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Abstract 
A series of mIDH1 inhibitors derived from 3-pyrimidine-4-oxazolidin-2-ketone derivatives were studied by QSAR model 
to explore the key factors that inhibit mIDH1 activity. The generated model was cross-verified and non-cross-verified by 
Topomer CoMFA and HQSAR methods; the independent test set was verified by PLS method; the Topomer search technol-
ogy was used for virtual screening and molecular design; and the Surflex-Dock method and ADMET technology were used 
for molecular docking, pharmacology and toxicity prediction of the designed drug molecules. The Topomer CoMFA and 
HQSAR cross-validation coefficients q2 are 0.783 and 0.784, respectively, and the non-cross-validation coefficients r2 are 
0.978 and 0.934, respectively. Ten new drug molecules have been designed using Topomer search technology. The results 
of molecular docking and ADMET show that the newly designed drug molecules are effective. The docking situation, phar-
macology and toxicity prediction results are good. The model can be used to predict the bioactivity of the same type of new 
compounds and their derivatives. The prediction results of molecular design, molecular docking and ADMET can provide 
some ideas for the design and development of novel mIDH1 inhibitor anticancer drugs, and provide certain theoretical basis 
of the experimental verification of new compounds in the future.

Graphic abstract
Newly designed molecules after docking with corresponding proteins in the PDB library, it can explore the targets of drug 
molecules acting with large proteins and the related force, which is very helpful for the design of new drugs and the mecha-
nism of drug action.
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Introduction

Isocitrate Dehydrogenase 1 (IDH1) is a rate-limiting 
enzyme in the tricarboxylic acid cycle, which is involved 
in life activities such as glutamine metabolism, phospho-
lipid metabolism, fat synthesis, insulin secretion and cell 
reactive oxygen regulation. It plays an important role in 
the process and is also closely related to the occurrence 
of tumors [1].

With the deepening of IDH1 and tumor research, it has 
been found that IDH1 is closely related to the occurrence, 
development, metastasis and prognosis of many tumors. 
IDH1 mutations are heterozygous and usually involve 
amino acid substitutions in the active site of the enzyme 
at codon 132 [2]. As studies have found, changes in IDH1 
expression level and mutations in 132 amino acids are 
closely related to the occurrence and development of many 
tumors, such as glioma [3], gastric cancer and colorec-
tal cancer [4], esophageal cancer [5], lung cancer [6] and 
other cancers.

In general, IDH1 catalyzes the conversion to isocitrate 
to α-ketoglutaric acid (α-KG), and produces non-mito-
chondrial nicotinamide adenine dinucleotide phosphate 
(NAPDH). Mutated Isocitrate Dehydrogenase 1(mIDH1) 
enables it to acquire new catalytic activity by using 
NAPDH to further convert α-KG to R-2-hydroxyglutar-
ate (R-2HG) [7, 8]. High levels of R-2HG induce hyper-
methylation of histones and chromatin, and competitively 
inhibit several α-KG-dependent dioxygenases, eventually 
leading to the occurrence of tumors [9]. Although the 
connection between mIDH1 and tumors was first discov-
ered in gliomas [10], with the deepening of research, it 
was found that it has a certain correlation between many 
tumors. Therefore, mIDH1 is likely to become a new target 
for tumor treatment.

So far, many mIDH1 inhibitors have been reported at 
home and abroad. Among them, Novartis Institute of Bio-
medical Research [11] reported the use of 3-pyrimidin-
4-yl-oxazolidin-2-one derivatives as IDH1R132H inhibitors 
and has made certain progress. Especially, IDH305 has 
entered clinical trials for the treatment of patients with 
advanced malignant tumors containing IDH1R132H muta-
tions [12]. However, the safety and effectiveness of new 
mIDH1 inhibitors is still a big problem. Therefore, it is 
necessary to use molecular modeling methods to conduct 
detailed studies on the relationship between their structure 
and activity. (Fig. 1 shows one of the compounds IDH305 
synthesized by Novartis Institute of Biomedical Research).

In this study, the relationship between structure and 
activity of 3-pyrimidin-4-yl-oxazolidin-2-one derivatives 

as mIDH1 inhibitors was studied. Topomer CoMFA 
and HQSAR were used to study the quantitative struc-
ture–activity relationship (QSAR), and the generated 
model was cross-verified and non-cross-verified to deter-
mine its predictive activity; Virtual screening based on R 
groups was carried out in ZINC database using Topomer 
Search technology. New mIDH1 inhibitors with higher 
activity were designed through recombination of screened 
small molecular fragments and molecular fragments with 
relatively high contribution value in molecular concentra-
tion, and their activity was predicted by the QSAR model 
established. Then, molecular docking technology was 
used to dock these newly designed compound molecules 
with macromolecular proteins to explore the mechanism 
of action between them, explore the binding mode and 
target between ligands and protein receptors, and find the 
amino acid residues that form hydrogen bond interactions 
between ligands and crystal structures. Finally, ADMET 
prediction was used to test the safety and safety of 10 
designed drug molecules to ensure that the designed mol-
ecules have high safety and good pharmacological effects.

Materials and methods

Molecular modeling and data set

In this study, the molecular structure of all compounds in 
the molecular construction was constructed by using the 
SKETCH MOLECULE in SYBYL2.0-X. All the molecules 
were loaded with Gasteiger-Huckel charge, and the stand-
ard Tripos molecular force field and Powell energy gradi-
ent algorithm were used to optimize the energy of all small 
molecules. The maximum number of iterations was 1000, 
the energy convergence limit was set as 0.005 kcal·mol−1, 
and the default values of the rest parameters were adopted 

Fig. 1   Compound IDH305 synthesized by Novartis Institute of Bio-
medical Research
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[13, 14]. Energy minimization keeps compounds in a stable 
state of low energy.

The 3-pyrimidin-4-yl-oxazolidin-2-ones and the effec-
tive concentration reduction in the half maximal inhibi-
tory concentration (IC50 mol·L−1) were selected from four 
patents of Novartis (WO2013046136, WO2014141104, 
WO2014141153 and WO2014147586) and literature [15]. 
For the convenience of calculation, these IC50 values were 
converted into corresponding pIC50 values to represent 
their biological activity and used as a dependent variable 
in Topomer CoMFA and HQSAR models, and the equiva-
lent relation is: pIC50 = -lgIC50. The chemical structure and 
activity of 41 3-pyrimidin-4-yl-oxazolidin-2-one derivatives 
are shown in Table 1. The data set was divided into two 
parts, namely the training set for QSAR model generation 
(30 compounds, accounting for about 3/4) and the test set for 
external validation of the model (11 compounds, accounting 
for about 1/4).

Construction of the QSAR model

Quantitative structure–activity Relationship (QSAR) is 
a common research method to explore the relationship 
between molecular structure and its biological activity. 
Mathematical models are usually used to study the quantita-
tive relationship between molecular structure and molecular 
biological activity. Molecular structure parameters are taken 
as independent variables and molecular biological activity as 
dependent variables to establish the quantitative relationship 
expression between activity and structure [16, 17]. Three-
dimensional Quantitative structure–activity Relationship 
(3D-QSAR) is the study of QSAR based on the 3D structure 
of compounds and biomacromolecules. Compared with the 
traditional QSAR method, 3D-QSAR added a 3D conforma-
tion of the properties of bioactive molecules, introduces and 
bioactive molecules in the QSAR of 3D structure informa-
tion about parameter as a variable, so it can more accurately 
reflect the reality of the bioactive molecules and receptors, 
more profoundly illustrates the interaction between drug and 
the receptor mechanism, to provide certain theoretical basis 
to the research and development of new drugs [18].

Topomer CoMFA analysis

Comparative molecular field analysis (CoMFA) is one of the 
most commonly used methods for studying the 3D-QSAR 
between drugs and receptors. CoMFA can fully consider 
the 3D structure information of molecules, characterize the 
3D field and static electric field by molecular structure, and 
then obtain the relationship between these 3D characteristic 
information and compound activity by partial Least Squares 
[19] (PLS). By constructing the molecular structure, the 
lowest energy conformation of the molecule was obtained, 

the common skeleton was selected for molecular superposi-
tion, the molecular force field around the compound was 
calculated according to the probe atoms, and the relation-
ship between the structure and activity of the drug was ana-
lyzed. Particularly, the results of molecular superposition 
have a great impact on the accuracy of model prediction 
[20]. Therefore, to obtain more accurate results often needs 
to try different ways of molecular overlap, and it takes a lot 
of time.

Topomer CoMFA, proposed by Cramer [21] in 2004, is a 
new 3D-QSAR tool that can predict the biological activity or 
properties of compounds. Unlike CoMFA, Topomer CoMFA 
is based on the joint technology of Topomer and CoMFA. 
It compensates for the shortcomings of the traditional 
CoMFA approach of manually superposed molecules, using 
3D-QSAR to correlate the biological activity of a range of 
molecules with their spatial and static electric fields. Stand-
ard Tripos force field method and SP3 carbon probe atom 
with + 1 charge were used for calculation of space field and 
static electric field [22]. Space and electrostatic descriptors 
were used as independent variables, pIC50 value was used as 
dependent variable, and partial least square regression was 
used to establish the Topomer CoMFA model. In addition, 
Topomer CoMFA has the advantage of high repeatability. 
Topomer CoMFA can be used to quickly establish a predic-
tion model for analysis and evaluation, providing a theoreti-
cal basis for the structural optimization of the same type of 
small-molecule inhibitors [23].

Topomer CoMFA does not need skeleton based 3D 
structure superposition. Generally, the operation process of 
Topomer CoMFA is as follows: the 3D model of Topomer 
is established according to the molecular structure fragment 
of the training set, and the fracture mode of the compound 
structure is confirmed by the structural characteristics of the 
compound. Topomer CoMFA uses topological molecular 
technology to cut the ligand molecules into two or more 
small fragments, while preserving the common skeleton as 
much as possible. It automatically builds a standard 3D topo-
logical model for each fragment, and generates a set of space 
and electrostatic fields for each group of topological bodies. 
Finally, taking the obtained parameters as the independent 
variables and the biological activity value as the dependent 
variables, the relationship between the compound activity 
and molecular field characteristics was established by the 
partial least squares method, and the 3D-QSAR model was 
generated.

HQSAR study

Hologram Quantitative structure–activity Relationship 
(HQSAR) is a 2D-QSAR technology, which is different from 
the general 3D-QSAR research method. It can determine 
the relationship between biological activities and structural 
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Table 1   Structure, activity 
value and fragment contribution 
value of the compounds

Contribution 
compounds R1 R2 R3 R4 pIC50 pIC50 (pred)

Ra Rb

01 – – 6.66 6.43 0.67 –0.18

02* – – 5.72 6.35 0.67 0.13

03 – – 6.57 6.57 0.67 –0.08

04 – – 6.17 6.28 0.67 –0.33

05 – – 7.28 7.37 0.67 0.76

06 – – 6.45 6.45 0.67 –0.16

07 – – 4.95 5.21 0.67 –1.40

08 – – 5.97 6.03 0.67 –0.58
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09* – Me 6.19 6.43 0.67 –0.18

10 – F 6.28 6.43 0.67 –0.18

11 – F 8.30 8.27 0.97 1.37

12 – F 5.56 5.46 –0.28 –0.20

13 F – 6.61 6.43 0.67 –0.18

14 Me – 8.10 8.11 0.77 1.41

15* – – 7.14 7.07 0.87 0.26
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Table 1   (continued)

23 – – 7.16 7.09 0.67 0.48

24 – – 7.06 6.89 0.67 0.28

25 – – 7.42 7.48 0.67 0.87

26* – – 7.52 7.29 0.67 0.68

27 – – 7.40 7.40 0.67 0.79

28 – – 7.31 7.25 0.67 0.64

29 – – 7.44 7.45 0.78 0.73

30* – – 7.37 7.60 0.78 0.88

31 – – 7.80 7.83 0.78 1.11

32 – – 7.70 7.64 0.67 1.03

33* – – 7.96 7.90 0.77 1.19

34 – – 6.27 5.89 0.67 –0.72

35 – – 6.74 6.72 0.67 0.11
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18* – – 5.41 5.89 0.93 –0.18

19* – – 5.46 6.02 0.78 –0.18

20 – – 6.23 6.28 0.67 –0.33

21* – – 7.07 6.56 0.67 –0.05

22 – – 6.70 6.89 0.67 0.28
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fragments without the need for molecular superposition, 
selection of 3D Structure and active conformation. It relies 
on 2D chemical database storage and search techniques 
that rely on linear symbols that define chemical structures, 
a process that involves generating hashes into arrays of 
fragments called molecular holograms [24]. The ability to 
achieve molecular arrangement and conformational specifi-
cation by transforming the chemical structure representation 
of molecules into corresponding molecular holograms [25]. 
According to the principle of hologram, the influence of any 
group or atom in the drug molecule on the drug activity can 
be accurately determined [26], and the operation process is 
relatively fast, saving time.

The HQSAR method usually consists of three main 
steps:①Cut the molecules under study into segments of 
appropriate size. The distinction is determined by two 
parameters: Fragment size and Fragment distinction;②The 
encoded molecular fragments are converted into molecular 
holograms;③After obtaining the molecular hologram, partial 
least squares regression was used to establish the quantita-
tive relationship model between the molecular hologram and 
the properties of the compound. In this study, the atoms that 
hold these fragments are encoded in different colors in the 
hologram to reflect their contribution to biological activity. 
Negative contributions, intermediate contributions, and posi-
tive contributions are shown in red, white, and green, respec-
tively. Each fragment is defined by its unique fragment type 
parameters, consisting of atoms (A), chemical bond type (B), 
atomic connections (C), hydrogen atoms (H), chirality (CH), 
and participation as donor or acceptor (DA). All the charac-
teristic fragments of each molecule are mapped into a cer-
tain length of integer string, namely molecular holography. 

The length of integer string is called the length parameter 
of molecular holography. In the HQSAR module, 12 prime 
numbers (53, 59, 61, 71, 83, 97, 151, 199, 257, 307,353 and 
401) are provided as holographic lengths. Through the com-
bination of different parameters, multiple HQSAR models 
with different prediction ability can be obtained.

Validation of the QSAR model
The LOO cross-validation method is adopted as the inter-

nal validation. The cross-validation coefficient q2 is calcu-
lated by formula (1) [27, 28]: ( ̂yi and yi are the predicted 
value and the experimental value of the test set, respectively, 
and y and ŷ are the average activity values of the experimen-
tal value and the predicted value of the training set respec-
tively. "n" is the number of molecules in the test set, and "i" 
is the ordinal number of molecules in the test set.)

After cross-validation, the conventional correlation coef-
ficient r2 is usually used for non-cross-validation analysis, 
as shown in Formula (1). Meanwhile, the Standard Error 
of Estimate (SEE) and F value of the predicted value were 
obtained [26].

A good internal validation showed only a high q2 in 
the training set of compounds, but it did not indicate the 
high predictive ability of the established models, therefore 

(1)q2 = 1 −

∑n

i=1

�
yi − ŷi

�2

∑n

i=1

�
yi − y

�2

(2)r2 =

�∑�
yi − yi

��
ŷi − ŷ

��2

∑�
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�2
×
∑�

ŷi − ŷ
�2

Table 1   (continued)
36 – – 7.12 7.22 0.67 0.60

37* – F 7.04 6.87 0.67 0.26

38 – – 5.17 5.27 –0.62 –0.04

39* – – 6.50 6.97 0.87 0.39

40 – – 7.59 7.51 0.67 0.90

41 – – 8.30 8.41 0.78 1.69

* Test set compound for QSAR model validation
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external validation was essential. The predictive ability of 
QSAR models was validated by calculating biological activi-
ties of the compounds which were not included in the train-
ing set and used as a test set. External test set validation is an 
effective method to evaluate the predictive power of the cor-
rected model. Usually, the data set is randomly divided into 
training set and test set. The training set establishes a correc-
tion model, and the test set is used as an independent subset 
to test the predictive ability of the model. The external test 
set compares the predicted value with the experimental value 
to make an accurate evaluation of the predictive ability of 
the model [29]. The QSAR model can be verified and evalu-
ated by the following parameters, and the predictive ability 
of QSAR model can be further verified by calculating the 
biological activity of compounds in the test set [30, 31].

Prediction correlation coefficient q2
pred

 based on test set, 
formula (3):

∑n

i=1

�
yi − ŷi

�2 is the sum of squares of the actual molecular 
activity of the test set and the mean molecular activity of the 
training set (SD); 

∑n

i=1

�
ŷi − yi

�2 is the sum of squares of the 
deviation between the predicted value of the test set and the 
actual activity value (PRESS).

Root mean square error (RMSE), mean absolute error 
(MAE) and concordance correlation coefficient (CCC) were 
used to evaluate the performance of Topomer CoMFA and 
HQSAR regression models [31]. Formulae (4)-(6):

In order to obtain the best prediction model for the test 
set, additional validation is performed on the model, where 
r and r0 are regression correlation coefficients between the 
actual activity value and the predicted activity value, and k 
and k′ represent the slope of the model. The parameters are 
as follows [32], formula (7)–(10):

(3)r2
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=
SD − PRESS
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�2

∑n

i=1

�
yi − y

�2

(4)RMSE =

�
∑n

i=1

�
yi − ŷi
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�

∑n

i=1

�
yi − y

�2
+
∑n

i=1

�
ŷi − ŷ
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Another validation statistic parameter r2
m
 and Δr2

m
 is used 

to further evaluate the model [31] [36], formula (11)–(13):

Virtual screening

Virtual screening is a good method of finding leading com-
pounds in drug research and development. It plays a great 
role in the identification and optimization of early drug 
research and development, and can effectively reduce the 
cost of drug research and development and improve the 
speed of research and development [33]. In this study, the 
Topomer search technology in SYBYL2.0-X was used for 
molecular virtual screening. Topomer Search is a ligand 
based virtual screening method that can be used for the opti-
mization and skeleton transition of lead compounds, and its 
screening speed is faster than molecular docking and phar-
macophore based virtual screening [34]. Topomer search 
technology can be used in combination with receptor-based 
molecules or as a preliminary screening tool when there is 
no receptor structure [35]. Its basic principle is to use the R 
group in the Topomer CoMFA model as the question form, 
search for molecular fragments with high similarity in the 
compound database [36] through the Topomer similarity 
comparison, and select the fragments with high activity 
contribution value. Through the reasonable combination of 
the obtained fragments and the basic skeleton, compounds 
with high biological activity were obtained [37].

In this study, compound 11 with the highest activity 
was used as a template molecule for cutting to obtain the 

(8)r2
�

0
= 1 −

∑�
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corresponding molecular fragments, and then the Topomer 
similarity and threshold comparison score were used to 
predict its contribution to the activity. Then, the Topomer 
search technology was used to conduct virtual screening 
based on R group in ZINC database, and the similarity 
between the searched compound fragments and the database 
compound fragments was evaluated based on the Topomer 
distance. The maximum distance of Topomer is 185, and 
other parameters are the default values. The molecular frag-
ments with high similarity and high contribution value are 
screened out in the database. Finally, the search fragments 
are combined with the basic skeleton reasonably to design 
new compounds.

Molecular docking

The act of molecular docking is a method of drug design 
based on the characteristics of the receptor and the inter-
action between the receptor and drug molecules. It mainly 
studies the interaction between molecules (such as ligands 
and receptors), and is a theoretical simulation method to 
predict the binding pattern and affinity of small molecular 
ligands and large molecular proteins through geometric and 
energy matching and recognition [38], which is an impor-
tant technology in the field of computer-aided drug research. 
Surflex-dock is a semi-flexible docking with rigid protein 
structure. It connects ligand pairs to the binding site of the 
receptor based on the Protomol method. The Surflex-Dock 
[39] module in SYBYL2.0-X software package is selected 
to perform simulated docking, avoiding the tedious process 
of searching for active sites. This process compiles specific 
docking methods, extracts ligands bound at the original 
sites to generate docking protocols, and then connects target 
ligands to the previous specific sites. In addition, the con-
formation of the generated ligand molecule compared with 
the original ligand was used as a reference to determine the 
suitability of the docking method [40]. The docking results 
of the original ligand can also be compared with the poten-
tial ligand molecules to further screen drugs that are more 
suitable as inhibitors.

The protease crystal used in molecular docking in this 
paper is from PDB database [41], ID: 5TQH. In this study, 
5TQH macromolecular protein was pretreated before molec-
ular docking, the required small molecule ligands were 
extracted from the macromolecular complex, the unneces-
sary small molecule ligands and all water molecules were 
deleted, the protein was hydrogenated and Gasteiger-Huckel 
charge was added [42]. The docking region was determined 
by analyzing the interaction between ligands and active 
residues, and the active site of the docking was determined 
according to the small molecular ligands. The docking effect 
was evaluated by the values of the compound’s scoring func-
tions total-score, Crash and Polar [43]. The Score function 

value of total-score indicates the affinity between the small 
molecular ligand extracted from the large molecular pro-
tein and the receptor. The higher the value, the higher the 
affinity. Crash represents the imbalance between ligands and 
receptors extracted from macromolecular proteins, and the 
closer to zero the better. Polar has the score of polarity func-
tion. When the binding site is on the molecular surface, the 
greater the value, the better; Inside the molecule, the smaller 
the value, the better. In this study, we mainly used the total-
Score value Score to screen the best configuration, and gen-
erally the total-score value should be greater than 5.0.

ADMET prediction

Current drug research and development is a high-risk invest-
ment, which often faces some unexpected and even cata-
strophic failures at different stages of drug discovery [44]. 
One of the main reasons for the failure of research and devel-
opment is the lack of efficacy and safety, which is related 
to the absorption, distribution, metabolism and excretion 
(ADME) characteristics and various toxicity (T) of drugs 
in the human body. Therefore, rapid ADMET evaluation is 
urgently needed to reduce the failure in drug discovery [45]. 
ADMET (Absorption, Distribution, Metabolism, Excretion 
and Toxicity) is a prerequisite, and molecular properties play 
a key role in the prodromal clinical stage, so it is necessary 
to test the ADMET properties of the designed compounds 
in advance to ensure the drug’s adaptability to the human 
body [46]. The attribute of ADMET obtained in this paper 
comes from ADMET-lab [47].

Absorption parameters

Absorption is the process of drugs entering the human cir-
culatory system from the site of drug administration, which 
can be found in various epithelial cell membranes such as 
oral cavity, stomach and intestine.

HIA (human intellectual absorption) [48]: for oral drugs, 
the intestinal tract is the most important absorption site, so 
the absorption of oral drugs in the human intestinal tract 
is a necessary prerequisite for its obvious curative effect. 
F (30% bioavailability) [49] for any drug administered by 
oral route, oral bioavailability is one of the most important 
pharmaceutical parameters, because it is an indicator of the 
efficiency of drug delivery to systemic circulation.

Distribution parameters

Drug distribution is a transport process between blood and 
tissue. After the drug is absorbed into the blood from the 
drug delivery site, the circulatory system will act as a trans-
porter to deliver the drug to its target organ, target tissue 
and target site.
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PPB (plasma protein binding) [50]: one of the main 
mechanisms of drug absorption and distribution is 
through PPB, so the combination of drugs and plasma 
proteins has a great impact on its pharmacodynamic 
behavior. Moreover, PPB can directly affect oral bioavail-
ability, because the free concentration of the drug is at 
risk when the drug binds to serum protein in the process. 
BBB (blood – brain barrier) [51]: blood brain barrier is 
an important pharmacokinetic characteristic of a drug, 
which means that it can or cannot penetrate the blood 
brain barrier. BBB penetration is important for drugs tar-
geting brain receptors.

Metabolic parameters

Metabolism is the symbol of the life system. It enables 
organisms to create a feasible environment in which com-
plex biochemical transformation can be carried out to 
maintain homeostasis.

CYP450 3A4, CYP450 2D6 and CYP450 2C9 [52, 53]: 
the metabolic system is very complex and adaptable. In this 
process, a large number of different enzyme families are 
involved, which can be divided into two categories: micro-
somal enzymes, such as cytochrome P450 (CYP) enzymes, 
which are important for most drugs, and non-microsomal 
enzymes, which are important for a few drugs. Therefore, 
the recognition of CYP450 enzyme substrates or inhibitors 
is very important in drug development.

Excretion parameters

Excretion is the elimination process of drugs or their 
metabolites in vivo. The excretion characteristics of mol-
ecules can affect drug efficiency and the corresponding 
drug side effects.

T1/2 (half-life) and Cl (clearance) [54]: drug clearance 
is an important pharmacokinetic parameter, which deter-
mines the half-life together with the distribution volume, 
thus determines the drug delivery frequency.

Toxicity parameters

We should not only understand the pharmacological effects, 
but also attach great importance to the toxic effects.

Ames (the Ames test for carcinogenicity) [55]: mutagenic 
effect has a close relationship with carcinogenicity. At pre-
sent, the ames test is the most widely used method to test the 
mutagenicity of compounds. Carcinogenicity (mouse) [56]: 
it is an important task to determine the carcinogenicity of 
mammals (such as rats or mice). It is helpful for the safety 
test of drugs.

Results and discussion

HQSAR results and analysis

The HQSAR model can be optimized by changing param-
eters, including holographic length, fragment size, and frag-
ment characteristic parameters. In this article, all 12 holo-
gram lengths (53, 59, 61, 71, 83, 97, 151, 199, 257, 307, 
353, and 401) are selected and the fragment size is set as 
the default (4–7). The optimal model was determined as the 
model with minimum standard error, and different HQSAR 
models were established for 30 compounds in the training 
set using different fragment types. The results of selecting 
10 models with better data are listed in Table 2

As shown in Table 2, the best model can be obtained 
when the Fragment Size is set to "C/CH/DA" (1–1), with its 
main parameters q2 = 0.750, r2 = 0.933, N = 5, HL = 71. 
Then, based on the results in Table 2, set the Fragment 

Table 2   HQSAR model analysis 
using the same fragment length 
(4–7)

N: Best composition score; HL: Holographic fragment length; q2: Cross-validation correlation coefficient; 
r2: Correlation coefficient of non-cross validation; SEE: Estimate standard error; SEEcv: Cross validation 
standard error

Model Fragment distinction Fragment size N HL q2 r2 SEE SEEcv

1–01 C/CH/DA 4–7 5 71 0.750 0.933 0.249 0.479
1–02 C 4–7 3 53 0.693 0.853 0.352 0.509
1–03 A/C/DA 4–7 4 97 0.679 0.910 0.281 0.532
1–04 B/C/DA 4–7 5 71 0.670 0.935 0.245 0.550
1–05 A/C/CH/DA 4–7 4 307 0.665 0.913 0.276 0.542
1–06 A/B/DA 4–7 4 53 0.657 0.894 0.306 0.549
1–07 A/CH 4–7 4 257 0.656 0.916 0.271 0.550
1–08 A/B/C/CH/DA 4–7 3 61 0.653 0.833 0.376 0.542
1–09 A/B/C/DA 4–7 3 61 0.645 0.856 0.349 0.548
1–10 A/B/H/CH 4–7 3 61 0.645 0.856 0.349 0.548
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Distinction as "C/CH/DA", and use different Fragment sizes 
to establish 8 HQSAR models (Table 3). The result shows 
the best Fragment size for the Fragment size of "7–10". Its 
main parameters q2 = 0.784, r2 = 0.934, PCs = 5, HL = 83. In 
addition, its predictive correlation coefficient r2

pred
 was cal-

culated by formula (3), and the result was 0.865. Therefore, 
when the Fragment distinction is "C/CH/DA" and the Frag-
ment size is "7–10", the model established is the best 
HQSAR model (2–6), and the remaining parameters are 
shown in Table 3.

Topomer CoMFA results and analysis

The most active compound 11 was used as the template, and 
all the compounds were divided according to the segmenta-
tion method shown in Table 4. The molecules were divided 
into three parts. The molecules that were not automatically 
segmented were manually cut, and the cut compounds were 
automatically divided into Ra(red), Rb(blue) and common 
skeleton (green).

Using compound 11 as template and using Topomer 
CoMFA method, the relationship between structure and 
activity of 3 pyrimidine-4-oxazolidin-2-one derivatives as 
mIDH1 inhibitors was studied as follows:

Generally, the larger the cross-validation coefficient 
q2, the larger the non-cross-validation coefficient r2 and 
the smaller the SEE, which means the better the correla-
tion and the stronger the prediction ability of the model; 
q2 stderr and r2 stderr are the standard errors of q2 and r2. 
The smaller the value is, the higher the model quality is. 
F value is mainly used to judge whether there is a signifi-
cant difference between samples. The larger the value is, the 
more significant the difference is and the smaller the error is 
(F > 100). When the cross-validation coefficient q2 is greater 
than 0.5 and the non-cross-validation coefficient r2 is greater 
than 0.6, and the difference between r2 and q2 is better than 
0.3, it can be proved that the established model has a high 
predictive ability [26, 57].

It can be seen from Table 4 that the principal components 
"N" of the three models are 5, 5 and 3, respectively, q2 is 
0.783, 0.667 and 0.671, respectively, which are greater than 
0.5, r2 is 0.978, 0.983 and 0.927, respectively, which are 
greater than 0.6. The results show that the QSAR models 
constructed by the three cutting methods have good fitting 
and prediction ability. By analyzing the results of the three 
models, we found that Model 3–1 not only has good predic-
tion ability, but also retains the core skeleton of the parent 
compound in the cutting mode, which is more conducive 
to the selection of core skeleton and R group. Therefore, 
we used Model 3–1 in the subsequent Topomer CoMFA 
research for structure–activity analysis.

The data show that the best model of q2 is greater than 
0.5, r2 is greater than 0.6, r2—q2 < 0.3, q2

pred is 0.792 (> 0.6), 
F is 282.660 (F > 100), which indicates that the model estab-
lished by this method is an ideal Topomer CoMFA model, 
and its statistical results have high predictive ability. In addi-
tion, the predicted values of SEE, q2 stderr and r2 stderr are 
0.138, 0.440 and 0.140, respectively, which indicates that 
the error of the model is small, and further indicates that the 
established model has high reliability.

Table 3   HQSAR model analysis 
under different fragment lengths

N: Best composition score; HL: Holographic fragment length; q2: Cross-validation correlation coefficient; 
r2: Correlation coefficient of non-cross validation; SEE: Estimate standard error; SEEcv: Cross validation 
standard error

Model Fragment distinction Fragment size N HL q2 r2 SEE SEEcv

1–01 C/CH/DA 4–7 5 71 0.750 0.933 0.249 0.479
2–01 C/CH/DA 1–4 2 97 0.603 0.751 0.450 0.568
2–02 C/CH/DA 2–5 3 59 0.689 0.853 0.353 0.513
2–03 C/CH/DA 3–6 5 61 0.700 0.925 0.261 0.524
2–04 C/CH/DA 5–8 3 401 0.673 0.853 0.353 0.526
2–05 C/CH/DA 6–9 3 199 0.671 0.825 0.385 0.528
2–06 C/CH/DA 7–10 5 83 0.784 0.934 0.245 0.446
2–07 C/CH/DA 8–11 3 199 0.637 0.806 0.405 0.554
2–08 C/CH/DA 9–12 3 83 0.656 0.826 0.383 0.540

Table 4   Template molecule segmentation method and fragment sche-
matic diagram
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Comparative analysis of HQSAR model and Topomer 
CoMFA model

The HQSAR model can discover the potential influence of 
debris and atoms on the activity with the help of the model 
color code map, thus helping to reveal the molecular mech-
anism affecting the activity of compounds. By analyzing 
the color code map, we can determine which fragments or 
atoms may be key contributors to the mIDH1 inhibitor activ-
ity value.

The HQSAR contribution diagram of several compounds 
in this paper is shown in Fig. 2, and the blue part is the 
common skeleton. There are many green and yellow frag-
ments in Fig. 2a and c, which indicates that these fragments 
or atoms have positive contribution to biological activity. 
These groups should be retained when synthesizing com-
pounds that may have better biological activity. Some of the 
fragments in Fig. 2b and d are orange and red, indicating 
that these fragments or atoms have adverse contributions 
to biological activity. When synthesizing compounds with 
better biological activity, these groups should be removed 
or replaced. The white atoms of other substituents in the 
compounds indicate that they have a neutral contribution to 
biological activity and may be replaced by substituents that 
can produce stronger inhibitory effect.

Figure 3 shows the 3D contour map of the Topomer 
CoMFA model of template compound 11. Figure 3a and b 
are the steric and electrostatic contour maps of Ra groups 
respectively. Figure 3c and d are, respectively, steric and 
electrostatic contour maps of Rb group. In Fig. 3a and b, the 
green part indicates that increasing the volume of substituent 
is beneficial to the improvement of compound activity, while 

the yellow part indicates that decreasing the volume of sub-
stituent is beneficial to the improvement of compound activ-
ity. In Fig. 3c and d, the red region indicates that increasing 
the electronegativity of groups is conducive to the improve-
ment of compound activity, while the blue region indicates 
that decreasing the electronegativity of groups is conducive 
to the improvement of compound activity.

As shown in Figs. 3 and 4, Fig. 3a shows the steric con-
tour map of Ra groups of template molecules. There are 
green groups at the positions of O-14, C-15 and F-16, indi-
cating that the selection of large groups at these positions 
is beneficial to the improvement of activity; yellow groups 
are found inside the N-9 and O-12 positions, indicating that 
the volume of substituents at these positions needs to be 
reduced to increase the activity of the compound. For exam-
ple, compared with compound 16 (pIC50 = 5.54), compound 
15 (pIC50 = 7.14) increased the substituent at C-15 and F-16 
positions, and the activity was significantly improved. Fig-
ure 3b shows the electrostatic contour map of the Ra group 
of template molecule. There are red groups at O-14, indicat-
ing that the introduction of high electronegative substitu-
ents at this position is conducive to the improvement of the 
activity of the compound. There are blue groups at C-10 
and C-15 positions, indicating that the introduction of low 
electronegativity substituents at these positions is conducive 
to improving the activity of the compound. For example, 
compound 19 introduces a highly electronegative substituent 
at the C-15 position compared to compound 13, resulting in 
reduced activity.

Figure 3c shows the steric contour map of the Rb group 
of template molecule. There are large green groups at C-26, 
C-27, C-28 and Cl-30, indicating that the selection of large 

Fig. 2   HQSAR model color 
code diagram of compounds 11 
(a), 7 (b), 14 (c) and 12 (d)
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groups at these positions is conducive to improving the 
activity; There are yellow groups at the O-19, C-21, N-22 
and C-25 positions, so it is necessary to introduce substitu-
ents of small groups at these positions to improve the activity 
of the compound. For example, compared with compound 
19 (pIC50 = 5.46), compound 20 (pIC50 = 6.23) increased the 
volume and activity of substituents at the positions of C-26, 

C-27, C-28 and Cl-30. Figure 3d shows the electrostatic con-
tour map of the template molecule Rb group. C-25 and C-26 
positions have blue groups, indicating that the introduction 
of low negative substituents at these positions is conducive 
to improving the activity of the compound. There are a large 
number of red groups in the inner and outer positions near 
C-27, C-28, C-29 and O-19. Therefore, high negative sub-
stituents should be introduced at these positions to improve 
the activity of the compound. For example, compound 29 
(pIC50 = 7.44) had a lower electronegative activity near the 
O-19 site than compound 31 (pIC50 = 7.80).

Compare the color code map of HQSAR model (Fig. 2) 
with the 3D contour map of Topomer CoMFA model 
(Fig. 3). In the 3D contour map of Topomer CoMFA model 
near C-27 (Fig. 3c), there are large green groups. In the color 
code map of HQSAR model, the same position of molecule 
11 (pIC50 = 8.30) (Fig. 2a) shows yellow and green (favora-
ble contribution), while the same position of molecule 7 
(pIC50 = 4.95) (Fig. 2b) shows red (unfavorable contribu-
tion), which corresponds to Topomer CoMFA, In the same 
position of the 3D contour map of the model (Fig. 3c), the 
rule that the substituent of green group decreases and the 
volume activity decreases is given. Near C-15 of the atomic 
distribution number diagram, the 3D equipotential diagram 
of the Topomer CoMFA model (Fig. 3a) gives the sugges-
tion of increasing the volume and enhancing the activity 
(green group), which corresponds to the favorable contribu-
tion (green and yellow) of compound 14 (PIC50 = 8.10) in 
the same part of the color code diagram of HQSAR model 

Fig. 3   3D contour map of 
Topomer CoMFA Model based 
on template compound 11

Fig. 4   The atomic number diagram of template molecule is provided 
for the convenience of explanation
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(Fig. 2c); In the position of C-18 and C-20, compound 12 
(pIC50 = 5.56) used the unfavorable orange and favorable 
contribution yellow, respectively, in the HQSAR model 
color code diagram (Fig. 2d) to correspond to the yellow 
group with reduced volume activity and the red group with 
enhanced negative rising activity in the same position as 
the Topomer CoMFA model (Fig. 3c, d). Combined with 
the color code map of HQSAR model (Fig. 2) and the 3D 
contour map of Topomer CoMFA model (Fig. 3), the two 
methods get consistent results, which fully shows the accu-
racy and good prediction ability of the model established in 
this study (Table 5).

Based on the results of the training set, we set the Frag-
ment Size to 7–10, and set the Fragment Size to "C/Ch/
DA" to perform HQSAR validation on the training set, and 
predict the pIC50 value of the test set (Table 6). Finally, 
regression analysis and residual analysis are carried out for 
the obtained HQSAR model prediction data. Figure 5 is the 
linear regression correlation diagram and the residual analy-
sis diagram between the experimental and predicted values 
of the training set and the test set of the HQSAR model and 
the Topomer CoMFA model. It is shown in Fig. 5 that all the 
samples in the linear regression analysis chart are uniformly 
distributed around the 45° line (Fig. 5a and c), and the data 
in the residue analysis chart are also mainly concentrated 
around the zero-scale line (Fig. 5b, d), which proves that 
both models have good predictive ability.

By comparing the color code map of the HQSAR model 
(Fig. 2) and the 3D contour map of the Topomer CoMFA 
model (Fig. 3), the 3D contour map of Topomer CoMFA 
model near C-27 has large green groups. In the color code 
map of HQSAR model, the molecules of compound 11 
(pIC50 = 8.30) at the same position are shown in yellow 
and green (favorable contribution), while the molecules of 
compound 7 (pIC50 = 4.95) at the same position are shown 
in red (unfavorable contribution), at the same time corre-
sponding to the Topomer CoMFA model of 3D contour of 
green groups in the same position in the reduced in volume 
by the substituent activity rules. The results obtained by the 
two methods are consistent, which fully demonstrates the 
accuracy and good predictive ability of the proposed model.

Verification results of QSAR model

In order to further verify the predictive power of QSAR 
models, independent test sets generated by non-models 
are needed for verification. Table 7 lists the results of the 
external validation parameters. r2

pred is the predictive cor-
relation coefficient of the compound test set. The external 
validation parameters of Topomer CoMFA and HQSAR are 
0.792 and 0.865, respectively, indicating that the external 
prediction ability of the two models is reliable. r2

0
 and r2′

0
 

determine the square correlation coefficient of the regression 
line through the origin between the predicted activity value 
and the experimental activity value. The value of k and k´ 
are the slope of their models, respectively. It can be seen 
from the data in the table that the regression analysis values 
of the two models are also very good. Other parameters are 
shown in Table 7:

Through comparative analysis of the results of the 
HQSAR model and the Topomer CoMFA model (Tables 6 
and 7), regression and residual analysis (Fig. 5, Table 6), the 
values of the two models are very close to each other, and 
the data of the models basically reach the standard range. 
This indicates that the fragment interval and fragment size 
in the HQSAR model established in this study and the choice 
of cutting mode in the Topomer CoMFA model are the best 
choices. Therefore, the model can be used to predict the 
bioactivity of these chemical types, new compounds and 
their derivatives more accurately.

Molecular design results

The results of HQSAR and Topomer CoMFA model were 
used as reference. Based on the template compound 11, the 
Topomer search technology was used to search the confor-
mation in the ZINC database, and the structures of Ra and 
Rb were used to search and screen in the ZINC database. 
Among the structural fragments, the Topomer distance is 
close to 185 and the activity contribution value is higher 
than that of Ra group (contribution value is 0.97) and Rb 
group (contribution value is 1.37). Finally, 1 Ra group and 
8 Rb groups were selected from ZINC database. In addi-
tion, Rb groups of compounds 14 and 41 in training set 
were extracted (contribution values were 1.41 and 1.69). 1 

Table 5   Results of Topomer 
CoMFA model

N: Best composition score; q2: Cross-validation coefficient; r2: Non-cross validation coefficient; q2 stderr: 
Standard error of cross-validation coefficient; r2 stderr: Standard error of non-cross validation coefficient; 
F: Statistical value of F test; SEE: Estimate standard error

Model N q2 r2 q2 stderr r2 stderr F SEE

3–01 5 0.783 0.978 0.44 0.14 282.66 0.138
3–02 5 0.667 0.983 0.55 0.12 285.79 0.123
3–03 3 0.671 0.927 0.53 0.25 109.611 0.249
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Ra group and 10 Rb groups were obtained to replace the Ra 
group and Rb group of the template compound 11 respec-
tively for molecular design, and finally 10 new mIDH1 

inhibitors were designed. According to the above method, a 
new molecular structure was constructed in SYBYL-X 2.0, 
and the molecular structure was optimized and named by the 
same method. The activity of compound 11 was predicted 
by Topomer CoMFA model. The structures and predicted 
activity values of the 10 newly designed compounds (pIC50) 
are shown in Table 8.

As shown in Table 8, the predicted activity values (pIC50) 
of the newly designed 10 molecules were all above the activ-
ity values (pIC50 = 8.30) of the template molecules. The 
structural analysis of the newly designed compound mol-
ecule showed that –OH replaced –CH2F electronegativity 
of template molecule Ra group, and the activity of -CH2F 
decreased. For Rb group, 4–06 and 4–07 replaced the -H of 
the substituted template molecule with the more negative -Cl 
at the 29 position, and the activity was enhanced; 4–03, 4–04 
and 4–10 increased the substitutions near the C-26, C-27 and 
C-28 positions, leading to increased volume activity. The 
data results conform to the analysis results of the Topomer 
CoMFA model.

Molecular docking results analysis

Prior to molecular docking, the large proteins were pre-
treated by hydrogenation, charge addition, extraction of orig-
inal ligands, removal of water molecules, other residues and 
terminal residues, etc. The molecules after treatment were 
shown in Fig. 6a (gray area represents prototype molecules). 
Then protein eutectic of macromolecular ligand to withdraw 
from the crystal structure, the eutectic with weight through 
docking technology new access in the crystal structure, and 
to the original ligands for reference, to verify the reliability 
of the docking, as shown in Fig. 6b (red bar back together 
ligands, green rod benchmark ligand) said. It is shown in 
Fig. 6b that the conformation of the crystal ligand almost 
completely overlaps with that of the ligand after docking 
(the similarity is 0.912), and their rotation trend is basically 
similar. This indicates that the conformation of ligand mol-
ecules before and after docking is basically unchanged, and 
the docking method is reasonable and reliable.

The template molecules were docked with the newly 
designed 10 molecules, and the template molecules were 
used as the control. The values of the scoring functions total-
score, Crash and Polar and the number of hydrogen bonds 
formed were used as evaluation criteria. The higher the total 
score value is, the more the docking results can meet the 
requirements of the analysis results. The results are shown 
in Table 9.

The plane force analysis diagram of molecular docking is 
shown in Fig. 7, in which the ball stick model is a small mol-
ecule ligand, the spherical shape represents the amino acid 
residues that form the force, the hydrogen bonding action is 

Table 6   Comparison of the predicted activity value and residual 
value of Topomer CoMFA model and HQSAR model

*Test set compound for QSAR model validation

Comparison pIC50Exp Topomer CoMFA HQSAR

pIC50Pred Residual pIC50Pred Residual

01 6.66 6.43 0.23 6.47 0.19
02* 5.72 6.35 −0.63 5.96 −0.24
03 6.57 6.57 0.00 6.73 −0.16
04 6.17 6.28 −0.11 6.58 −0.42
05 7.28 7.37 −0.09 6.99 0.29
06 6.45 6.45 0.00 6.61 −0.15
07 4.95 5.21 −0.26 5.20 −0.25
08 5.97 6.03 −0.06 6.32 −0.35
09* 6.19 6.43 −0.24 6.51 −0.32
10 6.28 6.43 −0.15 5.98 0.29
11 8.30 8.27 0.03 8.27 0.03
12 5.56 5.46 0.10 5.50 0.06
13 6.61 6.43 0.18 6.14 0.47
14 8.10 8.11 −0.01 8.41 −0.32
15* 7.14 7.07 0.07 6.72 0.42
16 5.54 5.58 −0.04 5.42 0.12
17 6.73 6.76 −0.03 6.60 0.12
18* 5.41 5.89 −0.48 5.84 −0.42
19* 5.46 6.02 −0.56 5.89 −0.44
20 6.23 6.28 −0.05 6.75 −0.52
21* 7.07 6.56 0.51 6.75 0.32
22 6.70 6.89 −0.19 6.80 −0.10
23 7.16 7.09 0.07 6.87 0.29
24 7.06 6.89 0.17 6.93 0.13
25 7.42 7.48 −0.06 6.89 0.53
26* 7.52 7.29 0.23 7.25 0.28
27 7.40 7.40 0.00 7.29 0.11
28 7.31 7.25 0.06 7.15 0.16
29 7.44 7.45 −0.01 7.71 −0.27
30* 7.37 7.60 −0.23 7.50 −0.13
31 7.80 7.83 −0.03 7.77 0.03
32 7.70 7.64 0.06 7.57 0.13
33* 7.96 7.90 0.06 7.94 0.02
34 6.27 5.89 0.38 6.53 −0.26
35 6.74 6.72 0.02 6.12 0.61
36 7.12 7.22 −0.10 6.69 0.43
37* 7.04 6.87 0.17 6.65 0.39
38 5.17 5.27 −0.10 5.52 −0.35
39* 6.50 6.97 −0.47 7.15 −0.65
40 7.59 7.51 0.08 7.26 0.32
41 8.30 8.41 −0.11 8.34 −0.03
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shown as a green dotted line, and the hydrophobic action is 
shown as a pink dotted line. Hydrogen bonding is the main 
force to maintain protein and ligand molecules, which makes 
the binding between them more stable.

Figure  7a shows the docking analysis of the ligand 
extracted from 5TQH protein crystal. It is shown in Fig. 7a 
that the ligand mainly forms four hydrogen bonds with A/
ILE128, A/LEU120 and A/SER278 residues in the protein 
crystal, and forms hydrophobic interaction with amino acid 
residues such as A/TRP124, A/ALA111 and A/VAL281. 
Total score, crash and polar were 9.4819, -1.4541 and 
3.4803, respectively. It can be seen that the selection of 
ligands and protein crystals is more appropriate, and the 
docking method is reasonable and reliable.

Figure  7b presents the docking analysis diagram of 
compound 11 as a template molecule with 5TQH protein 
crystals in the training set. As shown in Fig. 7b, compound 
11 mainly formed hydrogen bonding interactions with B/
ILE128 residues in the crystal structure and hydrophobic 
interactions with amino acid residues such as B/TRP124, B/
VAL281 and B/ALA111, with total score, crash, and polar 
of 7.1685, −1.9240, and 3.4635, respectively; Fig. 7c shows 
that the newly designed compound 4–02 formed a total of 
six hydrogen bonding interactions with residues B/LYS126, 
B/GLN277, B/TYR272 and B/SER278 and hydrophobic 
interactions with amino acid residues such as B/ILE130, B/

Fig. 5   Linear regression analy-
sis chart a and Residual analysis 
chart b of Topomer CoMFA 
model, Linear regression analy-
sis chart c and Residual analysis 
chart d of HQSAR model

Table 7   QSAR model verification results

Parameters Criterion Topomer 
COMFA

HQSAR

r
2
pred

r
2
pred

> 0.6 0.792 0.865
k 0.85 < k < 1.15 0.981 0.991
k´ 0.85 < k´ < 1.15 1.016 1.006
r
2
0

(r2−r20)

r
2

< 0.1
0.810 0.812

r
2′
0

(
r
2−r

2�

0

)

r
2

< 0.1
0.786 0.797

r
2
m

r
2
m
> 0.5 0.674 0.608

r
2′
0

r
2′
0
> 0.5 0.631 0.589

Δr2
m

Δr2
m
< 0.2 0.043 0.019

RMSE RMSE → 0 0.385 0.365
MAE MAE → 0 0.332 0.329
CCC​ CCC > 0.85 0.863 0.876
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VAL255 and B/ALA111, with a total score, crash, and polar 
of 7.0208, −4.0453, and 3.6820, respectively. Figure 7d 
shows that the newly designed compounds 4–05 formed a 
total of seven hydrogen bonding interactions with residues 
B/ALA111, B/GLN277, B/SER278, B/SER287 and B/
LEU120, and formed hydrophobic interactions with amino 
acid residues such as B/VAL281, B/ILE130 and B/TRP124, 
with total score, crash, and polar of 7.1048, -2.7462, and 
3.8948, respectively.

The results showed that the newly designed compounds 
formed strong hydrogen bonding interactions with amino 
acid residues such as B/LEU120, B/GLN277, B/SER287, 
and these interactions enhanced the binding strengths of the 
ligands and receptors, so the docking results of the designed 
compounds were reliable and beneficial.

ADMET prediction result analysis

Results as shown in Table 10, it can be seen that all the 
values of the designed drugs are basically good without 
the carcinogenicity of rats, indicating that the designed 
drugs have high molecular safety and obvious pharmaco-
logical effects. Moreover, all 10 molecules have mutagen-
icity, which is of great help to understand the carcinogenic 
mechanism of mIDH1.

Conclusion

In this paper, the Topomer CoMFA method of the sec-
ond generation CoMFA and the fast and simple HQSAR 
method were used to establish QSAR models for 41 
3-pyrimidin-4-yl-oxazolidin-2-one derivatives as mIDH1 
inhibitors. According to the statistical verification results, 
the model with high predictive ability was finally obtained. 
Then, based on the results of Topomer CoMFA and 
HQSAR, some novel 3-pyrimidine-4-yl-oxazolidin-2-one 
derivatives mIDH1 inhibitors were designed through vir-
tual screening, and 10 new molecules were finally deter-
mined. External validation showed that the activity values 
of these new molecules were all higher than the original 
template molecules. Then molecular docking was used to 
explore the binding mode and target between ligands and 
protein receptors, and amino acid residues were found 
to form hydrogen bond interaction between ligands and 
crystal structure. It was proved that the newly designed 
compound formed strong hydrogen bonds with amino acid 
residues B/LEU120, B/GLN277, B/SER287, etc., and 
these interactions enhanced the binding strength of ligands 

Table 8   The newly designed molecular structure and the activity val-
ues predicted by the Topomer CoMFA model

NO. Ra Rb pIC50 Pred

4-01 8.55

4-02 8.58

4-03 8.56

4-04 8.36

4-05 8.42

4-06 8.35

4-07 8.34

4-08 8.34

4-09 8.38

N

N
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and receptors. Including AMES prediction, the results 
show that all 10 drug molecules are mutagenic, which is 
of great help to understanding the carcinogenic mecha-
nism of mIDH1. In addition, AMES prediction was car-
ried out, and the results showed that all 10 drug molecules 
are mutagenic, which is very helpful for understanding 

the carcinogenic mechanism of mIDH1. This research 
provides a certain idea for the design and development 
of new mIDH1 inhibitor anticancer drugs, helps to better 
understand its inhibitory mechanism, and provides a cer-
tain theoretical basis for future experimental verification 
of new compounds.

Fig. 6   Superposition of proto-
type molecular diagram a and 
reference ligand b 

Table 9   Molecular docking 
scoring function

Total-score: Rank the affinity of ligands that bind to the active site of the receptor and report the output of 
the total score. Crash: Crash -score shows inappropriate penetration into the binding site. A crash score 
close to 0 is advantageous. A negative number means penetration. Polar: Polarity indicates the contribution 
of polar interactions to the total score

No. pIC50 pred Contribution value Scoring function

Ra Rb total-score crash polar

Ligand − − − 9.4819 −1.4541 3.4803
template 8.27 0.97ss 1.37 7.1685 −1.9240 3.4635
4–01 8.55 1.03 1.58 6.6886 −1.5387 2.5254
4–02 8.58 1.03 1.61 7.0208 −4.0453 3.6821
4–03 8.56 1.03 1.60 4.4311 −2.1017 4.6219
4–04 8.36 1.03 1.39 5.8767 −2.5635 1.8779
4–05 8.42 1.03 1.45 7.1048 −2.7462 3.8948
4–06 8.35 1.03 1.38 6.6657 −2.0377 2.4305
4–07 8.34 1.03 1.38 5.8213 −1.1384 1.7673
4–08 8.34 1.03 1.38 6.9366 −3.2860 1.8163
4–09 8.38 1.03 1.41 9.4981 −1.5255 4.1947
4–10 8.65 1.03 1.69 8.7373 −0.8810 2.2910
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Fig. 7   Molecular docking plane force analysis diagram

Table 10   ADMET prediction results

HIA(%): ≥ 30%(well absorbed); F(%): ≥ 30%(High bioavailability); PBB: ≥ 90(Highly integrated); BBB: ≥ 0.1(Highly ratio); T1/2: > 0.5 (Sugges-
tions); CL: > 15 mL/min/kg (high), > 5 mL/min/kg and < 15 mL/min/kg (moderate), < 5 mL/min/kg (low)

No. Absorption Distribution Metabolism Excretion Toxicity

HIA (%) F (%) PPB BBB CYP450 3A4 CYP450 2D6 CYP450 2C9 T1/2 CL AMES Carcinogenicity

4–01 69.20% 61.80% 80.214 0.455 Inhibitor Non Inhibitor 1.386 1.311 mutagen negative
4–02 49.90% 61.90% 65.804 0.094 Non Non Inhibitor 0.833 1.011 mutagen negative
4–03 58.60% 49.80% 74.614 0.406 Inhibitor Non Inhibitor 1.030 0.896 mutagen negative
4–04 64.80% 57.60% 91.675 0.197 Inhibitor Non Inhibitor 1.391 1.259 mutagen negative
4–05 51.80% 60.50% 71.739 0.090 Non Non Inhibitor 0.954 0.855 mutagen negative
4–06 67.60% 59.00% 93.895 0.355 Inhibitor Non Inhibitor 1.567 1.147 mutagen negative
4–07 66.00% 55.70% 93.924 0.282 Inhibitor Non Inhibitor 1.637 1.148 mutagen negative
4–08 60.80% 54.50% 93.819 0.296 Inhibitor Non Inhibitor 1.419 1.406 mutagen negative
4–09 71.80% 66.40% 91.091 0.309 Inhibitor Non Inhibitor 1.294 1.402 mutagen negative
4–10 62.60% 52.50% 96.346 0.165 Inhibitor Non Inhibitor 1.603 1.382 mutagen negative
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