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Abstract
Development of potential antitubercular molecules is a challenging task due to the rapidly emerging drug-resistant strains

of Mycobacterium tuberculosis (M.tb). Structure-based approaches hold greater benefit in identifying compounds/drugs

with desired polypharmacological profiles. These methods can be employed based on the knowledge of protein binding

sites to identify the complementary ligands. In this study, polypharmacology guided computational drug repurposing

approach was applied to identify potential antitubercular drugs. 20 important druggable protein targets in M.tb were

considered from the target library of Molecular Property Diagnostic Suite–Tuberculosis (MPDSTB–http://mpds.neist.res.in:

8084) for virtual screening. FDA approved drugs were collected, preprocessed and docked in the active sites of the 20 M.tb

targets. The top 300 drug molecules from each target (20 9 300) were filtered-in and subsequently screened for possible

antitubercular and antimycobacterial activity using PASS tool. Using this approach, 34 drugs with predicted antitubercular

and anti-mycobacterial activity were identified along with good binding affinity against multipleM.tb targets. Interestingly,

21 out of the 34 identified drugs are antibiotics while 4 drug molecules (nitrofural, stavudine, quinine and quinidine) are

non-antibiotics showing promising predicted antitubercular activity. Most of these molecules have the similar privileged

antimycobacterial drugs scaffold. Further drug likeness properties were calculated to get deeper insights to M.tb lead

molecules. Interestingly, it was also observed that the drugs identified from the study are under different stages of drug

discovery (i.e., in vitro, clinical trials) for the effective treatment of various diseases including cancer, degenerative

diseases, dengue virus infection, tuberculosis, etc. Krasavin et al., 2017 synthesized nitrofuran analogues with appreciable

MICs (22–23 lM) againstM.tb H37Rv. These experiments further add to the credibility of the drugs identified in this study

(TB).
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Introduction

In recent years, tuberculosis (TB) has taken a more

dreadful shape as compared to any other time in human

history. It has become one of the most prevalent diseases in

the world, next to HIV-AIDS, and hence, it requires

specific attention to cure the disease [1]. According to the

recent WHO report, 10 million people are affected by TB

and 1.4 million people have died due to TB. Amongst all

the TB burdened countries, eight countries including India

account for two-thirds of the total reported incidents [2].

M.tb drug resistance is the major challenge in antimy-

cobacterial drug development due to the rapid mutations in

genes, its complex cell wall, influx-efflux system, drug

inactivity and modifying enzymes [3, 4]. The multidrug

resistance and poor permeability of the drugs across the

cell wall of membrane attributed to this unique arrange-

ment of lipid-protein complex in the cell membrane [5–7].

The TB treatment includes the first line drugs rifampicin,

isoniazid,ethambutol, streptomycin and pyrazinamide and

second line of drugs (i.e., Fluoroquinolones, kanamycin

and amikacin). Figure 1 showed the list of drugs under

different stages to combat TB. In 2017, Sastry et al. [8],

developed an indigenous disease specific web portal known

as Molecular Property Diagnostic Suite for tuberculosis

(MPDSTB). The portal contains different modules viz. data

library, data processing and data analysis. The portal has

extensive information about the M.tb genes, proteins,

polypharmacological information, literature and it has the

chemoinformatics, bioinformatics and computer aided drug

design modules for lead finding, design and optimisation.

The MPDSTB has a workflow management system where

users can interconnect multiple modules for a user specific

task (http://mpds.neist.res.in:8084). However, the emer-

gence of novel M.tb strains has pushed us to develop novel

alternative new treatment methods. Despite substantial

efforts to arrive at more effective anti-TB therapeutic

agents, the progress in this

direction is poor in the last four decades. One possible

reason may be because of its prevalence mainly in third

world countries and also due to the high cost of testing and

low-profit margins [9]. According to a recent report, U.S

pharmaceutical companies spent about $1 billion to bring a

new drug to the market [10]. Approximately 23 different

antibiotics and non-antibiotics are under different clinical

trials stages to find potential repurposable candidates as

anti-TB drugs [11, 12]. The advancement in computational

drug discovery has played a vital role in identifying

potential lead compounds [13–19] and computational drug

repurposing studies [20–23]. One-drug for one-target is the

traditional drug discovery process, whereas, polypharma-

cology has emerged as an effective alternative paradigm in

the discovery of potential lead/drug molecules that can

simultaneously inhibit multiple targets [24]. It is well

known that drug resistance is the major factor which need

to be considered in designing effective anti-mycobacterial

drugs. In this study, an attempt was made by combining

polypharmacology which might be a promising approach

to overcome drug resistance. Structure-based virtual

screening has been employed to get the repurposable can-

didates against 20 M.tb targets. The drugs that has the

potential activity against multiple M.tb targets were

reported as possible anti-TB molecules.

Materials and methods

Study design

20 M.tb targets have been selected after careful evaluation

of their role in M.tb virulence, replication, cell wall syn-

thesis, etc. Table S1 displayed the function of 20 myco-

baterial proteins considered in this study and their

functions. A systematic virtual screening was applied to
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identify ideal drug candidates that can be repurposed

against M.tb. The drug molecules were collected from

DrugBank. The drugs were carefully analysed by removing

charged molecules, metals, Gadolinium-based contrast

agents (due to associated toxicity), and other drugs which

are unsuitable for docking and PASS calculations. The

drug molecules were docked in the active site of the 20

selected M.tb targets, and virtual screening was carried out

in three steps. In the first step, the top 300 molecules are

screened-in for each target based on their high binding

energies. In second step, the redundant drugs obtained from

step 1 for the 20 targets were removed and finally screened

the obtained hits using PASS tool to identify drugs showing

high predicted antitubercular and/ antimycobacterial

activity C 0.5. After the three-step virtual screening, 34

drugs were identified which showed high binding energy in

multiple targets with a concomitant high predicted proba-

bility of active (Pa C 0.5) score for antitubercular and

antimycobacterial activity. Interestingly, most of the hits

identified hits are antibiotic drugs. In addition, a few non-

antibiotic drugs were identified in the study. Among these

we have reported 4 drug molecules as the possible repur-

posable candidates. Figure 2 displayed the workflow

adopted in the study.

Data collection

Three dimensional structures of 20 M.tb targets were col-

lected from protein data bank (Table 1). The 20 targets are

identified from various pathways that are critical for the

survival ofM.tb. These targets are chosen from a set of 450

crystal structures that are deposited at our in-house

MPDSTB [8] target library. The 20 target proteins have

been selected based on their role in M.tb (1) fatty acid

biosynthesis, (2) cell wall biosynthesis, (3) DNA synthesis,

(4) cell growth, (5) formation of DNA double helix, (6)

Fig. 1 Representation of first line, second line and new drugs under clinical trials used to combat TB
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DNA replication, (7) sterol biosynthesis. These protein

structures are carefully evaluated and structures with

(a) minimum or no missing residues, (b) high resolution,

(c) no metals at the active site and (d) presence of co-

crystal ligands at the active site were selected for the study.

All the protein structures were prepared in MGLTools

version 1.5.6 software. Hydrogen atoms were added, and

unwanted water molecules were removed from the struc-

ture. The FDA approved drugs were collected from

DrugBank [25]. All the drugs were prepared and converted

to.pdbqt format using the raccon.py script.

Fixing missing residues and atoms in MtCA1,
MtCA2 and loop modelling in MtDHPS

The crystal structures of MtCA1 (PDB ID: 1YLK), MtCA

2 (PDB ID: 2A5V) and MtDHPS (PDB ID: 1EYE) are

selected from Protein Data Bank (PDB) [26]. However, in

MtCA1 and 2, the considered proteins (PDB IDs: 1YLK

and 2A5V) showed conformations with a very small active

site volume (7 Å) which is unsuitable for inhibitor design

at the active site. For MtDHPS, the available crystal

structure 1EYE has missing residues in the catalytically

important loop 2 region which makes it unsuitable for

inhibitor design. Hence, the ligand bound conformations of

MtCA1 and MtCA2 proteins are built using MODELLER v

9.10 [27]. From the BLAST analysis, ectodomain of human

ADAM22 (PDB ID – 3G5C) and beta-carbonic anhydrase

from V. Cholerae (PDB ID—5CXK) were obtained as

templates for MtCA1 and MtCA2, respectively. However,

both these structures are apo-proteins, with small active site

volume and lacking a co-crystal at the active site making

them unsuitable templates for MtCA homology modelling.

Nonetheless, the activity of MtCA with acetazolamide has

been widely studied [28–30]. Coccomyxa beta-carbonic

anhydrase (PDB ID—3UCJ), which is the only acetazo-

lamide bound form of MtCA, has been chosen as a tem-

plate for building homology models of MtCA 1 and 2.

DHPS from E.coli (PDB ID—1AJ0) has been selected as a

template for building the missing residues of loop 2 in

MtDHPS followed by refinement of the loop residues. The

MtCA1 and MtCA2 models are minimised using steepest-

descent method for 500 steps in GROMACS [31]. All three

models are further validated using Ramachandran (RC)

plot and other tools available at the Structure Analysis and

Verification Server (SAVES) server [32].

Virtual screening

The virtual screening was performed using AutoDockVina

[33] against the 20 targets. The grids for each protein were

constructed with the spacing of 1.00 Å on the centroid of

the existing co-crystal ligands. The gird was set around the

co-crystal ligand.

Biological activity prediction

The unique drugs from each target protein were subse-

quently filtered through PASS analysis. Different pharma-

cological effects, toxic and adverse effects, mechanisms of

actions, the influence of gene expression, etc., can be

predicted through PASS online web server [34, 35]. The

PASS developers have formed a structure activity rela-

tionships equation based on a training set of[ 300,000

biologically active substances (i.e., drugs, drug like mole-

cules, lead compounds, toxins, etc.). There are two terms

namely probability of active (Pa) and probability of inac-

tive (Pi) for each category (i.e., anticancer, antibacterial,

antiviral, antimycobacterial, etc.). Probability of active

value close to 1 indicates that the compounds may be

active for the particular property whereas the Probability of

inactive value close to 1 indicates that the compound is

inactive to the specific property.

Calculation of drug likeness properties

Drug likeness properties of 34 compounds were calculated

to get a deeper understanding of the screened drug mole-

cules. DruLiTo tool was used to calculate these properties.

Fig. 2 Virtual screening workflow for the identification of drug

molecules with predicted antitubercular and antimycobacterial

activity
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Drug likeness rules are a set of guidelines for the structural

properties of compounds, used for the fast calculation of

drug like properties. Various drug like properties such as

Lipinski’s rule, MDDR-like rule, Veber rule, Ghose filter,

BBB rule, CMC-50 like rule can be calculated by DruLiTo

tool [36].

Results and discussion

Homology modelling of ligand bound form
of MtCA1 and MtCA2

BLAST Sequence similarity search was performed against

PDB to identify the templates for building homology

models of MtCA1 and MtCA2. The BLASTp generated a

list of templates based on their sequence similarity to the

query sequence. 3QY1 (34% identity) and 1I6O (35%

identity) for MtCA2 and 1G5C (33% identity) for MtCA1

are identified as templates based on their identity and query

coverage. However, both the proteins are apo-proteins

without co-crystals at the active site making them

unsuitable for modelling ligand bound form of MtCA

proteins. Nonetheless, experimental inhibition data of

MtCA1 and MtCA2 with AZM has been widely studied

and reported in the literature [28–30]. Therefore, PDB ID:

3UCJ, which is the only available ligand bound form of b-
carbonic anhydrase, is chosen as a template for homology

modelling. The primary sequences of 3UCJ, 1YLK and

2A5V are obtained from the SWISS-PROT database, and

pairwise sequence similarity is done between these two

sequences in CLUSTAL—Omega.

Validation of MtCA1 and MtCA2 homology
models

Once the models are generated, they are further subjected

to short energy minimisation using steepest-descent

method for 1000 steps. This is followed by model valida-

tion using RC plot and various validation tools available in

the SAVES server. The RC plot of MtCA1 and MtCA2 is

shown in Fig. 3. The RC plot of MtCA1 and MtCA2 shows

more than 80% of the non-glycine and non-proline residues

in the favoured region and less than 10% of the residues are

Table 1 The list of the 20 targets considered in this study

S.

No

PDB

ID

Name of the target Resolution

(Å)

1 1BVR M.tb Enoyl-ACP Reductase (INHA) in complex with NAD? and C16 Fatty Acyl Substrate 2.8

2 1DF7 Dihydrofolate Reductase of M.tb in complex with NADPH and Methotrexate 1.7

3 1P9L M.tb Dihydropicolite Reductase with DPH and 2, 6 Pyridine-2,6-Dicarboxylic Acid 2.3

4 1W66 Structure of a lipoate-protein ligase b from Mycobacterium tuberculosis 1.08

5 1XFC Alanine Racemase from M.tb 1.9

6 1U2Q Mycobacterium tuberculosis Low Molecular Weight Protein Tyrosine Phosphatase (MPtpA) at 2.5A resolution

with glycerol in the active site

2.5

7 1YLK Carbonic anhydrase-1 from M.tb 2.1

8 4FDO M.tb DrpE1 in complex with CT319 2.4

9 1ZAU Adenylation Domain of NAD ? dependent DNA ligase from M.tb 3.15

10 2FUM Catalytic domain of protein kinase PknB from M.tb in complex with mitoxantrone 3.15

11 2CIN Lysine Aminotransferase from M.tb in the internal aldimine form 1.98

12 2WGE Crystal structure of KasA of M.tb with bound TLM 1.8

13 2A86 Crystal structure of a Pantothete Synthetase complexed with beta-alanine 1.85

14 2JCV X-ray structure of 1-Deoxy-D-Xylulose 5-phosphate Reductoisomerase 2.2

15 2A5V Carbonic anhydrase-2 from M.tb 2.2

16 2QO1 Crystal structure of the complex between decyldithiocarbonyloxy-undecanoic acid and M.tb FABH 2.6

17 2QKX N-acetyl glucosamine 1-phosphate Uridyltransferase from M.tb in complex with N-acetyl glucosamine

1-phosphate

2.75

18 1E9X Cytochrome P450 14 alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with

4-phenylimidazole

2.1

19 1W2G Crystal Structure of Mycobacterium Tuberculosis Thymidylate Kinase Complexed With Deoxythymidine 2.1

20 1EYE 6-hydroxymethyl-7,8-dihydropteroate Synthase (DHPS) from M.tb in complex with Hydroxymethylpterin

Monophosphate

1.7
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lying in the allowed region and less than 2% of the residues

are outliers which depict the quality of the model. In

addition to the RC plot, the models are also validated using

ERRAT and Verify 3D scores which are available at the

SAVES server. In both MtCA1 and MtCA2, 70% of the

residues have 3D to 1D score of more than 0.2 as shown in

their Verify3d score. A similar trend is observed with the

ERRAT score where both MtCA1 and 2 have a score of

more than 70% which depicts that the protein is modelled

fairly well.

Homology modelling of missing residues of loop
2 of MtDHPS

1EYE which is the only available crystal structure of

MtDHPS is taken from RCSB-PDB. 1EYE has missing

loop 2 region (Glu51-Val64), along with the residues 1–4

and 275–280 at the N and the C–terminal, respectively.

While the terminal missing residues are not catalytically

important, loop 2 harbour residues which account for the

sulphonamide resistance as observed in M. leprae which

correspond to residues Ser53 and Pro55 in loop 2 of M.tb.

Since the loop 2 is clearly seen in E. coli DHPS, 1AJ0 is

chosen as template for loop modelling which also coin-

cided with the BLASTp analysis. The missing loop 2

residues are built as reported in previous study [37] fol-

lowed by refinement of the loop residues as implemented in

MODELLER. The obtained model is thereafter validated

using RC plot and other validation tools of SAVES server.

The modelled loop 2 is shown in Fig. 3a.

Validation of the MtDHPS model

The MtDHPS model obtained from loop modelling is

validated using RC plot and other validation tools of the

SAVES server as in the MtCA1 and MtCA2 models. The

RC plot shows that more than 94.55 of the residues are

within favourable region and less than 1% of the residues

are outliers. The RC plot of MtDHPS is shown in Fig. 3.

The verified score shows that 90% of the residues are

having 3D-1D score which shows that the secondary

structures of the protein are built well. The ERRAT shows

an overall quality of 97.78%. The Ramachandran plot

results and ERRAT scores have been given in Table 2.

Fig. 3 The homology modelled structure and their Ramachandran plot for the proteins A, D) MtDHPS; B, E) MtCA1 C, F) MtCA2

Table 2 Ramachandran plot and ERRAT results for the MtDHPS,

MtCA1 and MtCA2 refined structures

RC plot regions % of residues MtCA1 MtCA2 MtDHPS

Favoured region 89.6% 97.1% 94.56%

Allowed region 8.5% 1.9% 4.8%

Outlier region 1.9% 1.1% 0.7%

ERRAT score 69.90% 98.87% 97.78%
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Analysis of 20 selected M.tb targets

20 different druggable targets were chosen from M.tb

H37Rv genome family for this study. These 20 targets

belong to different families such as short-chain dehydro-

genase, dihydrofolate reductase, alanine racemase, NDA-

dependent DNA ligase, protein kinase, carbonic anhy-

drase, cytochrome P450 family, etc. The 20 targets are

involved in different biological functions such as cell wall

synthesis (2), DNA precursor synthesis (1), catalytic

reaction (12), virulence factor (1), cell growth (1) and

amino acid synthesis (1). In order to understand the

sequence similarity and identify, multiple sequence

alignment (MSA) was carried out using T-Coffee align-

ment among 20 targets [38]. The MSA analysis revealed

that the 20 target sequences shared less than 20%

sequence identity, and it signifies that these sequences are

independent of each other. Further, BLAST analysis was

performed for 20 target proteins with Homo sapiens. It

was also observed that 11 proteins have no sequence

identity, two proteins have 25–28% sequence identity, six

proteins have 30–39% sequence identity, and one protein

have the maximum of 71% sequence identity. Analysis of

the 20 selected target structures indicated that the selec-

tion of these 20 structures can be a good initiation to

perform the poly-pharmacological approach to get struc-

tural insights for designing novel potent inhibitors against

multiple M.tb targets.

Identification of 34 polypharmacological hits

A set of 1428 approved drugs have been used to carry out

a high throughput virtual screening (HTVS) on 20 M.tb

druggable targets. The collected 1428 drugs are docked

into the active site of 20 targets considered in the study.

Based on their docking score and binding conformation,

the top 300 drugs in each protein (6000 drugs) have been

screened. The redundant molecules are removed, and 982

unique drugs are identified for further analysis. These 982

drugs are further analysed in the PASS 2017 tool to

identify the drugs with high predicted antitubercular

(AT)/Antimycobacterial (AM) activity. We have consid-

ered the Probable active value of 0.5 for antitubercular

(AT)/Antimycobacterial (AM) activity from PASS anal-

ysis. The obtained results are further processed by

removing eleven drugs that are already known to show

anti-tuberculosis activity. This has led to the identification

of 34 non-antitubercular drugs. Tables 3 and 4 showed the

34 drugs have interaction with 20 targets and their

mechanism of action and PASS predicted activity,

respectively.

Physiochemical properties of selected hits

Different filters such as Lipinski’s rule, MDDR-like rule,

Veber rule, Ghose filter, BBB rule and CMC-5 were cal-

culated to understand the different properties of the

screened drug molecules. As shown in Table 5, from

Lipinski’s filter out of 34 compounds, 22 compounds were

observed to have molecular weight B 500, 34 compounds

have fulfilled AlogP criteria (B 5), and 23 compounds

have B 5 hydrogen bond donor, and 20 compounds have

B 10 hydrogen bond acceptors count which satisfies the

property of the rule. In total, 20 compounds followed all

four properties of the Lipinski filter. From Ghose’s filter, it

can be observed that 19 compounds have a molecular

weight in the range of 160 to 480, 8 compounds have

AlogP value ranging between -0.4 to 5.6, 24 compounds

have nAtom numbering between 20 to 70 atoms, and 23

compounds have molar refractivity in the range of 40 to

130. In total, 8 compounds followed all four property cri-

teria for fulfilling Ghose filter. Further, from Veber’s, it is

observed that 34 compounds have B 10 rotatable bond

counts, and 15 compounds have polar surface area B 140

which indicates a total of 15 compounds satisfying the

criteria and followed Veber filter. Table S2 has shown the

drug like properties of the selected 34 compounds. This

analysis helpful in understanding the different physio-

chemical properties among identified antitubercular drugs.

In addition, biopharmaceutics classification system

(BCS) analysis was carried out for predicting the intestinal

drug absorption of the 34 polypharmacological hits. Based

on the predictive partition coefficient (XlogP) and intrinsic

solubility (logS) values, BCS classifies the compounds into

four classes [8, 36]. Out of 34 compounds, the maximum

number of compounds (23 compounds) was found in the

class 3 which indicated the compounds with high solubility

and low permeability. This was followed by the class 2

with 7 compounds having low solubility and high perme-

ability and 3 compounds in the class 1 category with high

solubility and high permeability. The least number of

compounds (1 compound) were found in the class 4 with

low solubility and low permeability. Table S3 has shown

the logS and XlogP values along with BCS classification.

Identification of privileged scaffolds and their
analysis

To identify the privileged scaffolds, the 34 compounds/hits

were taken to generate three levels of scaffolds. As the

scaffold tree level increases, the size of the scaffold was

observed to increase with the reduction of common scaf-

folds between the compound groups. From the scaffold tree

analysis, level 1, 2 and 3 consists of 24, 25 and 26
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Table 4 continued

9*. Floxuridine DNA synthesis 
inhibitor

TYMS Cancer 0.599 Antimycobacterial

10*. Gatifloxacin bacterial DNA 
gyrase inhibitor

DNA gyrase,
DNA
topoisomerase

Antibiotic 0.523 Antimycobacterial

11*. Daunorubicin RNA synthesis 
inhibitor, 
topoisomerase 
inhibitor

DNA
topoisomerase

Cancer 0.504 Antimycobacterial

12*. Clofarabine ribonucleotide 
reductase inhibitor

DNA polymerase Cancer 0.706 Antimycobacterial

13*. Diosmin aryl hydrocarbon 
receptor agonist, 
capillary stabilizing 
agent

AHR Vascular disease 0.586 Antimycobacterial

14*. Nelarabine DNA synthesis 
inhibitor, T cell 
inhibitor

POLA1 T-Cell
Lymphoblastic 
leukemia

0.536 Antimycobacterial

15. Sulfoxone A competitive 
inhibitor of bacterial 
enzyme 
dihydropteroate 
synthetas

Dihydropteroate 
synthetase

Leprosy, 
sulfonamide 
antibiotic

0.716 Antimycobacterial

S. 
No

Structure MOA Target Indication Pa Predicted indication
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Table 4 A summary of the drugs identified from virtual screening which can be repurposed for tuberculosis along with their mechanism of action

PASS predicted Pa value

S. 
No

Structure MOA Target Indication Pa Predicted indication

1*. Rifaximin RNA synthesis 
inhibitor

DNA-directed RNA 
polymerase subunit 
beta inhibitor

Traveller's diarrhoea 0.979
0.986

Antimycobacterial
Antitubercular

2*. Nitrofural Glutathione
reductase inhibitor

Glutathione
reductase

Trypanosomiasis 0.727
0.741

Antimycobacterial
Antitubercular

3*. Stavudine DNA directed DNA 
polymerase inhibitor, 
nucleoside reverse 
transcriptase 
inhibitor

Reverse 
transcriptase

HIV 0.685
0.595

Antimycobacterial
Antitubercular

4*. Quinine hemozoin 
biocrystallization 
inhibitor

GP9, KCNB2, 
KCNN4, SLC29A4

Malaria 0.652
0.635

Antimycobacterial
Antitubercular

5*. Quinidine Sodium channel 
blocker

SCN5A,
KCNK1

Malaria 0.652
0.635

Antimycobacterial
Antitubercular

6*. Fludarabine ribonucleotide 
reductase inhibitor

ADA, DCK, 
POLA1, RRM1, 
RRM2

Cancer 0.640 Antimycobacterial

7*. Cladribine adenosine deaminase 
inhibitor, 
ribonucleotide 
reductase inhibitor

ADA, PNP, 
POLA1, POLE, 
POLE2, POLE3, 
POLE4, RRM1, 
RRM2, RRM2B

Hairy cell leukemia 0.612 Antimycobacterial

8*. Telbivudine DNA polymerase 
inhibitor

Protein P, DNA Hepatitis-B antiviral 0.602 Antimycobacterial
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scaffolds, respectively, where the compounds were arran-

ged based on the number of times the compounds occur in

the level tree. In addition, the identified scaffolds of each

level were compared with existing 14 M.tb drugs scaffolds.

The scaffold comparison between the two trees showed

similarities with 3 scaffolds (Benzene, Tetrahydro-2H-

Table 4 continued

16. Erythromycin NFkB pathway 
inhibitor

MLNR Macrolide antibiotic 
for respiratory tract 
infections

0.969 Antimycobacterial

17. Rolitetracycline bacterial 30S 
ribosomal subunit 
inhibitor

30S ribosomal
subunit

Broad-spectrum 
antibiotic

0.903 Antimycobacterial

18. Oxytetracycline bacterial 30S 
ribosomal subunit 
inhibitor

bacterial 30S 
ribosomal subunit

Respiratory 
infections, gram 
positive and  
negative bacteria

0.859 Antimycobacterial

19.
Gentamicin bacterial 30S 

ribosomal subunit 
inhibitor

bacterial 30S 
ribosomal subunit

gram negative and 
positive bacterial 
infections

0.814 Antimycobacterial

20. Itraconazole cytochrome P450 
inhibitor

CYP51A1 Triazole antifungal 0.801 Antimycobacterial

21. Demeclocycline bacterial 30S 
ribosomal subunit 
inhibitor

bacterial 30S 
ribosomal subunit

Tetracycline like 
antibiotic

0.800 Antimycobacterial

22. Tetracycline bacterial 30S 
ribosomal subunit 
inhibitor

30S ribosomal 
subunit

Antibiotic 0.781 Antimycobacterial

23. Terconazole sterol demethylase 
inhibitor

- Vulvovaginal 
candidiasis

0.732 Antimycobacterial

S. 
No

Structure MOA Target Indication Pa Predicted indication
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Table 4 continued

24. Troleandomycin protein synthesis 
inhibitor

protein synthesis 
inhibitor

Antibiotic 0.679 Antimycobacterial

25. Tobramycin bacterial 30S 
ribosomal subunit 
inhibitor

bacterial 30S 
ribosomal subunit 
inhibitor

Antibiotic 0.661 Antimycobacterial

26. Telithromycin bacterial 30S 
ribosomal subunit 
inhibitor, bacterial 
50S ribosomal 
subunit inhibitor

bacterial 30S 
ribosomal subunit 
inhibitor, bacterial 
50S ribosomal 
subunit inhibitor

Antibiotic 0.660 Antimycobacterial

27. Kanamycin bacterial 30S 
ribosomal subunit 
inhibitor

bacterial 30S 
ribosomal subunit 
inhibitor

Antibiotic 0.635 Antimycobacterial

28. Spectinomycin bacterial 30S 
ribosomal subunit 
inhibitor

bacterial 30S 
ribosomal subunit 
inhibitor

Antibiotic 0.618 Antimycobacterial

29. Troleandomycin protein synthesis 
inhibitor

protein synthesis 
inhibitor

Antibiotic 0.593 Antimycobacterial

30. Tobramycin bacterial 30S 
ribosomal subunit 
inhibitor

sterol demethylase 
inhibitor

Antibiotic 0.563 Antimycobacterial

S. 
No

Structure MOA Target Indication Pa Predicted indication
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Table 4 continued

31. Telithromycin bacterial 30S 
ribosomal subunit 
inhibitor, bacterial 
50S ribosomal 
subunit inhibitor

bacterial 30S 
ribosomal subunit 
inhibitor

Antibiotic 0.551 Antimycobacterial

32. Kanamycin bacterial 30S 
ribosomal subunit 
inhibitor

bacterial 30S 
ribosomal subunit 
inhibitor

Antibiotic 0.534 Antimycobacterial

33. Spectinomycin bacterial 30S 
ribosomal subunit 
inhibitor

bacterial DNA 
gyrase inhibitor

Antibiotic 0.530 Antimycobacterial

34. Amikacin bacterial 30S 
ribosomal subunit 
inhibitor

bacterial 30S 
ribosomal subunit 
inhibitor

Antibiotic 0.525 Antimycobacterial

S. 
No

Structure MOA Target Indication Pa Predicted indication

*Emphasis[ indicates non-antibiotic drugs. Drugs indicated in italics show both antitubercular and antimycobacterial activity.

Table 5 Prioritisation of identified 34 polypharmacological hits through physiochemical properties

S. No Filter (total compounds passed) Descriptor name Descriptor cut-off Compounds passed Compounds violated

1 Lipinski Mol.Wt B 500 22 12

AlogP B 5 34 0

HBD B 5 23 11

HBA B 10 20 14

2 Ghose Mol.Wt 160 to 480 19 15

AlogP - 0.4 to 5.6 08 26

nAtom 20 to 70 24 10

MR 40 to 130 23 11

3 Veber RB B 10 34 0

PSA B 140 15 19

Mol.Wt: Molecular weight, AlogP: Partition coefficient, HBD: H-bond donor count, HBA: H-bond acceptor count, nAtom: Number of atoms,

MR: Molar refractivity, RB: Rotatable bond count, PSA: Polar surface area
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pyran-2-olate,4-Hydroxypyridine), 3 scaffolds (2H-Pyran,

2-(cyclohexyloxy)tetrahydro-, 2-(Oxolan-3-yloxy)oxane,

4-Hydroxyquinoline) and 4 scaffolds (7-Piperazin-1-yl-1H-

quinolin-4-one,2-[3-(Oxan-2-yloxy)cyclohexyl]oxyoxane

etc.) similarities in level 1, 2 and 3, respectively. Hence,

the compounds present in level 2 and 3 can be considered

as potential candidates for designing effective drugs

against M.tb. The scaffolds presented in level 2 and level 3

has been shown in Fig. 4.

Binding mode analysis of 4 four drugs
in the active site of 20 druggable targets

In this section, the binding mode of the four drugs has been

analysed in detail along with the co-crystal ligands. Most

of the selected targets in this study are promising druggable

targets. Thus, to get a deep atomic level understanding, the

binding mode of the top four compounds with the co-

crystallised ligands are analysed in detail. Figure S1 dis-

played the binding mode of four drug molecules in the

20 M.tb targets. Table 6 displayed the docking score of 4

drug molecules in different M.tb protein targets. A com-

parison chart of drug molecules interaction with 20 dif-

ferent targets including co-crystal ligands has been

displayed in Table S4.

Enoyl–ACP reductase (InhA)

The InhA protein involves in the fatty acid biosynthesis of

M.tb that has two different systems such as FAS-I and

FAS-II for the production of fatty acid in M.tb. Both the

enzymes are responsible for the production of mycolic

acids which are a major component for M.tb cell wall

synthesis [39, 40]. The solved InhA enzyme from Roz-

warski et al., (1999) was considered for the virtual

screening [41]. The active site of InhA is majorly sur-

rounded by hydrophobic residues. A198, M199, A201,

I202, L207, I202, L207 I215, L218, M103, F149, Met155,

Y158 and M161 are the major amino acids that reside in

this region. The F149 is an important amino acid that may

help in the turn of the fatty acyl substrate U-shaped con-

formation. The nitrofural and stavudine compounds have

this major interaction with InhA. Another amino acid Y158

is conserved in bacteria and plants, and this key interaction

is essential for fatty acyl substrate. The stavudine has

another interaction with Y158.

Dihydrofolate reductase

Dihydrofolate reductase is an important enzyme catalysed

the NDPH-dependent reduction of dihydrofolate to

Fig. 4 Scaffold similarities between 34 novel compounds and 14 M.tb drugs present in level 2 and 3, respectively
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tetrahydrofolate. The reduction reaction is essential for the

synthesis of several amino acids and thus inhibiting this

protein leads to arrest DNA synthesis and cell death. Li

et al., [42] solved the crystal structure of M.tb dihydrofo-

late reductase with the presence of inhibitor methotrexate.

The study explained that there are two major avenues

involved in the binding of new selective inhibitors [42].

Among these, second avenue is a pocket filled with glyc-

erol and essentially absent in human enzyme. I20, R23,

Q28, R146 are the major binding site residues at this

pocket. The three identified drugs quinidine, stavudine and

quinine have interaction with these amino acids.

Dihydrodipicolinatereductase

Dihydrodipicolinate reductase acts as catalysing enzyme to

produce tetrahydropicolinate. This enzyme is essential to

catalyse bacterial biosynthetic pathway which is used to

M.tb cell wall synthesis. Thus, inhibiting this enzyme will

be helpful to rupture the bacterial cell wall. The crystal

structure of dihydro dipicolinate reductase has been solved

by Cirilli et al., (2003) [43] in presence of NADPH. The

active site analysis revealed the binding site of DHPR

located in the C-terminal domain. The pyridine nitrogen

atom from the K136 amino group is proposed to function in

catalysis [43]. Interestingly, nitrofural drug have this major

interaction. Other drugs (quinidine, stavudine, quinine) are

also binding in the same sites. However, no interaction was

observed with K136.

Lipoprotein ligase B

The overexpression of Lipoprotein ligase B protein is

identified from patients with multidrug-resistant M.tb. This

makes LipB enzyme an attractive target for drug devel-

opment. Ma et al., (2006) [44] solved this crystal structure

with the presence of co-crystallised ligand. The atomistic

study revealed that R76, K79, H83, I146, G147 are the

major active sites [44]. Among the four drugs, nitrofural

was binding at the same active site in LipB enzyme.

Alanine racemase

Alanine racemase is one of the promising targets for the

development for anti-microbacterial agents. This enzyme is

essential since it contains pyridoxal 5’-phosphate (PLP)

which is essential for the growth of the bacteria. Analysis

of known alanine recemases binding site properties

revealed some of the conserved amino acids K42, W88,

H172, Y271 and Y364 which are important active sites

from a study carried out by LeMagueres et al., Most known

inhibitors bound to this region to arrest alanine racemase

activity [45]. The four drug molecules are also having

major interactions with the above mentioned amino acids.

Tyrosine phosphatase

Phosphatase and kinases are the major families involved in

signal transduction. The main function of these enzymes is

involved in the production or regulation of exopolysac-

charides and capsular polysaccharides. Protein phospho-

rylation and dephosphorylation are controlled by these

enzymes. Madhurantakam et al., (2005) [45] solved the

crystal structure of protein tyrosine phosphatase from M.tb.

The major active sites are L12, R17, W48, C11 and E56.

Among these L12 plays a major role in PTP loop stabili-

sation [46]. The stavudine molecule has an interaction with

L12. Other than that R17 and W48 are the important amino

acids. The four molecules have interactions with R17 or

W48.

Carbonic anhydrase-1

Reversible hydration of CO2 to form bicarbonate is a

universal reaction require for fatty acid synthesis. Carbonic

anhydrases catalyse this reaction. Carbonic anhydrase-1

structure was modelled due to its small active site. The

residues involved in the metal chelation were considered as

active sites. R39, H104, R55 amino acids involved in metal

chelation [47]. The nitrofural drug has interactions with

G92, R103 and I105.

Decaprenylphosphoryl-beta-D-ribose oxidase
(DprE1)

The DprE1 enzyme is a key precursor involved in catalyses

the first step of epimerisation. Thus DprE1 is an attractive

drug target for M.tb. Crystal structure from Batt et al.,

(2012) revealed Y60, K134, K367 are the key interactions

for substrate binding [48]. Among the four drugs, quinidine

has interaction with DprE1. It has the interactions with

Y60, K118 of the DprE1 active site.

NAD1-dependent DNA ligase

Phosphodiester bonds are essential for the formation of

DNA double helix. The phosphodiester bonds are catalysed

by DNA ligases utilising either ATP or NAD? as a

cofactor. Thus DNA ligase is an attractive drug target since

it needs NAD? for ligase activity. Structural analysis of

DNA ligase by Srivastava et al., (2005) revealed that N94,

E121, L122, I124 are the major interactions essential for

AMP binding [49]. In the docking analysis, four drug

molecules have occupied the same binding site where AMP

binds in NAD? -dependent DNA ligase.
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Protein Kinase B (PknB)

Protein Kinase B (PknB) is a trans-membrane Ser/Thr

protein kinase (STPK) present in Mycobacterium tuber-

culosis which is involved in cell growth control. The

crystal structure of the kinase domain of PknB is reported

with ATP analogue by Wehenkel et al., (2006) [50]. The

regulation of PknB is carried out through autophosphory-

lation and dephosphorylation by the Ser/Thr protein

phosphatase PstP. It is known that the PknB enzyme is

predominantly expressed during exponential growth

whereas if it is overexpressed it leads to defects in cell wall

synthesis and cell division. A compound used in cancer

treatment namely mitoxantrone is reported to be a PknB

inhibitor preventing mycobacterial cell growth which

indicates that bacterial kinases can be a potential target for

drug design [49]. The major active sites of PknB inter-

acting with inhibitor include L17, G18, V25, A38, M92,

E93, Y94, V95, M145, M155, V95, N143, D76, R35, A64,

V74, N67 and E93. Among the four drug molecules,

nitrofural interacts with V95, quinidine and quinine bind to

L17.

Lysine e-aminotransferase (LAT)

Lysine e-aminotransferase (LAT) is a PLP-dependent

enzyme which is involved in catalysing the reactions

involved in transferring the e-amino group of L-lysine to a-
ketoglutarate to yield L-glutamate and a-aminoadipate-d-
semialdehyde. The internal aldimine form of the enzyme is

reported to exhibit the characteristic Schiff base linkage

with the active site residue K300. Residues G128, A129,

F167, H168, E238, D271, V273, Q274, K300, S329 and

T330 are in close contact within 4 Å of PLP in LAT [51].

The docking study revealed that all four compounds are

binding to the major active site. Quinidine has interaction

with F167 and V273 residue and nitrofural with Q274 and

quinine having an interaction with one of the most

important residue E243. This interaction can be considered

to be essential to prevent unwanted transamination reac-

tions at the a-amino group to occur for further resections.

b-ketoacyl ACP synthase (KasA)

KasA (b-ketoacyl ACP synthase) is an enzyme involved in

catalysing the condensation between malonyl-AcpM and

acyl chain in fatty acid elongation cycle. It is one of the

important enzymes within the FAS-II system of

mycobacteria. The depletion of KasA is reported to induce

cell lysis and transposon-site hybridisation which is

essential for cell growth [52]. It is also essential in the

biosynthesis of long-chain fatty acids which binds to nat-

ural product inhibitor thiolactomycin (TLM). The TLM

binding active sites of KasA are P280, G318, F402, F237,

A279, P280, G403, F404, D273, F392 and G406. The four

drugs are also found to bind to the major actives sites of

KasA protein among which nitrofural interacts with G403,

stavudine interacts with P280 and quinidine interacts with

A279.

Pantothenate (vitamin B5)

Pantothenate (vitamin B5) is a precursor for biosynthesis-

ing coenzyme A and acyl-carrier proteins which are

involved in cellular processes, energy metabolism and fatty

acid metabolism. The study conducted by Wang et al.,

(2006) [53] reported the dimer nature of the protein crystal

structure and the active sites of these dimers are indepen-

dent of each other in terms of their catalytic functions. The

major active sites reported in the binding pockets are M40,

G158, S196, K160 and R132 [53]. Among the four com-

pounds, nitrofural forms major interaction with S196,

quinidine at K160 and stavudine at G164. These interac-

tions can play an important role in inhibiting the activity of

pantothenate (vitamin B5) in the mycobacterial cellular

processes.

Isopentenyl diphosphate

Isopentenyl diphosphate is an enzyme that is produced by

the mevalonate pathway by an alternate route starting from

acetyl-CoA in plants, protozoa, and many bacteria. As

reported by Henriksson et al., (2007) [54], it is a precursor

of vital isoprenoids. In the second step of non-mevalonate

pathway, NADPH is catalysed by 1-Deoxy-D-xylulose-5-

phosphate reductoisomerase (DXR) and reduction of

1-deoxy-D-xylulose 5-phosphate (DXP) takes place for the

formation of 2-C-methyl-D-erythritol 4-phosphate. For the

formation of isopentenyl diphosphate, many enzymes are

present within the non-mevalonate pathway in the bacteria

which makes the enzymes as potential targets. The major

active sites of 2JCV include S152, E153, W203, G206,

N209, K219 and S23. Among the active sites, D151, E153,

E222 are reported to interact with M.tb inhibitor fos-

midomycin which also interacts with residues S152, S177,

H200, N218 and K219 [54]. In the docking studies, we

observed that quinine interacts with 2JCV at binding resi-

due at S23. Nitrofural binds at S152 and E153 residue

where S152 is reported to be a binding site of the inhibitor

fosmidomycin which suggests that these interactions are

necessary for inhibition.
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Carbonic anhydrase-2

Carbonic anhydrase-2 is working as a catalysing agent as

carbonic anhydrase-1 which is required for many functions

including pH homeostasis and assimilation [47]. In case of

this enzyme, major interaction was observed only with

nitrofural compared to other three drugs.

3-oxoacyl-[acyl-carrier-protein] synthatase-3
(FabH)

M.tb FabH involves acyl-coenzyme A (CoA) precursors of

mycolic acids, which are mainly involved in bacterial cell

wall synthesis. Sachdeva et al., (2008) solved the crystal

structure of FabH with alkyl-CoA sulphide inhibitors in the

active site [55]. Binding site analysis revealed that C112,

W195, V205, A306 are the important amino acids in the

active sites. The four drug molecules have major interac-

tions with these amino acids suggested that they have the

potential to inhibit FabH enzyme.

N-Acetylglucosamine-1-phosphate
uridyltransferase (GlmU)

N-Acetylglucosamine-1-phosphate uridyltransferase

(GlmU) is an acetyltransferase/uridyltransferase enzyme

that is involved in catalysing the formation of UDP-

GlcNAc from GlcN-1-P which is a substrate for

lipopolysaccharide and peptidoglycan synthesis pathways.

GlmU is an essential gene for the proper growth of M.tb.

The mechanism of cell wall synthesis has been reported by

Zhang et al., in 2009, and this enzyme is a target for several

antibiotics vancomycin, fosfomycin, nisin and bacitracin.

The major actives sites of GlmU consist of R323, TW460,

V461, A470, A473, R463, T89, E166, N181, G151, D114,

S112, Q83, G88, N239, R19 [56]. Among the major active

sites, it was observed that nitrofural has interaction with

G88, D114 and S112. Quinidine has interaction with T89,

stavudine with N181 and quinine with T89 and S112.

Cytochrome P450 14a-sterol demethylase
(CYP51)

In eukaryotes, CYP51 is an important enzyme for sterol

biosynthesis. CYP51 inhibitors (i.e., fluconazole and itra-

conazole) are used as antifungal agents. Podust et al.,

(2001) [57] solved Ecoli expressed MTCYP51 in the

presence of azole inhibitors. MTCYP51 has a unique

substrate access channel in the active site. Mutation anal-

ysis revealed that F78, A256, H259, T260 are the major

hotspots in the MTCYP51 active site. Though the identified

drug molecules have less interaction, it properly bound in

the MTCYP51 active site.

Thymidylate kinase

Thymidylate kinase enzyme is essential for DNA replica-

tion. Thus, this enzyme is an attractive drug target for M.tb

infection. Fioravanti et al., (2005) [58] solved M.tb

thymidylate kinase in the presence of competitive inhibitor

(AZTMP). The binding analysis of AZTMP in thymidylate

kinase in the active site revealed that some of the amino

acid residues D9, R95, D163 are crucial for inhibitory

activity. Among all the four drugs, nitrofural and quinidine

have D9 interaction, and stavudine and quinine have R95

interaction.

6-Hydroxymethyl-7, 8-dihydropteroate Synthase

6-Hydroxymethyl-7, 8-dihydropteroate synthase enzyme is

essential for the condensation reaction. The activity of this

enzyme is essential for de novo synthesis of folate in

prokaryotes and eukaryotes. Inhibition of this enzyme leads

to cell death, and thus, it is an important enzyme in M.tb

inhibition [59]. The interaction analysis of binding pocket

revealed that amino acids D86, N105, V107, R253 and

H255 are important amino acids to inhibit the activity.

Among the four compounds, nitrofural has the interaction

with this enzyme. The drug is placed in the active site of

the enzyme.

Table 7 Repurposable candidates original and the repurposable indications

S.

No

Drugs Original indication Repurposable indication Reference

1 Nitrofural Anti-infective agent Nitrofuran derivatives have been repurposed to various conditions from

cancer to urinary tract infections. M.tb

Zuma et al., 2019;

Krasavin et al., 2017

2 Stavudine HIV reverse

transcriptase

inhibitor

Treatment for degenerative diseases Rosa et al., 2018

3 Quinine Antimalarial drug Dengue virus infection Malakar et al., 2018

4 Qunidine Sodium channel

blocker

Anti depressent Murrough et al., 2017
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In this section, 20 different M.tb targets function and

active sites were extensively studied. Binding mode anal-

ysis of 4 drugs in 20 targets revealed that these drugs can

bind and inhibit the enzymes with major amino acids

interaction.

Repurposable opportunities for the selected
drugs

Though the identified four drugs have shown promising

antitubercular activity against the M.tb targets and other

drug likeness properties, it is important to analyse their

repurposable feasibility. An extensive literature survey has

been made to identify an alternative therapeutic indication

of the identified molecules. The top four compounds

original and possible repurposable indication has been

reported in Table 7. The original indication of nitrofural is

an anti-infective agent. However, it has been reported that

nitrofural derivatives can be repurposed for various disease

conditions from cancer to urinary tract infections [3, 60].

Stavudine is an HIV reverse transcriptase inhibitor and

experiments suggested that it can be repurposed against

degenerative diseases [61]. Similarly, antimalarial drug

quinine and sodium channel blocker quinidine are experi-

mentally proved for treating dengue virus infection and as

an anti-depressant, respectively [62, 63]. Interestingly,

among these four drugs, nitrofural is under clinical trials

for repurposing against M.tb [60]. These studies have

enormously supported our computational approach that 1.

Nitrofural can be a potential repurposable candidate for

M.tb infection, 2. The other three molecules can also be

validated against M.tb infection, and it can be the repur-

posable candidates against different diseases.

Conclusions

Drug repurposing of existing drugs for the new indications

is becoming an important approach for drug discovery [64].

The majority of antimycobacterial drugs are ineffective due

to the emergence of drug-resistant strains of M.tb. Drug

resistance is the major bottleneck in the discovery of

potential anti-TB molecules. Although several studies have

been carried out to understand the molecular mechanism

underlying the TB disease, no effective agents are available

to treat the disease. Most of the M.tb drugs have adverse

side effects, and the drugs are very expensive. Thus,

screening existing FDA approved drugs can be an effective

way to identify potential lead molecules against drug

resistance M.tb strains.

In the present study, an in silico guided polypharma-

cology has been applied to identify potential drug mole-

cules against various M.tb targets. 982 potential

polypharmacological hits were identified against 20 M.tb

targets. The 982 hits were prioritised based on their

docking scores against 20 M.tb targets and PASS predicted

antitubercular activity. 34 drug molecules were filtered,

and 11 among them are antibiotics. The four molecules

identified in the study using polypharmacology approaches

will be potential interesting candidates to study the activity

on drug resistance strains of M.tb.
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