) r.t 24 20
8 THF Et3N (200) r.t 24 33
9 DMSO Et3N (200) r.t 8 51
10 CH3CN Et3N (200) r.t 6 64
11 CH3CN Et3N (200) Reflux 6 40
12 CH3CN Et3N (100) r.t 6 35
13 CH3CN Et3N (150) r.t 8 55
14 CH3CN Et3N (250) r.t 6 64
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Characterization of products

The structure of 5a was confirmed by FT-IR, 1H NMR, 13C 
NMR, Mass, and elemental analysis data. In the IR spec-
tra of 5a, the peaks related to the stretching vibration of 

the ester carbonyl groups and S-C bonds appear in 1735 
and 755   cm−1, respectively. In the 1H NMR spectrum 
of 5a, methyl protons of pyrazolone moiety appear at 
δ = 2.46 ppm. Two methyl groups of ester moieties appear 
at δ = 3.95 and 3.96  ppm. The aromatic protons of 5a 

Table 2  One-pot synthesis of 
pyrazolone-1,4-dithiafulvene 
hybrids 5a–i 
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showed two triplets at δ = 7.16 ppm (3JHH = 8.4 Hz) and 
δ = 7.40 ppm (3JHH = 8.2 Hz), and a doublet at δ = 7.99 ppm 
(3JHH = 8.5 Hz). In addition, in the 13C NMR spectra of 5a, 
two ester CO signals overlapped at 160.4 ppm, and the 13C 
NMR spectra of 5a revealed 14 distinct signals, indicating 
that the hypothesized structure is correct. The mass spec-
trum of compound 5a showed the molecular ion peak at 
390 m/z, which was expected (See experimental section).

To confirm the generalizability of the reaction, com-
pounds 5a-i were synthesized through the one-pot reaction 
between β-keto esters 1 or acetylenic esters 2, with hydra-
zines 3,  CS2, and dialkyl acetylenedicarboxylates 4 in the 
presence of  Et3N in  CH3CN. The reactions proceeded well, 
and the products 5b-i were obtained with a good yield 
within 6 h (See Table 2).

The proposed mechanism for this reaction is depicted 
in Scheme 2. Initially, the pyrazolone derivatives I were 
generated from the reaction of β-keto esters 1 or acety-
lenic esters 2, with hydrazine derivatives 3 [40, 41]. Sub-
sequently, the tautomeric intermediates II and III were 
obtained by adding the in situ generated pyrazolone deriv-
ative I to  CS2 in the presence of  Et3N [42]. Following the 
Michel addition of sulfur anion of II or III to triple bound 
of acetylenic esters 4, resulting in the production of inter-
mediate IV. Cyclization of intermediate IV through the 
second Michel addition, resulting in intermediate V [43]. 
Finally, intermediate V is then oxidized in the presence 
of air to produce product 5 spontaneously (Scheme 2).

To investigate the effect of atmospheric oxygen on the 
formation of the product 5a, the model reaction was per-
formed under an argon atmosphere. In this case, TLC 
analysis showed that product 5a was not formed. This 
shows that atmospheric oxygen acts as an oxidant in this 
reaction.

Conclusion

In conclusion, we successfully presented a mild, facile, 
and one-pot method for the synthesis of new pyrazolone-
1,4-dithiafulvene hybrids by using readily available start-
ing materials through a one-pot reaction between β-keto 
esters or dialkyl acetylenedicarboxylates with hydrazines, 
carbon disulfide, and dialkyl acetylenedicarboxylates in 
good yields. A screening of the reaction conditions dem-
onstrated that, performing this reaction at room tempera-
ture and in acetonitrile in the presence of two equiva-
lents of triethylamine as a base, are the best ones. The 
good yields and the ease of workup procedure make it an 
appealing, practical, and acceptable one-pot method for 

producing functionalized pyrazolone-1,4-dithiafulvene 
hybrids.

Experimental section

General information

Dialkyl acetylendicarboxylate, hydrazines, carbon 
disulfide, β-keto esters, and all solvents were obtained 
from Merck (Germany) and were used without further 
purification.  RF values refer to thin-layer chromatography 
(TLC) performed on silica gel 60  F254 aluminum-backed 
silica plates (Merck). Melting points were measured with 
a Stuart SMP-3 apparatus. IR spectra of products were 
measured with an FTIR Perkin Elmer RXI. NMR spec-
tra were reported on a Varian Inova 500 MHz (500 MHz 
for 1H and 125 MHz for 13C) with  CDCl3 as the solvent. 
Chemical shifts are given in ppm (δ) relative to internal 
TMS, and coupling constants (J) are reported in Hertz 
(Hz). Mass spectra were recorded with an Agilent 5977A 
Series MSD spectrometer operating at an ionization poten-
tial of 70 eV.

General procedure for the synthesis of products 
(5a‑i), exemplified by 5a

A mixture of ethyl acetoacetate (1 mmol) with phenyl 
hydrazine (1 mmol) and  Et3N (2 mmol) in  CH3CN (5 mL) 
was stirred for 2 h at room temperature. After that, car-
bon disulfide (1.2 mmol) was added, and the mixture was 
stirred for 30 min. Then, dropwise additions of DMAD 
(1 mmol) were made, and the mixture was stirred for 6 h. 
Following that, the solvent was removed under reduced 
pressure, and the residue was washed with water to yield 
the pure product. The product was recrystallized in ethanol 
to achieve higher purity samples.

Dimethyl 2‑(3‑methyl‑5‑oxo‑1‑phenyl‑1H‑pyra‑
zol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑dicarboxylate 
(5a)

Orange powder; yield: 0.25 g (64%); m.p. 200–201 ◦C. TLC 
 RF = 0.65 (ethyl acetate/n-hexane = 3:7), IR (KBr, υ,  cm−1): 
1737  (CO2Me), 1526 (C=CS2), 1252 (C−O), 754 (S−C) 
 cm−1. MS (EI): m/z (%) = 390  (M+, 100), 331 (40), 257 (27), 
207 (17), 91 (17). 1H NMR (500 MHz,  CDCl3): δ = 2.46 (s, 
3H, N=CCH3), 3.95 (s, 3H,  OCH3), 3.96 (s, 3H,  OCH3), 
7.16 (t, 1H, 3JHH = 7.4 Hz,  CHpara), 7.4 (t, 2H, 3JHH = 7.2 Hz, 
 CHmeta), 7.99 (d, 2H, 3JHH = 8.5 Hz,  CHortho) ppm. 13C NMR 
(125.59 MHz,  CDCl3): δ = 16.6 (N=C–CH3), 54.1 and 54.2 
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 (2OCH3), 112.9 (C=CS2), 118.7  (2CHortho), 124.8  (CHpara), 
129.0  (2CHmeta), 131.2 and 137.5 (2 = C–CO2CH3), 138.7 
 (Cipso), 144.4 (C=N), 158.9 (S–C–S), 159.5 (N–C=O), 160.4 
(2CO2CH3) ppm.

Diethyl 2‑(3‑methyl‑5‑oxo‑1‑phenyl‑1H‑pyra‑
zol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑dicarboxylate 
(5b)

Orange powder; yield: 0.24 g (57%); m.p. 198–199 ◦C. TLC 
 RF = 0.55 (ethyl acetate/n-hexane = 3:7), IR (KBr, υ,  cm−1): 
1735  (CO2Et), 1524 (C=CS2), 1238 (C−O), 755 (S−C) 
 cm−1. MS (EI): m/z (%) = 418  (M+, 100), 345 (12), 215 (25), 
185 (14), 91 (27), 28 (16). 1H NMR (500 MHz,  CDCl3): 
δ = 1.40 (t, 6H, 3JHH = 7.1 Hz,  2CO2CH2CH3), 2.48 (s, 3H, 
N=CCH3), 4.41 (q, 4H, 3JHH = 7.1 Hz,  2CO2CH2CH3), 7.17 
(t, 1H, 3JHH = 7.3 Hz,  CHpara), 7.40 (t, 2H, 3JHH = 7.4 Hz, 
 2CHmeta), 7.99 (d, 2H, 3JHH = 8.0 Hz,  2CHortho) ppm. 13C 
NMR (125.59  MHz,  CDCl3): δ = 14.1  (2OCH2CH3), 
16.6 (N=C–CH3), 63.8  (2OCH2), 112.7 (C=CS2), 118.6 
 (2CHortho), 124.8  (CHpara), 129.0  (2CHmeta), 131.4 and 
137.5 (2=C–CO2CH3), 138.7  (Cipso), 144.5 (C=N), 158.5 
(S–C–S), 158.6 (N–C=O), 159.1 (2CO2CH2CH3) ppm.

Dimethyl 2‑(5‑oxo‑1,3‑diphenyl‑1H‑pyra‑
zol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑dicarboxylate 
(5c)

Orange powder; yield: 0.24 g (53%); m.p. 207–209 ◦C. TLC 
 RF = 0.6 (ethyl acetate/n-hexane = 3:7), IR (KBr, υ,  cm−1): 
1738  (CO2Me), 1501 (C=CS2), 1258 (C−O), 756 (S−C) 
 cm−1. MS (EI): m/z (%) = 394  (M+-CO2Me, 100), 366 (11), 
335 (12), 281 (13), 261 (17), 207 (28), 145 (39), 91 (13). 

1H NMR (500 MHz,  CDCl3): δ = 3.87 (s, 3H,  OCH3), 3.94 
(s, 3H,  OCH3), 7.20 (t, 1H, 3JHH = 7.3 Hz,  CHpara), 7.42 
(t, 2H, 3JHH = 7.8 Hz,  2CHmeta), 7.54–7.60 (m, 5H, 5CH-
Ar), 8.07 (d, 2H, 3JHH = 8.2 Hz,  2CHortho) ppm. 13C NMR 
(125.59 MHz,  CDCl3): δ = 53.7 and 53.8  (2OCH3), 111.1 
(C=CS2), 118.8  (2CHortho), 124.9  (CHpara), 128.7  (4CHmeta), 
129.1  (2CHortho), 130.1  (CHpara), 131.4 (=C–CO2CH3), 
132.4  (Cipso), 135.9 (=C–CO2CH3), 138.4  (Cipso), 147.2 
(C=N), 159.0 (S–C–S), 159.2 (N–C=O), 162.0 and 162.1 
(2CO2CH3) ppm.

Diethyl 2‑(5‑oxo‑1,3‑diphenyl‑1H‑pyra‑
zol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑dicarboxylate 
(5d)

Orange powder; yield: 0.3 g (63%); m.p. 184–185 ◦C. TLC 
 RF = 0.55 (ethyl acetate/n-hexane = 3:7), IR (KBr, υ,  cm−1): 
1729  (CO2Et), 1494 (C=CS2), 1244 (C−O), 756 (S−C) 
 cm−1. MS (EI): m/z (%) = 480  (M+, 100), 407 (20), 310 (5), 
277 (32), 247 (16), 145 (40), 91 (36). 1H NMR (500 MHz, 
 CDCl3): δ = 1.32 (t, 3H, 3JHH = 7.1 Hz,  CO2CH2CH3), 1.39 (t, 
3H, 3JHH = 7.0 Hz,  CO2CH2CH3), 4.33 (q, 2H, 3JHH = 7.1 Hz, 
 OCH2), 4.39 (q, 2H, 3JHH = 7.0 Hz,  OCH2), 7.20 (t, 1H, 
3JHH = 7.3 Hz,  CHpara), 7.42 (t, 2H, 3JHH = 7.8 Hz,  2CHmeta), 
7.55–7.61 (m, 5H, 5CH-Ar), 8.08 (d, 2H, 3JHH = 8.2 Hz, 
 2CHortho) ppm. 13C NMR (125.59 MHz,  CDCl3): δ = 14.0 
and 14.1  (2OCH2CH3), 63.4 and 63.5  (2OCH2), 111.2 
(C=CS2), 119.0  (2CHortho), 125.1  (CHpara), 129.0  (4CHmeta), 
129.3  (2CHortho), 130.3  (CHpara), 131.7 (=C–CO2CH3), 
133.0  (Cipso), 136.1 (=C–CO2CH3), 138.7  (Cipso), 147.4 
(C=N), 158.9 (S–C–S), 159.2 (N–C=O), 162.4 and 162.8 
(2CO2CH3) ppm.
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Table 2  (continued)

6 CO2Me Ph CO2Et

N N

O

SS

CO2EtEtO2C

MeO

O

5f

54

7 CO2Et Ph CO2Me

N N

O

SS

CO2MeMeO2C

EtO

O

5g

50

8 CO2Et Ph CO2Et

N N

O

SS

CO2EtEtO2C

EtO

O

5h

51

9 Me H CO2Et

5i

N NH

O

SS

CO2EtEtO2C

52

Entry R /or R1 R2 R3 Product Yield (%)a

5 CO2Me Ph CO2Me
N N

O

SS

CO2MeMeO2C

5e

MeO

O

51

a Isolated yields after recrystallization



26 Molecular Diversity (2024) 28:19–28

1 3

Dimethyl 2‑(3‑(methoxycarbonyl)‑5‑oxo‑1‑phe‑
nyl‑1H‑pyrazol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑di‑
carboxylate (5e)

Yellow powder; yield: 0.22 g (51%); m.p. 246–248 ◦C. TLC 
 RF = 0.55 (ethyl acetate/n-hexane = 4:6), IR (KBr, υ,  cm−1): 
1753 and 1712  (CO2Me), 1487 (C=CS2), 1226 (C−O), 764 
(S−C)  cm−1. MS (EI): m/z (%) = 434  (M+, 100), 406 (12), 
375 (11), 347 (21), 315 (15), 273 (11), 77 (19). 1H NMR 
(500 MHz,  CDCl3): δ = 3.97 (s, 6H,  2OCH3), 4.03 (s, 3H, 
 OCH3), 7.27 (t, 1H, 3JHH = 7.0 Hz,  CHpara), 7.45 (t, 2H, 
3JHH = 7.0 Hz,  CHmeta), 8.02 (d, 2H, 3JHH = 8.0 Hz,  CHortho) 
ppm. 13C NMR (125.59 MHz,  CDCl3): δ = 53.0, 54.0, and 
54.1  (3OCH3), 108.7 (C=CS2), 120.2  (2CHortho), 126.4 
 (CHpara), 129.1  (2CHmeta), 135.3 (=C–CO2CH3), 135.5 
 (Cipso), 137.1 (=C–CO2CH3), 138.0 (C=N), 159.3 (S–C–S), 
159.4 (N–C=O), 162.7 (2CO2CH3), 167.6 (CO2CH3) ppm.

Diethyl 2‑(3‑(methoxycarbonyl)‑5‑oxo‑1‑phe‑
nyl‑1H‑pyrazol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑di‑
carboxylate (5f)

Orange powder; yield: 0.25 g (54%); m.p. 165–167 ◦C. TLC 
 RF = 0.5 (ethyl acetate/n-hexane = 4:6), IR (KBr, υ,  cm−1): 
1731  (CO2Et), 1491 (C=CS2), 1241 (C−O), 757 (S−C) 
 cm−1. MS (EI): m/z (%) = 390  (M+-CO2Et, 74), 281 (42), 
253 (13), 207 (100), 133 (10), 77 (14). 1H NMR (500 MHz, 
 CDCl3): δ = 1.39 (t, 6H, 3JHH = 7.1 Hz,  2CO2CH2CH3), 4.03 
(s, 3H,  OCH3), 4.43 (q, 4H, 3JHH = 7.1 Hz,  2OCH2), 7.20 
(t, 1H, 3JHH = 7.3 Hz,  CHpara), 7.44 (t, 2H, 3JHH = 7.3 Hz, 
 2CHmeta), 8.01 (d, 2H, 3JHH = 8.6 Hz,  2CHortho) ppm. 13C 
NMR (125.59  MHz,  CDCl3): δ = 14.1  (2OCH2CH3), 
53.0  (OCH3), 63.7 and 63.8  (2OCH2), 108.5 (C=CS2), 
120.3  (2CHortho), 126.4  (CHpara), 129.1  (2CHmeta), 135.3 
(=C–CO2CH3), 135.9  (Cipso), 137.0 (=C–CO2CH3), 138.0 
(C=N), 159.1 (S–C–S), 162.3 (N–C=O), 162.7 (2CO2CH3), 
167.9  (CO2CH3) ppm.

Dimethyl 2‑(3‑(ethoxycarbonyl)‑5‑oxo‑1‑phe‑
nyl‑1H‑pyrazol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑di‑
carboxylate (5 g)

Yellow powder; yield: 0.22 g (50%); m.p. 223–224 ◦C. 
TLC  RF = 0.5 (ethyl acetate/n-hexane = 4:6), IR (KBr, υ, 
 cm−1): 1717  (CO2Me), 1491 (C=CS2), 1227 (C−O), 759 
(S−C)  cm−1. MS (EI): m/z (%) = 448  (M+, 100), 347 (23), 
284 (12), 257 (25), 207 (23), 77 (17). 1H NMR (500 MHz, 
 CDCl3): δ = 1.49 (t, 3H, 3JHH = 7.1 Hz,  CH3), 3.97 and 
3.98 (2 s, 6H,  2OCH3), 4.51 (q, 2H, 3JHH = 7.1 Hz,  CH2), 
7.26 (Overlapped with solvent peak, 1H,  CHpara), 7.45 (t, 
2H, 3JHH = 8.6 Hz,  2CHmeta), 8.03 (d, 2H, 3JHH = 8.6 Hz, 
 2CHortho) ppm. 13C NMR (125.59 MHz,  CDCl3): δ = 14.4 

 (OCH2CH3), 54.0 and 54.1  (2OCH3), 62.4  (OCH2), 109.1 
(C=CS2), 120.3  (2CHortho), 126.4  (CHpara), 129.1  (2CHmeta), 
135.5 (=C–CO2CH3), 135.7  (Cipso), 137.0 (=C–CO2CH3), 
138.0 (C=N), 159.4 (S–C–S), 159.5 (N–C=O), 162.4 and 
162.5 (2CO2CH3 and CO2C2H5) ppm.

Diethyl 2‑(3‑(ethoxycarbonyl)‑5‑oxo‑1‑phe‑
nyl‑1H‑pyrazol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑di‑
carboxylate (5 h)

Yellow powder; yield: 0.24 g (51%); m.p. 158–159 ◦C. 
TLC  RF = 0.65 (ethyl acetate/n-hexane = 4:6), IR (KBr, υ, 
 cm−1): 1725  (CO2Et), 1494 (C=CS2), 1254 (C−O), 756 
(S−C)  cm−1. MS (EI): m/z (%) = 404  (M+-CO2Et, 58), 312 
(100), 281 (18), 212 (24), 207 (45), 110 (11), 77 (7). 1H 
NMR (500 MHz,  CDCl3): δ = 1.40 (t, 3H, 3JHH = 6.9 Hz, 
 OCH2CH3), 1.41 (t, 3H, 3JHH = 6.9 Hz,  OCH2CH3), 1.49 (t, 
3H, 3JHH = 7.1 Hz,  OCH2CH3), 4.40–4.45 (m, 4H,  2OCH2), 
4.51 (q, 2H, 3JHH = 7.1 Hz,  OCH2), 7.26 (Overlapped with 
solvent peak, 1H,  CHpara), 7.44 (t, 2H, 3JHH = 8.2  Hz, 
 2CHmeta), 8.03 (d, 2H, 3JHH = 8.1 Hz,  2CHortho) ppm. 13C 
NMR (125.59 MHz,  CDCl3): δ = 14.1  (2OCH2CH3), 14.4 
 (OCH2CH3), 62.3, 63.6, and 63.7  (3OCH2), 108.6 (C=CS2), 
120.3  (2CHortho), 126.3  (CHpara), 129.1  (2CHmeta), 135.7 
(=C–CO2CH3), 135.9  (Cipso), 136.9 (=C–CO2CH3), 138.1 
(C=N), 159.0 (S–C–S), 159.1 (N–C=O), 162.4 (2CO2C2H5), 
167.8 (CO2  C2H5) ppm.

Diethyl 2‑(3‑methyl‑5‑oxo‑1H‑pyra‑
zol‑4(5H)‑ylidene)‑1,3‑dithiole‑4,5‑dicarboxylate 
(5i)

Orange powder; yield: 0.18 g (52%); m.p. 187–190 ◦C. TLC 
 RF = 0.5 (ethyl acetate/n-hexane = 6:4), IR (KBr, υ,  cm−1): 
3462 (N–H), 1742 and 1736  (CO2Et), 1507 (C=CS2), 
1287 (C−O), 767 (S−C)  cm−1. MS (EI): m/z (%) = 342 
 (M+, 100), 297 (5), 269 (9), 242 (35), 185 (16), 140 (29), 
83(16). 1H NMR (500 MHz,  CDCl3): δ = 1.35–1.37 (m, 
6H,  2OCH2CH3), 2.35 (s, 3H,  CH3), 4.37–4.39 (m, 4H, 
2OCH2CH3), 9.67 (s, 1H, NH) ppm. 13C NMR (125.59 MHz, 
 CDCl3): δ = 14.0 and 14.1  (2OCH2CH3), 16.6 (N=C–CH3), 
63.6 and 63.7  (2OCH2), 111.5 (C=CS2), 131.0 and 137.4 
(2=C–CO2CH3), 144.9 (C=N), 158.6 (S–C–S), 159.2 
(N–C=O), 160.6 and 165.5  (2CO2C2H5) ppm.
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