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Abstract

In this study, a one-pot reaction between f-keto esters or dialkyl acetylenedicarboxylates with hydrazines, carbon disulfide,
and dialkyl acetylenedicarboxylates in the presence of triethylamine is reported. This reaction proceeded at room temperature
and was completed within 6 h to produce functionalized pyrazolone-1,4-dithiafulvene hybrids in good yields.
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Introduction

Pyrazolones represent important structural motifs in hetero-
cyclic chemistry and are found in many biologically active
molecules used in the pharmaceutical and agrochemical
industries. Pyrazolones show anti-tuberculosis [1], anti-viral
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[2], anti-hypertension [3], anti-oxidation [4], neuroprotec-
tion [5], anti-diabetic [6], anti-inflammatory [7], and anti-
cancer [8] activities. They are also used as ligands [9] in
complexes with catalytic activity. Some pyrazolones are
used as wool, cotton, and silk dyes [10]. In addition, deriva-
tives of sulfur heterocycles show significant biological and
pharmaceutical activities [11]. 1,3-Dithiol-2-ylidenes deriv-
atives have attracted much attention due to their excellent
electron donation characteristics as a component in elec-
tronic materials [12, 13]. Also, sulfur-containing heterocy-
cles such as 1,3-dithiole derivatives have been considered
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Fig. 1 Structures of pyrazolone
and sulfur-containing molecules
applied in medicine (I, IT) and
1,4-dithiafulvene unit (IIT)
applied in the material industry
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potential new substances due to their superconducting, opti-
cal, and electrical switching capabilities [14].

Various methods for preparing 1,3-dithiole derivatives
have been published [15-19]. Among the dithiols, 1,4-dithi-
afulvenes bearing ester groups have attracted much attention
as building blocks of electronic materials [20, 21]. The most
common methods reported for the synthesis of 1,4-dithiaful-
venes containing ester groups are the use of Wittig reac-
tion between aldehydes or ketones with phosphonium salts
[22-24]. These reactions are usually carried out at — 78 °C
under argon atmosphere and in the presence of strong base
such as butyl lithium. On the other hand, preparation of
phosphonium salts also includes several steps [25]. In this
study, we attempted to prepare 1,4-dithiafulvenes containing
ester groups using ketene dithioacetal intermediates under
easier conditions.

Ketene dithioacetals are used as efficient intermediates in
the synthesis of 1,3-dithiol derivatives. Ketene dithioacetals
can generate from the reaction between carbon nucleophile
and carbon disulfide [26]. The reaction between ketene dith-
ioacetals and dual electrophilic species such as dihaloal-
kanes [27, 28], or a-halo carbonyl compounds produce sul-
fur-containing heterocycles with two sulfur atoms [29, 30].
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Lanoconazole 1,4-Dithiafulvene unit

Laboratory studies show that the biological activities of
bioactive molecules are usually recovered if two or more bio-
active units are grouped in a single molecule [31]. Therefore,
hybrid molecules of various heterocycles with pyrazolones
contain more effective biological activities [32]. Edaravone
(I) has practical medicinal effects on a variety of diseases,
including cardiovascular diseases [33], and Lanoconazole
(II) shows significant antifungal activity [34]. Besides that,
the 1,4-dithiafulvene unit (IIT) has a strong electron-donat-
ing property [21-24, 35] and is frequently used as a donor
unit in donor—acceptor systems (Fig. 1).

Due to potential of sulfur-containing heterocycles and
pyrazolones as mentioned above, we became interested
in the synthesis of hybrid molecules containing pyrazolo-
nes and 1,4-dithiafulvenes. Following our research on the
one-pot synthesis of new heterocyclic compounds [36-39]
herein, we report the facile one-pot synthesis of pyrazolone-
1,4-dithiafulvene hybrids 5 from the reactions between
p-keto esters 1 or dialkyl acetylenedicarboxylates 2 with
hydrazines 3, carbon disulfide, and dialkyl acetylenedicar-
boxylates 4 (Scheme 1).

R3 R3
Et;N
————
CH;CN, rt
R'orR (o]
R3 \
N—N\
R2
5

R= Me, Ph; R'= CO,Me, CO,Et; R?>= H, Ph; R3*= CO,Me, CO,Et

Scheme 1 One-pot reaction for the synthesis of pyrazolone-1,4-dithiafulvene hybrids 5
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Table 1 Optimization of the reaction conditions for the synthesis of compound 5a

Me02C C02Me
CO,M
0 2ie
Base
)I\/COzEt + PhNHNH, + + - |
solvent
(0]
CO,Me \
N—N
Ph
1a 3a 4a 5a
Entry Solvent Base (mol%) T(°C) Time (h) Yield% of 5a*
1 H,0 Et;N (200) r.t 24 25
2 H,0 KOH (200) r.t 12 N.R
3 H,0 K,CO; (200) r.t 12 N.R
4 H,0 Pyridine (200) r.t 12 N.R
5 H,0 DABCO (200) r.t 12 Trace
6 EtOH Et;N (200) r.t 24 25
7 CH,Cl, Et;N (200) r.t 24 20
8 THF Et;N (200) r.t 24 33
9 DMSO Et;N (200) r.t 8 51
10 CH,;CN Et;N (200) r.t 6 64
11 CH,;CN Et;N (200) Reflux 6 40
12 CH,;CN Et;N (100) r.t 6 35
13 CH,;CN Et;N (150) r.t 8 55
14 CH,CN Et;N (250) r.t 6 64
solated yield

Results and discussion
Synthesis and optimization of reaction conditions

The one-pot reaction between ethyl acetoacetate 1a, phenyl
hydrazine 3a, carbon disulfide, and dimethylacetylenedicar-
boxylate 4a was selected as a model reaction to produce
pyrazolone-1,4-dithiafulvene hybrid Sa (Table 1). At first,
the reaction was carried out in the water in the presence of
two equimolar of Et;N at room temperature. The progress
of the reaction was monitored by TLC. After compilation of
the reaction, product Sa was separate as orange powder by
filtration. The reaction yield was 25%. To optimize the reac-
tion conditions, the reaction was carried out in the presence
of various bases and solvents, and the results are collected in
Table 1. As illustrated in Table 1, the reaction was not done
in the presence of KOH, K,CO;, and pyridine in water, and
the reaction yield in the presence of 1,4-diazabicyclo[2.2.2]
octane (DABCO) was negligible (Table 1, entries 1-5).
Therefore, the Et;N was selected as the appropriate base for
this reaction. The use of CH,Cl, and EtOH as the solvent

could not increase the reaction yield (Table 1, entries 6, 7).
When the reaction was performed in THF or DMSO, the
reaction yield increased, but the increase of reaction yield
in acetonitrile was more significant (Table 1, entries 8-10).
Further studies investigating the effect of temperature on the
reaction yield showed that when the reaction was carried
out in refluxing acetonitrile, the reaction yield was reduced
because of the generation of complex by-products (Table 1,
entry 11). Therefore, it is found that room temperature is
the optimum temperature for the synthesis of pyrazolone-
1,4-dithiafulvene hybrid Sa. In addition, the study of the
effect of the amount of base on the reaction yield showed
that the two equimolar of the base is the optimum amount of
base for this reaction (Table 1, entries 10, 12—14).

In this reaction, no detectable by-products were formed.
In addition to the desired product, small amounts of acetoni-
trile-soluble dark materials were formed which were sepa-
rated from the main product by filtration. To evaluate the
scalability of the reaction, the model reaction was performed
at double and quadruple scale in optimal conditions and no
significant change in the reaction yield was observed.
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Characterization of products

The structure of 5a was confirmed by FT-IR, '"H NMR, 3C
NMR, Mass, and elemental analysis data. In the IR spec-
tra of Sa, the peaks related to the stretching vibration of

the ester carbonyl groups and S-C bonds appear in 1735
and 755 cm™!, respectively. In the '"H NMR spectrum
of 5a, methyl protons of pyrazolone moiety appear at
0=2.46 ppm. Two methyl groups of ester moieties appear
at 6=3.95 and 3.96 ppm. The aromatic protons of Sa

Table 2 One-pot synthesis of R3 R3
pyrazolone-1,4-dithiafulvene o
hybrids Sa—i s e
R EtsN
1 + R2NH-NH, + + | —_—
or CH3CN, rt
R'orR (o]
R!—=—-=" R? \
N—N
\RZ
2 4 5a-i
Entry R/orR' R? R3 Product Yield (%)*
MeO,C, CO,Me
S S
1 Me Ph  CO:Me 1 0 64
N—N
EtO,C CO,Et
s S
2 Me Ph CO:Et \9;0 57
N—N
RS,
MeO,C, CO,Me
S, S
3 Ph Ph  CO:Me Q\Q;O 53
N—N.
O
EtO,C, CO,Et
S S
4 Ph Ph  CO:Et Q\(\lgéo 63
N—N
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showed two triplets at §=7.16 ppm (*Jy;=8.4 Hz) and
6="7.40 ppm (3JHH =8.2 Hz), and a doublet at 6="7.99 ppm
(3JHH=8.5 Hz). In addition, in the 13C NMR spectra of Sa,
two ester CO signals overlapped at 160.4 ppm, and the *C
NMR spectra of 5a revealed 14 distinct signals, indicating
that the hypothesized structure is correct. The mass spec-
trum of compound 5a showed the molecular ion peak at
390 m/z, which was expected (See experimental section).

To confirm the generalizability of the reaction, com-
pounds 5a-i were synthesized through the one-pot reaction
between f-keto esters 1 or acetylenic esters 2, with hydra-
zines 3, CS,, and dialkyl acetylenedicarboxylates 4 in the
presence of Et;N in CH;CN. The reactions proceeded well,
and the products 5b-i were obtained with a good yield
within 6 h (See Table 2).

The proposed mechanism for this reaction is depicted
in Scheme 2. Initially, the pyrazolone derivatives I were
generated from the reaction of p-keto esters 1 or acety-
lenic esters 2, with hydrazine derivatives 3 [40, 41]. Sub-
sequently, the tautomeric intermediates II and IIT were
obtained by adding the in situ generated pyrazolone deriv-
ative I to CS, in the presence of Et;N [42]. Following the
Michel addition of sulfur anion of II or III to triple bound
of acetylenic esters 4, resulting in the production of inter-
mediate I'V. Cyclization of intermediate IV through the
second Michel addition, resulting in intermediate V [43].
Finally, intermediate V is then oxidized in the presence
of air to produce product § spontaneously (Scheme 2).

To investigate the effect of atmospheric oxygen on the
formation of the product Sa, the model reaction was per-
formed under an argon atmosphere. In this case, TLC
analysis showed that product 5a was not formed. This
shows that atmospheric oxygen acts as an oxidant in this
reaction.

Conclusion

In conclusion, we successfully presented a mild, facile,
and one-pot method for the synthesis of new pyrazolone-
1,4-dithiafulvene hybrids by using readily available start-
ing materials through a one-pot reaction between f-keto
esters or dialkyl acetylenedicarboxylates with hydrazines,
carbon disulfide, and dialkyl acetylenedicarboxylates in
good yields. A screening of the reaction conditions dem-
onstrated that, performing this reaction at room tempera-
ture and in acetonitrile in the presence of two equiva-
lents of triethylamine as a base, are the best ones. The
good yields and the ease of workup procedure make it an
appealing, practical, and acceptable one-pot method for

producing functionalized pyrazolone-1,4-dithiafulvene
hybrids.

Experimental section
General information

Dialkyl acetylendicarboxylate, hydrazines, carbon
disulfide, f-keto esters, and all solvents were obtained
from Merck (Germany) and were used without further
purification. Ry values refer to thin-layer chromatography
(TLC) performed on silica gel 60 F,5, aluminum-backed
silica plates (Merck). Melting points were measured with
a Stuart SMP-3 apparatus. IR spectra of products were
measured with an FTIR Perkin Elmer RXI. NMR spec-
tra were reported on a Varian Inova 500 MHz (500 MHz
for 'H and 125 MHz for '*C) with CDClI, as the solvent.
Chemical shifts are given in ppm () relative to internal
TMS, and coupling constants (J) are reported in Hertz
(Hz). Mass spectra were recorded with an Agilent 5977A
Series MSD spectrometer operating at an ionization poten-
tial of 70 eV.

General procedure for the synthesis of products
(5a-i), exemplified by 5a

A mixture of ethyl acetoacetate (1 mmol) with phenyl
hydrazine (1 mmol) and Et;N (2 mmol) in CH;CN (5 mL)
was stirred for 2 h at room temperature. After that, car-
bon disulfide (1.2 mmol) was added, and the mixture was
stirred for 30 min. Then, dropwise additions of DMAD
(1 mmol) were made, and the mixture was stirred for 6 h.
Following that, the solvent was removed under reduced
pressure, and the residue was washed with water to yield
the pure product. The product was recrystallized in ethanol
to achieve higher purity samples.

Dimethyl 2-(3-methyl-5-oxo-1-phenyl-1H-pyra-
zol-4(5H)-ylidene)-1,3-dithiole-4,5-dicarboxylate
(5a)

Orange powder; yield: 0.25 g (64%); m.p. 200-201 °C. TLC
Rp=0.65 (ethyl acetate/n-hexane=3:7), IR (KBr, v, cm™Y):
1737 (CO,Me), 1526 (C=CS,), 1252 (C-0), 754 (S-C)
cm™!. MS (ED): m/z (%) =390 (M*, 100), 331 (40), 257 (27),
207 (17), 91 (17). "H NMR (500 MHz, CDCl,): §=2.46 (s,
3H, N=CCH,), 3.95 (s, 3H, OCH;), 3.96 (s, 3H, OCH,),
7.16 (t, 1H, *Jyy=7.4 Hz, CH,,,). 7.4 (t, 2H, *Jyy=7.2 Hz,
CH,,,.).7.99 (d, 2H, *J,;;=8.5 Hz, CH,,;,,) ppm. *°C NMR

(125.59 MHz, CDCl,): §=16.6 (N=C—CH,), 54.1 and 54.2
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Scheme 2 The proposed mechanism for the synthesis of pyrazolone-1,4-dithiafulvene hybrids 5

(20CHy), 112.9 (C=CS,), 118.7 (2CH,),;,), 124.8 (CH,.,).
129.0 (2CH,,,,.), 131.2 and 137.5 (2=C-CO,CH,), 138.7
(C, ), 144.4 (C=N), 158.9 (S-C-S), 159.5 (N-C=0), 160.4

ipso

(2CO,CH;) ppm.

Diethyl 2-(3-methyl-5-oxo-1-phenyl-1H-pyra-
zol-4(5H)-ylidene)-1,3-dithiole-4,5-dicarboxylate
(5b)

Orange powder; yield: 0.24 g (57%); m.p. 198-199 °C. TLC
Rp=0.55 (ethyl acetate/n-hexane =3:7), IR (KBr, v, cm™h):
1735 (CO,Et), 1524 (C=CS,), 1238 (C-0), 755 (S-C)
cm™'. MS (ED): m/z (%) =418 (M*, 100), 345 (12), 215 (25),
185 (14), 91 (27), 28 (16). 'H NMR (500 MHz, CDCI,):
5=1.40 (t, 6H, *Jyy;=7.1 Hz, 2CO,CH,CH;), 2.48 (s, 3H,
N=CCHS,), 4.41 (q, 4H, 3Jyy;=7.1 Hz, 2CO,CH,CHj;), 7.17
(t, 1H, *Jyy=7.3 Hz, CH,,.), 7.40 (t, 2H, *Jyyy=7.4 Hz,
2CH,,,..), 7.99 (d, 2H, 3J,;;;=8.0 Hz, 2CH,,,,) ppm. *C
NMR (125.59 MHz, CDCly): 6=14.1 (20CH,CH,;),
16.6 (N=C—CH,), 63.8 (20CH,), 112.7 (C=CS,), 118.6
(2CH,,4,), 124.8 (CH,,,,), 129.0 (2CH,,,,,), 131.4 and
137.5 (2=C-CO,CH,), 138.7 (C,,,,,), 144.5 (C=N), 158.5
(S-C-S), 158.6 (N-C=0), 159.1 (2CO,CH,CH,) ppm.
Dimethyl 2-(5-oxo0-1,3-diphenyl-1H-pyra-
zol-4(5H)-ylidene)-1,3-dithiole-4,5-dicarboxylate
(50

Orange powder; yield: 0.24 g (53%); m.p. 207-209 °C. TLC
R;=0.6 (ethyl acetate/n-hexane = 3:7), IR (KBr, v, cm™'):
1738 (CO,Me), 1501 (C=CS,), 1258 (C-0), 756 (S—C)
cm™!. MS (ED): m/z (%) =394 (M*-CO,Me, 100), 366 (11),
335 (12), 281 (13), 261 (17), 207 (28), 145 (39), 91 (13).

@ Springer

'H NMR (500 MHz, CDCl,): §=3.87 (s, 3H, OCH;), 3.94
(s, 3H, OCHy), 7.20 (t, 1H, *Jyy=7.3 Hz, CH,,,,), 7.42
(t, 2H, *Jyy=7.8 Hz, 2CH,,,,,), 7.54-7.60 (m, 5H, 5CH-
Ar), 8.07 (d, 2H, *Jyy=8.2 Hz, 2CH,,,,,) ppm. *C NMR
(125.59 MHz, CDCl,): §=53.7 and 53.8 (20CH;), 111.1
(C=CS,), 118.8 (2CH,,,). 124.9 (CH,,,,), 128.7 (4CH,,,,,).
129.1 (2CH,),,), 130.1 (CH,,,,,), 131.4 (=C-CO,CH,),
132.4 (C,,,). 135.9 (=C-CO,CH,), 138.4 (C,,,), 147.2
(C=N), 159.0 (S-C-S), 159.2 (N-C=0), 162.0 and 162.1
(2CO,CH;) ppm.

Diethyl 2-(5-oxo0-1,3-diphenyl-1H-pyra-
zol-4(5H)-ylidene)-1,3-dithiole-4,5-dicarboxylate
(5d)

Orange powder; yield: 0.3 g (63%); m.p. 184-185 °C. TLC
R;=0.55 (ethyl acetate/n-hexane = 3:7), IR (KBr, v, cm™'):
1729 (CO,Et), 1494 (C=CS,), 1244 (C-0), 756 (S—C)
cm™!. MS (ED): m/z (%) =480 (M*, 100), 407 (20), 310 (5),
277 (32), 247 (16), 145 (40), 91 (36). 'H NMR (500 MHz,
CDCly): 6=1.32 (t, 3H, *Jyyy=7.1 Hz, CO,CH,CH), 1.39 (t,
3H, *Jyy=7.0 Hz, CO,CH,CH}), 4.33 (q, 2H, *Jyy=7.1 Hz,
OCH,), 4.39 (q, 2H, *Jyy=7.0 Hz, OCH,), 7.20 (t, 1H,
3Juu=17.3 Hz, CH,,,,), 7.42 (t, 2H, *Jyy;=7.8 Hz, 2CH, ,,,).
7.55-7.61 (m, 5H, 5CH-Ar), 8.08 (d, 2H, *Jy;=8.2 Hz,
2CH,,,;,,) ppm. *C NMR (125.59 MHz, CDCl,): §=14.0
and 14.1 (20CH,CH;), 63.4 and 63.5 (20CH,), 111.2
(C=CS,), 119.0 (2CH,,,). 125.1 (CH,,,,), 129.0 (4CH,,,,,).
129.3 (2CH,),,). 130.3 (CH,,,,), 131.7 (=C-CO,CHy,),
133.0 (C,,,,). 136.1 (=C-CO,CH,), 138.7 (C,,,,), 147.4
(C=N), 158.9 (S-C-S), 159.2 (N-C=0), 162.4 and 162.8
(2CO,CH;) ppm.
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Table 2 (continued
( ) Entry R/orR! R? R3 Product Yield (%)*

MeO,C, CO,Me

S S
o
5 CO;Me Ph CO;Me 0 51
MeO \
N—N

6 CO:Me Ph COsEt 0 54

o
7 COEt Ph CO:Me )\\g]:/&o 50
EtO \

EtO,C, CO,Et

s s
o
8 CO2Et  Ph CO2Et 0 51
EtO \

N—N

“Tsolated yields after recrystallization
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Dimethyl 2-(3-(methoxycarbonyl)-5-oxo-1-phe-
nyl-1H-pyrazol-4(5H)-ylidene)-1,3-dithiole-4,5-di-
carboxylate (5e)

Yellow powder; yield: 0.22 g (51%); m.p. 246248 °C. TLC
Rp=0.55 (ethyl acetate/n-hexane =4:6), IR (KBr, v, cm™h):
1753 and 1712 (CO,Me), 1487 (C=CS,), 1226 (C-0), 764
(S—C) cm™'. MS (ED): m/z (%) =434 (M™, 100), 406 (12),
375 (11), 347 (21), 315 (15), 273 (11), 77 (19). 'H NMR
(500 MHz, CDCl,): 6=3.97 (s, 6H, 20CH3), 4.03 (s, 3H,
OCH,), 7.27 (t, 1H, *Jyy=7.0 Hz, CH,,), 7.45 (t, 2H,
3Jyn=7.0Hz, CH, ), 8.02 (d, 2H, *J,;;;=8.0 Hz, CH,,,.)
ppm. 3C NMR (125.59 MHz, CDCl,): 6=53.0, 54.0, and
54.1 (30CH,), 108.7 (C=CS,), 120.2 (2CH,, ), 126.4
(CH,,,), 129.1 (2CH,,,,), 135.3 (=C-CO,CH;), 135.5

para meta

(C;s0)- 137.1 (=C—-CO,CH,), 138.0 (C=N), 159.3 (S-C-S),

ipso

159.4 (N-C=0), 162.7 (2CO,CH,), 167.6 (CO,CH,) ppm.

Diethyl 2-(3-(methoxycarbonyl)-5-oxo-1-phe-
nyl-1H-pyrazol-4(5H)-ylidene)-1,3-dithiole-4,5-di-
carboxylate (5f)

Orange powder; yield: 0.25 g (54%); m.p. 165-167 °C. TLC
Rp=0.5 (ethyl acetate/n-hexane =4:6), IR (KBr, v, cm_l):
1731 (CO,EY), 1491 (C=CS,), 1241 (C-0), 757 (S-C)
cm™!. MS (ED): m/z (%) =390 (M*-CO,Et, 74), 281 (42),
253 (13), 207 (100), 133 (10), 77 (14). "H NMR (500 MHz,
CDCly): §=1.39 (t, 6H, *Jiy;=7.1 Hz, 2CO,CH,CH;), 4.03
(s, 3H, OCH,), 4.43 (q, 4H, *Jyy=7.1 Hz, 20CH,), 7.20
(t, 1H, *Jyy=7.3 Hz, CH,,,,), 7.44 (t, 2H, *Jy;;=7.3 Hz,
2CH,,,,.), 8.01 (d, 2H, *J;;;=8.6 Hz, 2CH,,,,,) ppm. "*C
NMR (125.59 MHz, CDCly): §=14.1 (20CH,CHj;),
53.0 (OCHj;), 63.7 and 63.8 (20CH,), 108.5 (C=CS,),
120.3 (2CH,,,), 126.4 (CH,,,,), 129.1 (2CH,,,,,), 135.3
(=C-CO,CHy), 135.9 (C,,,,), 137.0 (=C-CO,CH,), 138.0
(C=N), 159.1 (S—-C-S), 162.3 (N-C=0), 162.7 (2CO,CH,),
167.9 (CO,CHj5) ppm.

Dimethyl 2-(3-(ethoxycarbonyl)-5-oxo-1-phe-
nyl-1H-pyrazol-4(5H)-ylidene)-1,3-dithiole-4,5-di-
carboxylate (5 g)

Yellow powder; yield: 0.22 g (50%); m.p. 223-224 °C.
TLC Rp=0.5 (ethyl acetate/n-hexane =4:6), IR (KBr, v,
ecm™1): 1717 (CO,Me), 1491 (C=CS,), 1227 (C-0), 759
(S—C) cm™'. MS (EI): m/z (%) =448 (M, 100), 347 (23),
284 (12), 257 (25), 207 (23), 77 (17). '"H NMR (500 MHz,
CDCl;): §=1.49 (t, 3H, *Jyy=7.1 Hz, CH;), 3.97 and
3.98 (2 s, 6H, 20CH;), 4.51 (q, 2H, *Jy;=7.1 Hz, CH,),
7.26 (Overlapped with solvent peak, 1H, CHpam), 7.45 (t,
2H, 3/, =8.6 Hz, 2CH, ), 8.03 (d, 2H, *J;;;;=8.6 Hz,
2CH,,,;,,) ppm. *C NMR (125.59 MHz, CDCl,): §=14.4

ortho

@ Springer

(OCH,CH), 54.0 and 54.1 (20CH,), 62.4 (OCH,), 109.1
(C=CS,), 120.3 (2CH, ;,). 126.4 (CH, ), 129.1 (2CH,,,,).
135.5 (=C-CO,CHj), 135.7 (C,yy,), 137.0 (=C-CO,CHy),

138.0 (C=N), 159.4 (§-C-S), 159.5 (N-C=0), 162.4 and
162.5 (2CO,CHj; and CO,C,Hs) ppm.

Diethyl 2-(3-(ethoxycarbonyl)-5-oxo-1-phe-
nyl-1H-pyrazol-4(5H)-ylidene)-1,3-dithiole-4,5-di-
carboxylate (5 h)

Yellow powder; yield: 0.24 g (51%); m.p. 158-159 "C.
TLC Rz=0.65 (ethyl acetate/n-hexane =4:6), IR (KBr, v,
cm™h): 1725 (CO,EY), 1494 (C=CS,), 1254 (C-0), 756
(S—C) cm™!. MS (ED): m/z (%) =404 (M*-CO,Et, 58), 312
(100), 281 (18), 212 (24), 207 (45), 110 (11), 77 (7). 'H
NMR (500 MHz, CDCl,): §=1.40 (t, 3H, 3JHH:6.9 Hz,
OCH,CH;), 1.41 (t, 3H, 3JHH=6.9 Hz, OCH,CH;), 1.49 (t,
3H, 3JHH=7.1 Hz, OCH,CH;), 4.40-4.45 (m, 4H, 20CH,),
4.51 (g, 2H, 3JHH=7.1 Hz, OCH,), 7.26 (Overlapped with
solvent peak, 1H, CHpam), 7.44 (t, 2H, 3JHH=8.2 Hz,
2CH,,,,.), 8.03 (d, 2H, *Jy;=8.1 Hz, 2CH,,,,,) ppm. °C
NMR (125.59 MHz, CDCly): §=14.1 (20CH,CH;), 14.4
(OCH,CHj;), 62.3, 63.6, and 63.7 (30CH,), 108.6 (C=CS,),
120.3 (2CH,,,,), 126.3 (CH,,,), 129.1 (2CH,,,,,), 135.7
(=C-CO,CHjy), 135.9 (C,,,,), 136.9 (=C-CO,CH,), 138.1
(C=N), 159.0 (S—C-S), 159.1 (N-C=0), 162.4 (2CO,C,Hy),
167.8 (CO, C,Hs) ppm.

Diethyl 2-(3-methyl-5-oxo-1H-pyra-
zol-4(5H)-ylidene)-1,3-dithiole-4,5-dicarboxylate
(51)

Orange powder; yield: 0.18 g (52%); m.p. 187-190 °C. TLC
Rp=0.5 (ethyl acetate/n-hexane = 6:4), IR (KBr, v, cm™Y):
3462 (N-H), 1742 and 1736 (CO,Et), 1507 (C=CS,),
1287 (C-0), 767 (S—C) cm™~!. MS (EI): m/z (%) =342
(M™, 100), 297 (5), 269 (9), 242 (35), 185 (16), 140 (29),
83(16). '"H NMR (500 MHz, CDCl,): 6=1.35-1.37 (m,
6H, 20CH,CH;), 2.35 (s, 3H, CH;), 4.37-4.39 (m, 4H,
20CH,CHj,), 9.67 (s, 1H, NH) ppm. '*C NMR (125.59 MHz,
CDCly): 6=14.0 and 14.1 (20CH,CH;), 16.6 (N=C-CH;),
63.6 and 63.7 (20CH,), 111.5 (C=CS,), 131.0 and 137.4
(2=C-CO,CHj;), 144.9 (C=N), 158.6 (S-C-S), 159.2
(N-C=0), 160.6 and 165.5 (2CO,C,H;) ppm.
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