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Abstract
Anterior Gradient 2 (AGR2) has recently been reported as a tumor biomarker in various cancers, i.e., breast, prostate and 
lung cancer. Predominantly, AGR2 exists as a homodimer via a dimerization domain (E60-K64); after it is self-dimerized, 
it helps FGF2 and VEGF to homo-dimerize and promotes the angiogenesis and the invasion of vascular endothelial cells 
and fibroblasts. Up till now, no small molecule has been discovered to inhibit the AGR2–AGR2 homodimer. Therefore, the 
present study was performed to prepare a validated 3D structure of AGR2 by homology modeling and discover a small mol-
ecule by screening the FDA-approved drugs library on AGR2 homodimer as a target protein. Thirteen different homology 
models of AGR2 were generated based on different templates which were narrowed down to 5 quality models sorted by their 
overall Z-scores. The top homology model based on PDB ID = 3PH9 was selected having the best Z-score and was further 
assessed by Verify-3D, ERRAT and RAMPAGE analysis. Structure-based virtual screening narrowed down the large library 
of FDA-approved drugs to ten potential AGR2–AGR2 homodimer inhibitors having FRED score lower than − 7.8 kcal/mol 
in which the top 5 drugs’ binding stability was counter-validated by molecular dynamic simulation. To sum up, the present 
study prepared a validated 3D structure of AGR2 and, for the first time reported the discovery of 5 FDA-approved drugs to 
inhibit AGR2–AGR2 homodimer by using structure-based virtual screening. Moreover, the binding of the top 5 hits with 
AGR2 was also validated by molecular dynamic simulation.
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Graphic abstract
A validated 3D structure of Anterior Gradient 2 (AGR2) was prepared by homology modeling, which was used in virtual 
screening of  FDA-approved drugs library for the discovery of prospective inhibitors of AGR2–AGR2 homodimer.

Keywords AGR2 homodimer · Cancer · Virtual screening · Drug repositioning · Dimer inhibitor

Introduction

Anterior Gradient 2 (AGR2), also known as secreted 
cement gland protein XAG-2, is a member of protein 
disulfide isomerase (PDI) superfamily [1], which is over-
expressed in multiple human cancers, including breast, 
prostate, lung, gastric, ovarian and pancreatic cancers 
[2–6]. It has both intracellular and extracellular roles; it 
harbors a signal peptide (1 M–20 K) at the N terminus to 
import into ER. After maturation, it is released via the 
secretory pathway and acts as a signaling molecule in 
numerous pathways. By virtue of its C-terminal endoplas-
mic reticulum (ER) retention sequence (K172-L175), it 
resides in the lumen of ER and acts as a chaperone to assist 
other proteins to fold properly. Normally, it is expressed in 
secretory goblet cells of the intestine, where it is respon-
sible for secreting MUC2, a cysteine-rich glycoprotein 
that protects the inner lining of the intestine [1]. AGR2 
contains a cysteine-containing conserved thioredoxin-like 
domain, also called PDI domain or CPHS domain (C81-
S84) which makes mixed disulfide bonds with its client 
proteins, and hence takes part in the maturation of mucins, 
e.g., MUC2, MUC1, MUC5AC [7] and other members of 
the secretory pathway and ultimately plays a pivotal role 
in the maintenance of ER homeostasis [8]. Predominantly, 

AGR2 exists as a homodimer via a dimerization domain 
(E60-K64); after it is self-dimerized, it helps FGF2 and 
VEGF to homo-dimerize and promotes the angiogenesis 
(Fig. 1a and b) and the invasion of vascular endothelial 
cells and fibroblasts by augmenting the activities of vas-
cular endothelial growth factor (VEGF) and fibroblast 
growth factor 2 (FGF2) [9].

Being an extracellular signaling molecule and intracel-
lular ER chaperone, targeting AGR2 has been a bottleneck 
in discovering both anti-AGR2 small and large molecules 
for cancer therapy. Few approaches have been used to 
inhibit AGR2. Our collaborator group previously reported 
that a monoclonal antibody 18A4, targeting the dimeri-
zation domain (E60-K64) of AGR2, can inhibit different 
xenograft tumors in mice. The AGR2 inhibition activity 
of 18A4 is by virtue of its binding to amino acid sites 
spanning the regions of E60-H76 and A86-E153. How-
ever, the 18A4 was combined with bevacizumab (as an 
adjunct therapy) to produce a maximum effect in inhibiting 
the angiogenesis and tumor growth in SKOV3 cell lines 
[9, 10]. Another approach to inhibit AGR2 is by using 
a peptide; H10 peptide was discovered after screening 
millions of peptides by mRNA display library. The H10 
peptide can inhibit AGR2 by binding with the interface 
of AGR2–AGR2 homodimer surrounding the amino acid 
residues P41, E60 and E96 [11].
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Drug repurposing/repositioning offers a comparatively 
direct way to study the already approved or investigational 
drugs for a completely different disorder. It can provide a 
better hit without safety issues which can cut the time, tech-
nical and financial resources as compared to starting the 
drug discovery process from scratch [12].

Using structure-based drug design protocol, Rani et al. 
discovered several FDA-approved drugs against important 
enzymes of Mycobacterium tuberculosis; virtual screening 
of 1932 approved drugs from DrugBank and 1852 drugs 
from eLEA3D; using AutoDock Vina as the docking pro-
gram and MurB and MurE enzymes as the protein targets, 
the study discovered that sulfadoxine and pyrimethamine 
showed stable interaction with MurB, while lifitegrast and 
sildenafil (– 9.1 kcal/mol) showed the most reliable interac-
tion with MurE [13].

Dakshanamurthy et al. reported that mebendazole (anti-
parasitic) could structurally inhibit the vascular endothelial 
growth factor receptor 2 (VEGFR2), a mediator of angio-
genesis; this finding was also supported by experimental 
data. They screened 3,671 FDA-approved drugs across 2,335 
human protein crystal structures by using a high-throughput 
computational docking [14].

Recently, computer-aided drug design is widely used for 
rational drug discovery. Virtual screening of compounds 
against a valid target can lead to cost- and time-effective 
novel drug discovery [15]. For those proteins which crys-
tal structure was not available, through homology mod-
eling, the crystal structure was generated, and then, virtual 
screening was performed on the target protein. In order to 
discover novel antagonists of the endothelin-A receptor 
(ETAR), first, the 3D structure was developed by homol-
ogy modeling because its X-ray crystal structure was not 
available. Then the target was virtually screened against 

Traditional Chinese Medicine (TCM) database to identify 
novel natural ETAR antagonists resulting in the discovery 
of two potential antagonists; their binding with ETAR was 
validated by molecular dynamic simulation and molecular 
mechanics generalized born surface area [16].

To discover novel protein–protein interaction inhibitors 
of Nrf2-Keap1, structure-based virtual screening was per-
formed on Specs database, which reported the compound 
15 with an in vitro EC50 of 9.80 µM in the fluorescence 
polarization (FP) assay [17].

Up till now, to the best of our knowledge, no small 
molecule has been discovered to inhibit the AGR2–AGR2 
homodimer. Therefore, the present study was performed 
to prepare a validated 3D structure of AGR2 by homol-
ogy modeling and for the first time discover a set of small 
molecules by screening the FDA-approved drugs library 
(https:// www. selle ckchem. com/ scree ning/ fda- appro ved- 
drug- libra ry. html) on AGR2–AGR2 homodimer as a target 
protein. Since the X-ray crystal structure of AGR2 was not 
available, we prepared its structure by homology modeling 
and used the generated homology model for further virtual 
screening. Then we compared the list of screened drugs 
with that obtained from screening the NMR structure of 
AGR2 (PDB ID = 2lns). The obtained list of drugs was 
again screened by a molecular docking tool which nar-
rowed down the list to 35 common drugs. The interaction 
of these drugs was determined and then ultimately vali-
dated by molecular dynamic simulation. To sum up, the 
present study reported the discovery of 5 FDA-approved 
drugs to inhibit AGR2–AGR2 homodimer for the first time 
by using structure-based virtual screening. Moreover, the 
binding of the top 5 FDA-approved drugs with AGR2 was 
also validated by molecular dynamic simulation.

Fig. 1  a Pathway of AGR2 Dimerization [5] b Dimerzation domain (E60-K64) of AGR2 [3]

https://www.selleckchem.com/screening/fda-approved-drug-library.html
https://www.selleckchem.com/screening/fda-approved-drug-library.html
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Materials and methods

Homology modeling of AGR2

In the absence of suitable X-ray structure in RCSB protein 
data bank, “YASARA Structure’s homology modeling mod-
ule” was used to generate the homology model of AGR2 
[7, 18]. YASARA  (Yet Another Scientific Artificial Real-
ity Application) is a complete package of molecular mod-
eling, molecular graphics and molecular dynamics. It is 
comparatively easy to use and reliable package for molecu-
lar modeling [19]. The most advanced version of YASARA  
(YASARA Structure) also includes a full homology mod-
eling module that automate all steps from an amino acid 
sequence as an input (including alignment of amino acid 
sequence, building loops, rotamer selection, optimiza-
tion of stereochemistry and subsequent validation of the 
homology model) to a refined high-resolution model as an 
output. It often generates a comprehensive scientific report 
for each modeling steps. The overall Z‐scores obtained for 
AGR2 were within the range, “GOOD.” The Z-score is a 
matrix that can indicate how far a system deviates from the 
average of standard reference structures. The YASARA  and 

WHAT IF Twinset was used for the subsequent visualiza-
tion and analysis [20].

Evaluation of the generated homology model

Following the generation of the AGR2 homology model, the 
RAMPAGE and ModRefiner servers were used to evaluate 
and optimize the AGR2 homology models [21].

Structure‑based virtual screening

The workflow of docking-based virtual screening is depicted 
in Fig. 2. In brief, all FDA-approved drugs were subjected 
to molecular docking calculations using built-in utility of 
OpenEye Scientific Software’s FRED v3.2.0. Prior to dock-
ing, the AGR2 structure was optimized at pH 7.0 using the 
pdb2receptor tool in OEDocking. OMEGA 2.5.1 [22] was 
used for generating the multi-conformers of all compounds. 
During generation of the conformers, default OMEGA set-
tings were used (maximum 200 conformers per molecule). 
For molecular docking calculations, binding site was por-
trayed around the entire AGR2 structure. FRED default 

Fig. 2  Workflow of docking-based virtual screening
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parameters were also used for predicting binding affinity of 
the compounds with AGR2 [23].

After protocol optimization, all FDA-approved com-
pounds were docked using the previously described proto-
col [15]. A maximum of ten poses were created for each 
compound, and the best hits were chosen based on the lowest 
Chemgauss4 score. The Discovery Studio Visualizer [15] 
was used to illustrate the bonding orientation of docked 
poses within AGR2.

MD simulations

Amber14 package was used for MD simulation to under-
stand the dynamic behavior of each ligand-bound system. 
Solvation with TIP3P water model with the addition of ions 
to neutralize the system was carried out. For drugs, topolo-
gies were generated with antechamber. AMBER14 FFSB 
force field was used for protein, whereas GAFF2 was used 
for drugs [24]. Two-step energy minimization followed 
by heating of the system was performed. We used default 
parameters such as temperature 300 K and 2 ps. PME (par-
ticle mesh Ewald) algorithm with cutoff distance 10 Å was 
used for long-range interactions. We used SHAKE algo-
rithm for covalent interactions. A total of 100 ns simulation 
for each system was performed. CPPTRAJ and PYTRAJ 
were used for post-simulation analyses [22, 24, 25]. We pre-
pared protein–ligand complexes of top 5 hits with AGR2, 
i.e., C1 (AGR2–AZD2281), C2 (AGR2–Emtricitabine), C3 
(AGR2–flumazenil), C4 ( AGR2–AGR2–ganetespib (STA-
9090)) and C5 (AGR2–mercaptopurine) before running MD 
simulations.

Results and discussion

Homology models generation using YASARA 

The homology modeling steps for generating AGR2 are 
depicted in Fig. S1. We used amino acid sequence of Ante-
rior Gradient 2 (AGR2) protein, which was identified as 
“O95994” in UniProtKB/Swiss-Prot for homology mod-
eling [26, 27].

The following procedure was used to generate the 
homology models; PSI-BLAST [28], which was built in 
YASARA , was used to locate the 13 closest templates in 
the PDB. Table 1 shows the PDB structures that have the 
greatest degree of similarity to our target sequence.

We built an AGR2 homology model utilizing both 
monomer and dimer. The Uniport ID “O95994” was used 
to retrieve AGR2’s full-length amino acid sequence. A 
secondary structure prediction for the target structure was 
needed to assist in the alignment correction and loop mod-
eling. This was accomplished by using PSI-BLAST to gen-
erate a target sequence profile and then feeding it into the 
PSI-Pred secondary structure prediction algorithm [29].

The resulting prediction as shown in Fig. S2 indicated 
the estimated probability for each of the secondary struc-
ture classes, helix, strand and coil. To help in aligning 
the amino acid sequence of target and templates, a target 
sequence profile was constructed from multiple sequence 
alignment, which was built from similar UniRef90 
sequences. Table 2 lists the 5 generated homology models 
sorted based on their overall quality Z-scores.

Table 1  List of top 13 closest 
templates identified for 
generating the homology model 
of AGR2

Template Total score BLAST E-value Align score Cover (%) ID

1 357.11 1.00E-43 533 77 3PH9-B
2 266.71 2.00E-46 696 80 2LNT-A
3 188.7 4.00E-47 702 80 2LNS-B
4 127.94 4.00E-39 196 71 1SEN-A
3 38.03 4.00E-16 57 71 3FK8-A
4 27.78 7.00E-18 50 63 1UC7-A
5 26.95 8.00E-15 49 73 2JU5-A
6 24.79 3.00E-05 53 69 5UM7-B
7 24.59 7.00E-15 53 63 2LST-A
8 24.45 4.00E-15 54 59 1VRS-F
9 22.87 3.00E-17 46 58 4IP1-A
10 22.79 0.0005 42 68 4TW5-A
11 22.08 1.00E-16 44 58 4IP6-A
12 20.5 1.00E-16 39 59 2FWG-A
13 19.06 2.00E-36 28 81 3IRA-A
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Evaluation of the generated homology model

The SAVES structure assessment software [http:// nihse 
rver. mbi. ucla. edu/ SAVES/] was used to validate the reli-
ability of the modeled AGR2 structure. SAVES is the 
integration of various tools for evaluating the protein 
structure such as Procheck, WhatCheck, ERRAT, Verify 
3D and PROVE. The SAVES structure verification soft-
ware was used to assess the quality of the modeled AGR2 
structure, as shown in Fig. S3, S4 and S5. The Ramachan-
dran plot in Fig. S3 reported that 90.3% of the amino 
acid residues were in the core region, 9.7% in the allowed 
region and 0% within the generously allowed regions. 
However, none of the residues was found in the disal-
lowed region of the plot, confirming the stereochemical 
reliability of the AGR2 homology model.

Furthermore, a Verify-3D score of 88.88% (Fig. S4) 
and an ERRAT score of 97.04 percent (Fig. S5) veri-
fied the modeled structure’s “structure sequence com-
patibility” and “non-bonded interactions,” respectively. 
Similarly, the atomic volumes of the modeled AGR2 
residues were compared to the corresponding residues in 
the PDB database, yielding an ideal Z-score mean value 
of 0.366 for the best AGR2 model. RAMPAGE gener-
ated Ramachandran plots of models for evaluation. The 
ModRefiner server was then used to refine the generated 
models. Figure S3 shows the Ramachandran plot after 
the refinement. The absence of any residues in the outlier 
area shows that each model is improved in stereochemis-
try after refinement.

Structure‑based virtual screening

Molecular docking calculation of all FDA compounds was 
performed using blind docking in which whole structure 
was covered as an active site using FRED docking soft-
ware. Detailed methodology of docking is illustrated in 
Fig. 2.

The FRED software has a strong track record of imple-
mentation in structure-based drug discovery. Huabin Hu 
et al. recently described FRED (Chemgauss4 score) as one 
of the best docking score functions among three separate 
docking score functions [30]. A maximum of 200 con-
formers were produced for each ligand and used as input. 
The protocol mentioned in methods was used to execute 
molecular docking calculation. For each compound, a 
maximum of ten poses were obtained, and the pose with 
the lowest Chemgauss4 score was chosen as a best hit 
compound. The chemguass4 score was used as a criterion 
for detecting actives in a large pool of ligands. If a ligand’s 
score was less than − 7.8 kcal/mol, it was considered as 
active as shown in Table 3.

Comparative analysis of binding interactions

Molecular docking was used to obtain insights into the bind-
ing interactions of identified best AGR2 ligands inside the 
target’s active pocket. Figures 3, 4 and 5 and S6-S10 dis-
plays the detailed binding interactions of the top ten AGR2 
ligands. Each of the top 10 hits was found interacting with 
the residues of dimerization domain of AGR2 (E60-K64).

Molecular dynamic simulation

The stability and flexible dynamic behavior of the AGR2, 
C1–C5 complexes

The current study aimed to identify the dynamic behavior 
and to evaluate the internal movement of the AGR2 with 
different ligand complexes (C1, C2, C3, C4 and C5). The 
structure of all the complexes was simulated in an explicit 
water environment. We further determined the effect of 
these ligands on the stability of the complex by predicting 
the thermodynamic state function (RMSD). The root mean 
square deviation (RMSD) method is commonly used to cal-
culate the variation in a protein backbone from its initial 
structural conformation to its final position. The deviations 
observed during simulation period can be used to estimate 
the dynamics stability of a biological molecule relative to 
its conformation. The deviation that a protein faces during 
simulation is linked to its stability; a smaller variation indi-
cates that the structure is more stable and is less likely to 
exceed the stability limit. Herein, the stability (RMSD) of 
Cα backbone was estimated for 100 ns trajectory for each 
of the AGR2–ligand complex (C1–C5) which revealed that 
hits of the complex C1 and C2 strongly bound to AGR2 
as compared to the rest of the hit compounds as shown in 
Fig. 4. The smaller deviation curve indicates higher stability 
and the opposite implies that of a lesser extent. The RMSD 

Table 3  List of top 10 drugs with FRED Chemguass4 score lower 
than − 7.8 kcal/mol

S no Compounds FRED 
CHEMGUASS4 
Score

1 AZD2281.cdx − 11.0358
2 Flumazenil.cdx − 10.3697
3 Olsalazine sodium.cdx − 10.2100
4 Ganetespib(STA-9090).cdx − 9.94754
5 Ozagrel hydrochloride.cdx − 9.93677
6 Procodazole.cdx − 9.24921
7 Epinephrine HCl.cdx − 9.05115
8 Emtricitabine.cdx − 8.69452
9 Pramipexole.cdx − 7.84159
10 Mercaptopurine.cdx − 7.81037

http://nihserver.mbi.ucla.edu/SAVES/
http://nihserver.mbi.ucla.edu/SAVES/
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Fig. 3  a-f Binding interaction of top 5 hits (b AGR2–AZD228 com-
plex, c AGR2–emtricitabine complex, d AGR2–ganetespib (STA-
9090) complex, e AGR2–mercaptopurine complex, f AGR2–flumaze-

nil complex) docked in complex with AGR2.Hydrogen bonding are 
shown in black dotted lines

Fig. 4  RMSDs and RMSF of all five top hits in complex with AGR2
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of all complexes in comparison with the existing structures 
demonstrated that a total of 100 ns of MD simulation time 
was sufficient to achieve equilibration at 310 K.

The RMSD dynamic analysis revealed that the AGR2 
protein adopted diverse conformations in each of the 5 
AGR2–ligand complexes (Fig. 4). The plot illustrates that 
for C1, the RMSD initially remained lower until 20 ns but 
then suddenly converged up to 1.0; then, it remained uniform 
until 60 ns. Later on, it converged again. Although in C2, 
the results of RMSD delineated, the AGR2 protein achieved 
equilibrium at ~ 80 ns of the simulation time, with lower 
variation at a specific site, while it continuously oscillated 
and showed stability in their behavior throughout the entire 
MD simulation time. Furthermore, the AGR2, C3 complex 
indicated that the RMSD pattern for backbone variation was 
steadily decreased initially, but later dynamically increased 
at 20 ns and remained constant throughout the simulation 
time (Fig. 4). Whereas in C4 and C5, the RMSD plot showed 
a similar pattern of backbone deviation, at the beginning, it 
was gradually decreased and then suddenly fluctuated higher 
up to 1.2 nm, with continued fluctuations throughout their 
MD simulation time owing to the instability of the systems 
as compared to the rest of complexes. Thus, hits of the C1, 
C4 and C5 complex had a higher affinity for binding to the 
targeted area, but did not completely diminish the activity 
of AGR2 protein, while hits of C2 and up to some extent 
C3 complex strongly bound to the dimerization cavity of 
AGR2, rendered the protein dynamic behavior steady and, 
to a larger level, inhibited the activity of the AGR2 protein. 

Overall, the RMSD dynamic findings showed that all the 
(top 5) AGR2 inhibitor drugs had a higher affinity for bind-
ing to the intended location, but the hit compound of C2 
complex bound to the protein more strongly than the others 
and stabilized the protein effectively.

To gain a better understanding of the impact of spe-
cific residues, that might provide information on residues 
flexibility in case of all ligand complexes of AGR2, i.e., 
C1–C5, RMSFs (root mean square fluctuations) of back-
bone Cα were calculated and compared to gain insights 
into the dynamics association caused by drug binding of 
protein motions. The greater the RMSF value, the more 
flexible the region is, while the smaller the RMSF value, 
the less it moves from its average position during the simu-
lation. We analyzed the Cα RMSF for all of the proteins’ 
side-chain atoms that frequently creates the structure of 
protein with high or less flexibility and provides insights 
into per residue flexibility (Fig. 4). To increase the accu-
racy of the analysis, we have retrieved the lowest/mini-
mum energy structure coordinates from the equilibrium 
phase, and the structure was then aligned and was used 
as a reference to calculate the RMSF. The fluctuation is 
negatively correlated with the stability of the residues, 
i.e., the larger residue fluctuation shows the instability and 
vice versa. The results of RMSF indicated that fluctuation 
of the AGR2 protein significantly decreased in the pres-
ence of hit compounds of the complex C2 and C3, whereas 
the fluctuation patterns of C1, C4 and C5 implied differ-
ent behaviors and led to excessive flexibility and, hence, 

Fig. 5  RoGs of all five top hits in complex with AGR2
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instability (Fig. 4). This may correspond to the different 
binding modes of C1, C4 and C5, which resulted in greater 
movement of residues and high flexibility to better match 
in the binding site to achieve the optimal binding mode. 
Thus, the overall results indicated that hit compounds of 
the complex C2 and C3 acted as better inhibitors than the 
rest of the compounds and increased the binding affinity 
for the desired protein.

Moreover, the compactness of the AGR2 protein in all 
complexes was assessed by using the radius of gyration 
(Rg). As a consequence of residue fluctuation and back-
bone variation, a more thorough examination of overall 
compactness in all complexes was needed. The Rg analysis 
demonstrated that all complexes of AGR2, i.e., C1–C5, 
showed a distinct pattern of compactness, as shown in 
Fig.  5. Significantly, the Rg of the C1–C2 complexes 
remained stable during the MD simulation, indicating a 
strong compact conformation, whereas C3–C5 complexes 
were found to be less compact over time. The dynamic 
behavior of the protein–ligand complexes showed that the 
binding altered the stability and residual flexibility, thus 
induced the therapeutic cloud.

Conclusion

In this report, we illustrated that the in silico virtual 
screening framework is an important tool for identify-
ing hit compounds against AGR2–AGR2 homodimer. We 
reported a structure-based virtual screening protocol for 
identifying new AGR2–AGR2 homodimer modulators. 
Starting from the homology modeling of AGR2 protein, 
followed by the virtual screening of FDA-approved com-
pounds, only 35 compounds were identified as a potential 
AGR2 ligands. Further validation by binding interac-
tions and stability assessment resulted in only five FDA-
approved drugs as new AGR2 modulators. Outcome of this 
study needs to be further ascertained by in vitro experi-
mental validation.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 021- 10263-x.
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