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Abstract
This research paper presents the synthesis and characterization of the magnetic nanoparticle,  Fe3O4@Sal@Cu,  [Fe3O4@
Si–CH2–CH2–CH2–NH–NH–CO–N=CH–(2–HO–C6H4–)@Cu] as a green and retrievable catalyst. This catalyst was char-
acterized by FTIR, XRD, EDX and TGA analyses. In addition, the catalytic activity of this new catalyst was investigated for 
the synthesis of 2-amino 4H-chromenes by producing good-to-excellent yields under mild reaction conditions. The other 
advantages of the developed nanocatalyst are its ecofriendliness, being easy to handle, high reusability and being magneti-
cally separable. The synthesis of some new derivatives of 2-amino-4H-chromenes in the presence of this nanocatalyst is 
also reported.
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Introduction

The use of magnetic nanocatalysts is an interesting area 
for the development of sustainable and green procedures 
due to external magnetic separation and no need for cata-
lyst filtration or centrifugation and providing simple and 
practical method for the recovering of these catalysts [1]. 
In addition, multi-component reactions (MCRs) are very 
powerful weapons in the organic and medicinal chemistry 
for the preparation of the bulky products in a one-pot and 
almost one-step from small starting materials [2–7]. The 
MCRs for the synthesis of 2-amino-4H-chromenes deriva-
tives have also gained considerable attention in organic 
synthesis such as synthesis of 2-amino-4H-chromenes 
derivatives using nano-ZnO catalyst [8], under solvent-
free condition using MOF-5 [9], choline chloride/urea 
[10], nanocrystalline MgO [11], by Fe(ClO4)3/SiO2 [12], 
on water  CuSO4.  5H2O-catalyzed synthesis of 2-amino-
4H-chromenes [13], the synthesis of 2-amino-4H-pyran 
derivatives using DABCO-CuCl complex [14], preparation 
of 3-amino-1H-chromenes using ZnO nanoparticles thin-
film [15], synthesis of 4, 5-dihydropyrano [c] chromene 
derivatives over  TiO2 nanoparticles [16] and synthesis of 
aminobenzochromenes using  Ag2Cr2O7 nanoparticles [17].

Also, copper-catalyzed synthesis of chromenes has been 
already extensively reported in the literature, especially 
which supported copper catalyst on magnetic nanoparticles 
[18] such as one-pot synthesis of 2-amino-4H-chromene 
derivatives by MNPs@ Cu [19, 20], sonochemically pro-
moted preparation of silica-anchored cyclodextrin deriva-
tives for efficient copper catalysis [21] and synthesis of 
benzimidazole derivatives using Cu-Schiff base complexes 
embedded over MCM-41 [22].

The combination of magnetic nanocatalysts and multi-
component reactions will become a worthy protocol for the 
introducing of green procedure in green synthesis [23–32]. 
In addition, due to useful biological activities in the field 
of medicinal chemistry [33] and to have anti-cancer and 
anti-coagulant activities of 2-amino-4H-chromenes [34] 
and to evaluate catalytic activity of prepared catalyst, 
 Fe3O4@Sal@Cu was utilized in the one-pot preparation 
of 2-amino-4H-chromenes using aryl aldehydes, dime-
done and malononitrile, ethyl and methyl 2-cyanoacetate 
in good-to-high yield in ethanol at room temperature 
(Scheme 1).

Results and discussion

Characterization of the nanocatalyst

The FTIR spectra of the catalyst are shown in Fig. 1. The 
broad band at 3436  cm−1 confirms the presence of NH and 
OH group of amide, amine and phenolic OH, loaded on 
the surface of  Fe3O4@Sal@Cu. The band 1615  cm−1 is 
related to C=O. The band in 573  cm−1 is related to Fe–O.

In addition, the XRD pattern of the catalyst is shown 
in Fig. 2. The reflection planes at 14, 30, 36, 44, 55, 59 
and 64 which are attributed to the diffraction scattering 
of  Fe3O4 were readily recognized from the XRD pattern. 
These characteristic peaks adopted with those of standard 
 Fe3O4 (JCPDS file No 04-0755). The observed diffraction 
peaks were indicated that  Fe3O4 mostly exists in a face-
centered cubic structure.

The loading of organic compounds on  Fe3O4 was deter-
mined by EDX analysis, and the content of C, N, O, S, Fe 
and Cu in  Fe3O4@Sal@Cu was proved (Fig. 3).

The SEM images of the synthesized magnetic nanocata-
lyst are shown in Fig. 4. As can be seen from SEM images, 
the geometric shape of the nanoparticles is spherical and 
the nanoparticles have sizes between 15 and 36 nm.

Typical thermal TGA curves are given in Fig. 5. The 
range of 0–140  °C (region a) is related to release of 
adsorbed water; the second from 140 to 600 °C (region 
b) is related to the decomposition of organic matter on 
the  Fe3O4 and region c is represented to  Fe3O4. The TGA 
curve of the synthesized catalyst demonstrates thermal sta-
bility, with decomposition starting at around 140 °C under 
a nitrogen atmosphere.

Catalytic activity evaluation

Firstly, the model reaction was simply carried out by 
mixing 3-nitro benzaldehyde (1  mmol), malononitrile 
(1  mmol), dimedone (1  mmol) in ethanol, methanol, 

Scheme  1  Synthesis of 2-amino-4H-chromenes using  Fe3O4@Sal@
Cu
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Fig. 1  FTIR spectra of a  Fe3O4, b  Fe3O4@3-Cl-propyl, c  Fe3O4@propyl-semicarbazide, d  Fe3O4@propyl-semicarbazide-salicylaldehyde, e 
 Fe3O4@propyl-semicarbazide-salicylaldehyde-Cu

Fig. 2  XRD analysis of  Fe3O4@Sal@Cu
Fig. 3  EDX analysis of  Fe3O4@Sal@Cu



3298 Molecular Diversity (2022) 26:3295–3307

1 3

n-hexane, chloroform and water as solvent at room tem-
perature in the presence of different amounts of the cata-
lyst (2, 4 and 8 mg). The product was obtained as shown 
in Table 1. As indicated in Table 1, the best condition 
reaction is 8 mg of the catalyst in ethanol as solvent at 
ambient temperature.

However, the scope and generality of this three-compo-
nent one-pot synthesis of 2-amino-4H-chromenes have been 
illustrated with different aldehydes and the results are sum-
marized in Table 2. This method has the ability to tolerate a 
variety of other functional groups such as hydroxyl, methyl, 
nitro and chloro under the reaction conditions. This protocol 
is suitable for both electron-rich and electron-deficient alde-
hydes leading to high yields of products 4a–s.

Also, in a series of reactions, ethyl and methyl cyano 
acetate was employed instead of malononitrile under 

reaction condition to give the corresponding ethyl or 
methyl 2-amino-4H-chromene carboxylate. In these cases, 
the reactions were evaluated using a variety of structurally 
diverse aldehydes (entries 13–17, Table 2), respectively. 
The yields obtained were good-to-excellent. Therefore, the 
reaction profile is clean and this one-pot three-component 
procedure presents some improvements and advantages 
over existing methods. One of the major advantages of this 
protocol is the isolation and purification of the products, 
which have been achieved by simple separation (the use 
of external magnet) and crystallization of the crude prod-
ucts, and there are no by-products were formed in using 
catalyst. All the products were identified by comparison 
of analytical data with those of authentic samples. Also, 
some new compounds were synthesized by this protocol 
(entries 13–15, Table 2).

Fig. 4  SEM analysis of  Fe3O4@Sal@Cu
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A reasonable pathway for the formation of 2-amino-4H-
chromenes in the presence of magnetic nanocatalyst is dis-
closed in Scheme 2.

Also, we study the efficiency of our presented protocol 
in a comparative with some previously reported methods 
for the synthesis of 2-amino-7,7-dimethyl-4-(3-nitrophenyl)-
5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile 4b. 
Reviewing the collected results as inserted in Table 3 repre-
sents higher catalytic performance for our presented catalyst.

Experimental

Chemicals were purchased from Merck Chemical Company. 
NMR spectra were recorded in  CDCl3 and DMSO-d6 on 
a Bruker Advance DPX-300 instrument using TMS as an 

internal standard. SEM analysis was determined by using 
FE-TESCAN, model Mira3-XMU at accelerating volt-
age of 15 kV. XRD analysis was performed on a Bruker 
D8-advance X-ray diffractometer or on an X'Pert Pro MPD 
diffractometer with Cu Kα (λ = 0.154 nm) radiation. TGA 
analysis was recorded using a Shimadzu Thermogravimetric 
analyzer (TG-50). FTIR spectra were recorded on a JASCO 
FT-IR 460 plus spectrophotometer.

Preparation of  Fe3O4 NPs

Fifty milliliters of  FeCl3.6H2O (0.3 M) was added to 0.5 mL 
HCl (0.2 M), and the reaction flask was located in the ultra-
sonic probe and irradiation under 85 kHz at room tempera-
ture for 5 min. Then, 20 mL  Na2SO3 (0.3 M) was added into 

Fig. 5  TGA analysis of  Fe3O4@
Sal@Cu

Table 1  Optimizing of the 
reaction conditions in the 
synthesis of 4b 

Entry Catalyst Catalyst 
amount 
(mg)

Solvent Temp (°C) Time (min) Yield (%) Refer-
ences

1 – – – R.t 15 Trace [35]
2 – – – 100 15 Trace [35]
3 – – H2O R.t 15 20 [35]
4 – – H2O Reflux 15 35 [35]
5 Fe3O4@Sal@Cu – n-hexane Reflux 60 Trace This work
6 Fe3O4@Sal@Cu – CHCl3 Reflux 60 Trace This work
7 Fe3O4@Sal@Cu 2 EtOH R.t 5 88 This work
8 Fe3O4@Sal@Cu 4 EtOH R.t 5 91 This work
7 Fe3O4@Sal@Cu 8 EtOH R.t 5 96 This work
8 Fe3O4@Sal@Cu 8 MeOH R.t 20 75 This work
9 Fe3O4@Sal@Cu 8 H2O R.t 15 85 This work
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Table 2  Synthesis of chromenes 
using  Fe3O4@Sal@Cu

Entry X Aldehyde Product Time (min.) Yield (%) m.p. (°C) [Lit.]

1 CN

 

4a 10 88 214–216 [35]

2 CN

 

4b 8 96 212–214 [36]

3 CN

 

4c 5 91 177–179 [37]

4 CN

 

4d 5 93 212–214 [38]

5 CN

 

4e 5 92 203–205 [39]

6 CN

 

4f 10 85 208–210 [40]

7 CN

 

4 g 10 95 225–226 [39]

8 CN

 

4 h 8 92 228–230[41]

9 CN

 

4i 12 90 207–209 [41]

10 CN

 

4j 15 95 228–230 [42]

11 CN

 

4 k 13 97 231–233 [43]

12 CN

 

4 l 10 94 210–212 [38]
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Table 2  (continued) Entry X Aldehyde Product Time (min.) Yield (%) m.p. (°C) [Lit.]

13 CO2Me

 

4 m 15 95 173–175 [new]

14 CO2Me

 

4n 25 84 134–136 [new]

15 CO2Et

 

4o 21 78 183–185 [new]

16 CO2Et

 

4p 25 82 182–184 [42]

17 CO2Et

 

4q 20 80 180–182 [42]

Scheme 2  Suggested mecha-
nism for the synthesis of 
2-amino-4H-chromenes using 
prepared nanocatalyst
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40 mL of above solution, and the color of solution changed 
from yellow to red. The reaction continues until the yellow 
color of the solution obtained again. In the following, the 
resulting solution was poured to 400 mL of water containing 
60 mL of ammonium (28%) and followed by sonication for 
30 min. Then, the obtained magnetic dispersion was sepa-
rated by a magnet, washed three times with water and dried 
under vacuum at 60 °C for 12 h.

Synthesis of 3‑Cl‑propyl  Fe3O4

Fe3O4 NPs was functionalized with (3-chloropropyl) tri-
methoxysilane according to the literature [56]. Typically, 
 Fe3O4 NPs (2 g) was suspended in toluene (40 mL) and 
stirred for 15 min by ultrasonic. Then, (3-chloropropyl)
trimethoxysilane (2 mL) was introduced and the resulting 
mixture was refluxed at 111 °C under inert  (N2) atmosphere 
for 24 h. At the end of the reaction, the resulting brown solid 
was filtered, washed several times with toluene and dried at 
90 °C overnight.

Incorporation of semicarbazide 
with 3‑Cl‑propyl  Fe3O4

Considering the previous reports [51] regarding the reaction 
of alkyl chloride and semicarbazide, the functionalization of 
the 3-Cl-propyl  Fe3O4 with semicarbazide was carried out 
as follows: 3-Cl-propyl  Fe3O4 (1 g) was suspended in dry 
toluene (60 mL). Then, semicarbazide (0.5 g) and catalytic 
amount (1 mL) of trimethylamine as a catalyst were added 
to the suspension. Subsequently, the resulting mixture was 
refluxed at 111 °C for 24 h. Upon completion of the reaction, 
the solid was filtered off and washed with dry toluene for 
several times. T-Fe3O4- was achieved after drying at 100 °C 
overnight.

Synthesis of imine functionalized  Fe3O4 
with salicylaldehyde

Salicylaldehyde (0.5 mL) was dissolved in of methanol 
(5 mL) and added dropwise to the suspension of semicar-
bazide-propyl  Fe3O4 (1 g) in dried methanol (25 mL). The 
mixture was subsequently refluxed at 60 °C for 10 h.

Synthesis  Fe3O4@Sal@Cu

To incorporate copper, dried salicylaldehyde-Fe3O4 was 
suspended in absolute ethanol (20 mL). To this suspen-
sion, copper(II) acetate (0.2 g) was added and the resulting 
mixture was kept under refluxing condition for about 8 h at 
90 °C. Upon completion of the reaction, the mixture was 
cooled to room temperature. Subsequently, the precipitate 
was filtered and purified by washing with ethanol repeat-
edly. The final catalyst was obtained after drying at 100 °C 
for 10 h. The schematic of preparation of  Fe3O4@Sal@Cu 
is shown in Fig. 6.

General procedure for the synthesis 
of 2‑amino‑4H‑chromenes

A mixture of an aromatic aldehyde (1.0 mmol), dimedone 
(1.0 mmol), malononitrile (1.1 mmol) and nanocatalyst 
(8 mg) in absolute EtOH (5 ml) was stirred at room tem-
perature. The completion of the reaction was monitored by 
thin layer chromatography (TLC). After completion of the 
reaction, the catalyst was separated easily by an external 
magnet. The pure products were obtained from the reaction 
mixture by recrystallization from hot EtOH, and no more 
purification was required. All the product were known com-
pounds which were identified by characterization of their 
melting points (as indicated in Table 3) by comparison with 
those authentic literature samples and also in some cases 
their FT‐IR and 1H NMR.

Table 3  Comparison of some catalysts effects with  Fe3O4@Sal@Cu nanocatalyst in the synthesis of 4b 

Entry Catalyst Catalyst mol% or mg Solvent Condition Time (min) Yield (%) References

1 Bulk‐Fe3O4 5 mol% H2O R.t 60 30 [44]
2 DABCO 10 mol% H2O Reflux 120 94 [45]
3 Nano‐Fe3O4 5 mol% H2O R.t 60 51 [44]
4 D,L‐proline 20 mol% H2O/EtOH R.t > 30 92 [46]
5 ZnO‐ßeta zeolite 100 mg EtOH Reflux 50 87 [47]
6 γ‐Fe2O3 DMNPs 10 mol% H2O R.t 60 51 [44]
7 Silica gel‐supported polyphosphoric acid 100 mg H2O Reflux 8 85 [48]
8 Fe2O3@SiO2@VB1 8 mg H2O/EtOH Sonication/80 °C 15 93 [49]
9 γ‐Fe2O3@Hap-Si-(CH2)3-AMP 1.5 mol% H2O Reflux 10 84 [50]
10 Fe3O4@Sal@Cu 8 mg EtOH Sonication/r.t 5 96 This work
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To disclose the worthy and usable of  Fe3O4@Sal@Cu 
in large scale, we set up reaction with 4-chlorobenzalde-
hyde (50 mmol, 5.35 g), malononitrile (50 mmol, 3.3 g), 
dimedone (50 mmol, 7.0 g),  Fe3O4@Sal@Cu (0.4 g) and 
ethanol (250 ml) in a round flask and then stirred for 5 h 
at room temperature. The reaction was carried out, and 
the product was obtained in (93% yield, 11.65 g). There-
fore,  Fe3O4@Sal@Cu could be used for the synthesis 
2-amino-4H-chromenes in ethanol at room temperature 
even in large scale. Reusability of the catalyst

To evaluate reusability of the catalyst, after completion of 
the reaction, the catalyst was removed by external magnet 
and washed by hot ethanol and dried in 60 °C for 3 h. 

Fig. 6  Preparation of  Fe3O4@
Sal@Cu

Table 4  Reusability of the 
catalyst in the synthesis of 4b 

Entry Run (s) Yield %

1 Fresh 96
2 First 95
3 Second 93
4 Third 91
5 Fourth 91
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Then, the recovered catalyst was used for the synthesis 
of 4b for four times. The results in Table 4 depicted that 
it acts as recovered catalyst as well as fresh catalyst. IR 
spectra of fresh catalyst and that recovered after five runs 
are indicated in Fig. 7.

Physical and spectra data for compounds

2 ‑am ino ‑7, 7‑d ime thy l‑4 ‑(3 ‑ni tro phe nyl )‑5 ‑ox o‑5 ,6, 
7,8 ‑te tra hyd ro‑ 4H‑ chromene‑3‑carbonitrile (4b)

IR (KBr,  cm−1): 3430, 3335, 3200, 2985, 2873, 2187, 
1681, 1660, 1601, 1530, 1368, 1350, 1212, 1039, 826, 
733. 1H NMR (300 MHz, DMSO, ppm) δ 7.17–7.66 (m, 
4H Ar), 4.40 (s, 1H), 2.5 (bs, NH), 2.26 (d, J = 16.07 Hz, 
2H), 2.10 (d, J = 16.04 Hz, 2H), 1.03 (s, 3H), 0.94 (s, 3H). 
13C NMR (75 MHz, DMSO, ppm) δ 195.9, 163.1, 153.1, 
150.2, 147.7, 147.0, 134.1, 124.3, 121.3, 119.6, 111.8, 
110.1, 100.2, 57.6, 56.2, 44.3, 40.3, 35.6, 28.5, 26.2, 18.4.

Methyl 2‑amino‑4‑(4‑hydroxy‑3‑methoxyp
henyl)‑7,7‑dimethyl‑5‑oxo‑5,6,7,8‑tetrahy‑
dro‑4H‑chromene‑3‑carboxylate (4 m)

IR(KBr,  cm−1): 3209, 3028, 2952, 2887,2835, 1641, 1614, 
1582, 1484, 1374, 1312, 1252, 1230, 1096, 1008, 758. 1H 
NMR (300 MHz, DMSO, ppm) δ 6.37–6.82 (m, 3H Ar), 
3.64 (s, 1H), 3.44–3.55 (m, 3H), 2,75 (br, OH), 2,14–2,35 
(m, 3H), 2.05 (br, NH), 1.46 (s, 2H), 1.30 (s, 2H), 1.05 
(s, 3H), 1.01 (s, 3H). 13C NMR (75 MHz, DMSO, ppm) 
δ 206.1, 204.6, 196.9, 165.1, 164.2, 159.1, 147.7, 146.2, 
145.3, 124.3, 118.6, 114.8, 110.1, 100.2, 57.6, 44.3, 38.3, 
32.6, 27.5, 26.2.

Methyl 2‑amino‑4‑(4‑(dimethylamino)
phenyl)‑7,7‑dimethyl‑5‑oxo‑5,6,7,8‑tetrahy‑
dro‑4H‑chromene‑3‑carboxylate (4n)

IR(KBr,  cm−1): 3396, 2955, 2888, 1738.13, 1613, 1520, 
1377, 1165, 1065, 934, 816. 1H NMR (400 MHz, DMSO, 
ppm) δ 6.52–7.07 (m, 4H Ar), 3.64 (s, 1H), 3.44–3.55 (m, 

Fig. 7  FTIR spectra of the catalyst: a fresh, b after 5 runs
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3H), 2.80 (s, 6H), 2.29 (s, NH), 1.96 (s, 2H), 1.36–1.46 (dd, 
2H), 0.9–1.05 (m, 6H). 13C NMR (75 MHz, DMSO, ppm) δ 
196.9, 164.2, 159.1, 147.7, 147.2, 124.3, 118.9, 75.6, 61.7, 
51.6, 44.3, 38.3, 30.6, 26.5, 18.2.

Ethyl 2‑amino‑7,7‑dimethyl‑5‑oxo‑4‑(pyridin‑4‑yl)‑5
,6,7,8‑tetrahydro‑4H‑chromene‑3‑carboxylate (4o)

IR (KBr): 3402, 2959, 2871, 1742, 1686, 1597, 1533, 1370, 
1243, 1203, 861.

1H NMR (300 MHz, DMSO, ppm) δ 7.10–7.66 (m, 4H 
Ar), 4.46 (s, 1H), 3.90–3.94 (m, 2H), 3.30 (s, 4H), 2.27 (bs, 
NH), 1.08 (m, 3H), 1.02 (s, 3H), 0.95 (s, 3H). 13C NMR 
(75 MHz, DMSO, ppm) δ 195.9, 163.2, 158.1, 147.7, 147.0, 
124.3, 113.9, 75.6, 61.7, 51.6, 44.3, 38.3, 30.6, 26.5, 18.2.

Conclusions

In summary, the present research has developed an effi-
cient and simple process for the synthesis of 2-amino-4H-
chromenes by of  Fe3O4@Sal@Cu as a novel, efficient and 
heterogeneous catalyst via three-component reaction con-
ditions. The simple experimental procedure, short reaction 
times, easy to handle of the nanocatalyst, high reusability 
and magnetically separable, and very good yields are the 
advantages of this method.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 022- 10391-y.
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