
Vol.:(0123456789)1 3

Molecular Diversity (2021) 25:1855–1872 
https://doi.org/10.1007/s11030-020-10172-5

ORIGINAL ARTICLE

Structural modification of 4, 5‑dihydro‑[1, 2, 4] triazolo [4, 3‑f] 
pteridine derivatives as BRD4 inhibitors using 2D/3D‑QSAR 
and molecular docking analysis

Jian‑Bo Tong1,2   · Ding Luo1,2 · Yi Feng1,2 · Shuai Bian1,2 · Xing Zhang1,2 · Tian‑Hao Wang1,2

Received: 28 September 2020 / Accepted: 11 December 2020 / Published online: 3 January 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract 
Cancer treatment continues to be one of the most serious public health issues in the world. The overexpression of BRD4 
protein has led to a series of malignant tumors, hence the development of small molecule BRD4 protease inhibitors has 
always been a hot spot in the field of medical research. In this study, a series of 4,5-dihydro-[1, 2, 4] triazolo [4, 3-f] pteridine 
derivatives were used to establish 3D/2D-QSAR models and to discuss the relationship between inhibitor structure and 
activity. Four ideal models were established, including the comparative molecular field analysis (CoMFA: q2

cv
 = 0.574, r2

ncv
 

= 0.947) model, comparative molecular similarity index analysis (CoMSIA: q2
cv

 = 0.622, r2
ncv

 = 0.916) model, topomer 
CoMFA ( q2

cv
 = 0.691, r2

ncv
 = 0.912) model and hologram quantitative structure–activity relationship (HQSAR: q2

cv
 = 0.759, 

r
2
ncv

 = 0.963) model. They show quite good external predictive power for the test set, with r2
ncvpred

 values of 0.602, 0.624, 
0.671 and 0.750, respectively. In addition, the contour and color code map given by the 2D/3D-QSAR model with the results 
of molecular docking analyzed to chalk up modification methods for improving inhibitory activity, which was verified by 
designing novel compounds. The analysis results are helpful to promote the modification of the inhibitor framework and to 
provide a reference for the construction of new and promising BRD4 inhibitor compounds.
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Introduction

The increasing incidence of cancer has made it one of the 
most serious public problems for mankind and how to 
effectively treat cancer has always been an important chal-
lenge for public health care [1]. Bromodomain-containing 
protein 4 (BRD4) is a key epigenetic regulator in cancer 
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with the most important functional protein in the bromo-
domain and superterminal family protein (BET) family, 
which contains two bromodomains and one superterminal 
domain [2]. Researches have shown that BRD4 regulates cell 
proliferation and apoptosis by recruiting positive transcrip-
tion elongation factor (PTEFb) to activate C-MYC, C-JUN, 
etc., therefore plays an important role in the occurrence and 
development of tumors and the infiltration and migration 
processes of tumor cells [3]. The occurrence and develop-
ment of a variety of malignant tumors such as lung cancer, 
breast cancer, hematological tumors and liver cancer are 
all related to the dysfunction and overexpression of BRD4 
[4, 5]. Similarly, inhibiting signaling pathways to resist the 
overexpression of BRD4 protein can effectively treat cancer 
diseases that have been developed as a therapeutic target 
for cancer drug research. The molecule ( +)-JQ1 developed 
by Qi et al. [6, 7] containing the triazolodiazadiazepine 
core skeleton was identified as a selective inhibitor of the 
BET subfamily and proved in the xenograft model of NMC 
antitumor effect. Pfizer [8] discovered a new type of scaf-
fold 3,4-dihydro-3-methyl-2(1H)-quinazolinone through 
fragment drugs. In the peptide replacement biochemical 
experiment, the scaffold was further optimized for its IC50 
was about 0.1 ~ 0.5 μM. Nevertheless, the emergence of 

drug resistance leads to the effects of target protein inhibi-
tors with specific modes of action were limited gradually 
[9–11], urgent development of new BRD4 inhibitors turns 
into promising means to treat cancer.

To avoid side effects caused by drug resistance, the dis-
covery of the new dual inhibitor molecule BI-2536(Fig. 1a) 
which play an ideal inhibitory effect with the BRD4 and 
PLK1 protein kinases normally drive cancer makes the pro-
gress of anticancer drugs even further [12, 13], BI-2536 
Inhibitor’s good anticancer effect and fewer side effects 
prompt it quickly become one of the most promising anti-
cancer drugs [14]. The docking results show in Fig. 1b that 
BI-2536 in the form of R78 500 ligand directly forms stable 
hydrogen bonds with ARG57, LEU59, CYS133 with PLK1 
mutase(O–H–N-ARG57, 2.7 Å; N–H–O-LEU59, 3.1 Å; 
N–H–O-CYS133, 3.1 Å; N–H–N-CYS133, 2.9 Å), also 
LYS82, GLU101, HIS105, GLU131, ARG135/136 and other 
amino acid residues that utilized water molecules as medi-
ator to form hydrogen bonds. In Fig. 1c that the BI-2536 
inhibitor in the form of R78 202 ligand forms direct stable 
and strong hydrogen bonds with ASN140 residues into the 
first bromodomain of BRD4 through the oxygen atom on 
formamide(O–H–N-ASN140, 2.9 Å). Other surrounding 
residues GLN85, VAL87, TYR97/139, ASP144/145 also 

Fig. 1   The structure of BI-2536 and the result of docking with the 
dual-target protein. a: 2D structure of BI-2536 inhibitor. b: Descrip-
tion of the docking effect of BI-2536 as R78 500 ligand form with 
PLK1 protein(2RKU); c: Description of the docking effect of 

BI-2536 as R78 202 form ligand with BRD4 protein(4OGI) and 
amino acid residue surrounding in ligand shown in stick format and 
colored by atom type. Ligand is displayed in a stick format and is 
colored by atom type (green = carbon)
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form hydrogen bonds with the R78 202 through the bridge 
of water molecules. Furthermore, it is tough to obtain inhibi-
tor molecules with inhibitory activities, which requires a lot 
of time-consuming and labor-intensive experiments. Eluci-
dating the relationship between its molecular structure and 
BRD4 inhibitory activity may be able to provide effective 
help for the development of anticancer drugs.

The good suppression performance of BI-2536 inspired 
researchers to optimize and analyze its suppression frame-
work[15]. Hu et al. [16] rationally designed, synthesized 
and evaluated a series of novel dihydroquinoline-2 (1H)-1 
derivatives as selective bromine domain inhibitors inspired 
by BI-2536. Chen et al. [17] used the strategy of modifying 
the structure of the BI-2536 to obtain a more selective inhib-
itor for BRD4 protein with a moderate inhibitory effect on 
PLK1. The summarized structure–activity relationship may 
help to fine-tune in this way ligand capabilities for expand-
ing personalized medicine. Wang et al. [18] later substituting 
1, 2, 4-triazole for the N-methyllactam of BI-2536 provides 
a series of new dual high inhibitory activity compounds 
with PLK1 selectivity through screening, which was also 
confirmed by recent studies on BRD4 inhibitors[19]. Based 
on that, obtaining more complete structural modification 
information for BRD4 selectivity may help delineate the 
biochemical pathways and multidrug profiles targeted by 
other drugs. Therefore, we attempt to modify newest type 
of molecular structure synthesized by Wang for increasing 
the selectivity of the ligand compounds for BRD4 protein. 
The 2D/3D-QSAR approaches provide 2D/3D chemical 
and electrical information instead of just simple structural 
transformation, which would be helpful for relieving severe 
restrictions on the emergence of drug-resistant mutations.

Quantitative structure–activity relationship (QSAR) 
has been widely used to assist drug design in recent years, 
3D-QSAR could introduce the three-dimensional struc-
ture information of drug molecules for quantitative struc-
ture–activity relationship research, indirectly reflect the rela-
tionship between drug molecules and macromolecules and 
the non-bonding interaction characteristics of the molecular 
interaction process[20–22]. The use of the QSAR method 
as a precursor for synthetic drugs has extensive application 
prospects on account of its high efficiency and accuracy 
[23]. In this research, the 3D-QSAR model that including 
CoMFA, CoMSIA, 2D-QSAR model (HQSAR) was used 
to analyze the relationship between the inhibitory ability 
and structure of small molecule BRD4 protein inhibitors. 
Through the contour map of CoMFA, CoMSIA, topomer 
CoMFA and the color code map of HQSAR, we obtained 
the structural modification hint of compound 15 with the 
highest activity and verified the QSAR prediction results by 
designing new compounds. In addition, the molecular dock-
ing results showed that the N atom on triazole as a hydrogen 
bond acceptor is essential for improving inhibiting ability. 

The high model predictive ability and verification results can 
provide leading conditions for designing promising BRD4 
inhibitors.

Material and methods

Set division and data establishment

37 inhibitor compounds with BRD4 protein inhibitory activ-
ities were selected from the literature [18] and are listed in 
Table 1. Ten compounds were randomly and representatively 
selected as the test set, and the remaining molecules were 
used as the training set to build the 2D/3D-QSAR model. 
These activity values (IC50 in nM) were converted to corre-
sponding pIC50 (− logIC50) values and used as a dependent 
variable in QSAR models. The SkechTool in SYBYL 2.0 
was employed to build the 3D conformation of each com-
pound. The energy of the drawn compounds is minimized 
by adopting the Tripos force field [24] with the Powell con-
jugate gradient minimization algorithm. The energy conver-
gence criterion of 0.005 kcal/mol Å, Gasteiger-Huckel [25]
charge was used to calculate the atomic charge given by the 
system. Maximum iteration was set to 1000 to obtain stable 
conformation. Put the drawn molecular data in a folder and 
open it as a worksheet for adding the activity data value 
to the SYBYL spreadsheet as TXT text. Other parameters 
adopt the default value of SYBYL 2.0.

Molecular alignment

Molecular alignment is a significant condition that affects 
if QSAR modeling (contains CoMFA, CoMSIA, HQSAR) 
is ideal or not [26]. The predictive ability of the models 
depends on the reliability of the contour map [27]. The most 
active compound 15 was selected as the overlay template 
to obtain the best results, use rigid alignment to maintain 
the lowest energy conformation of each compound, then 
selected the largest common frame of the compound for 
stacking. The alignment function in the SYBYL2.0 package 
was employed for conformational superposition, the align-
ment results are shown in Fig. 2.

CoMFA study

Comparative molecular force field analysis(CoMFA) calcu-
lated by steric and electrostatic fields is the most widely 
used method in QSAR research [28]. Molecules are superim-
posed through reasonable matching rules after the collection. 
The CoMFA calculation tool generates a region that can 
accommodate all molecules and maintain a certain distance 
from the outermost atoms according to the cartesian coor-
dinates. The region was divide into multiple grids adapting 
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Table 1   Compound structure and their actual IC50 and pIC50 values

Comp
.

R1 IC50(nM) pIC50 Comp. R1 IC50 (nM) pIC50

1 724 6.140 20 126
6.90
0

2 109 6.962 21[a] 352
6.45
3

3[a] 434 6.363 22 284
6.54
7

4 341 6.467 23 2214
5.65
5

5 162 6.790 24 3693
5.43
3

6 154 6.812 25[a] 2766
5.55
9

7[a] 138 6.860 26 4870
5.31
2

8 169 6.772 27 2915
5.53
5

9 150 6.824 28 4400
5.35
7

10[a] 172 6.764 29[a] 7504
5.12
5
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a certain distance to calculate the non-covalent interaction 
energy of different fields on each grid point [29]. The three-
dimensional field action is calculated by Lennard–Jones 
formula (1), and the electrostatic field calculation adopts 
the Coulomb formula (2). Since more independent vari-
ables than dependent variables on account of a large num-
ber of grids, the least squares method (PLS) [30] is applied 
to expound the relationship between statistical activity and 
variables. The correlation coefficient q2

cv
(cross-validation 

coefficient),r2
ncv

 (non-cross-validated correlation coefficient) 
obtained by cross-validation are usually used as the basis to 
measure the predictive ability of the CoMFA model [31].

where EvdW represents the space potential energy of the com-
pound; Aj and Cj represent the corresponding atomic van 
der Waals radius constants; n is the total number of atoms 
in the molecule; EC is the electrostatic field energy of the 
compound; qi is the net charge of the atom calculated by the 

(1)EvdW =

n
∑

i=1

(

Ajr
−12
ij

− Cjr
−6
ij

)

(2)EC =

n
∑

i=1

qiqj

Drij

Table 1   (continued)

11 108 6.967 30 2764
5.55

9

12 3568 6.448 31 6375
5.19

6

13[a] 505 6.296 32 4897
5.31

0

14 426 6.371 33[a] 1386
5.85

8

15 71 7.149 34 2304
5.63

8

16 266 6.576 35 10000
5.00

0

17[a] 914 6.039 36[a] 2085
5.68

1

18 975 6.011 37 2575
5.59

0

19 516 6.287

[a]: Randomly selected as the test set

Comp
.

R1 IC50(nM) pIC50 Comp. R1 IC50 (nM) pIC50
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Gasteiger-Hckel method; qj is the probe charge of the atom; 
D is the dielectric constant.

CoMSIA study

A comparative molecular similarity index analysis (CoM-
SIA) was established to get over the limitations of CoMFA. 
In CoMSIA, the molecular index SEAL similarity calcula-
tion field is used as a descriptor while considering space, 
static electricity, hydrophobicity and hydrogen bonding 
characteristics. These indicators are estimated indirectly by 
comparing the similarity between each molecule in the data 
set and a common probe atom (radius of 1 Å, the charge 
of + 1, hydrophobicity of + 1) [32]. Compared to CoMFA, 
CoMSIA uses a Gaussian function and the similarity index 
of the Gaussian distribution to avoid mutations in the grid-
based probe atom interaction. Furthermore, the selection of 
similar probes is not limited to space potential or electro-
static potential, but also includes hydrophobic and hydrogen 
bonding [33] (hydrogen bond acceptor and donor fields).

Topomer CoMFA study

Topomer CoMFA is a CoMFA modeling method based on 
topomer technology, which eliminates the steps that affect 
the prediction results, such as molecular overlap and defines 

the activity value of the compound as the contribution value 
represented by each fragment through molecule cutting 
[34]. Topomer is similar to CoMFA in creating a spatial 
contour map produced by a stereocenter and position. The 
Tripos force field method of + 1 atomic charge is used as 
static electricity. Put pIC50 as an independent variable, use 
PLS, spatial, electrostatic descriptors to build a model [35]. 
Herein, the topomer CoMFA tool in the SYBYL 2.0 soft-
ware package was employed for adopting the same cutting 
method to divide 37 compounds into 2 or more fragments for 
establishing a reasonable 3D-QSAR model. The predictive 
ability of the QSAR model largely depends on the position 
of molecule cutting.

HQSAR study

HQSAR is a 2D-QSAR analysis method based on the struc-
ture of atomic fragments without requiring molecular 3D 
conformations [36], which converts the chemical representa-
tion of molecules into corresponding molecular holograms 
to realize molecular arrangement and conformation specifi-
cation [37]. The SLN (SYBYL line notation) of each created 
segment is mapped to a unique integer [38]. The two-dimen-
sional structure is converted into a characteristic signal and 
labeled with a random number of 53–401 to establish the 
relationship between the specific atom of the compound and 
the biological activity [39]. Different fragment descriptors 
that including atoms (A), bonds (B), connections (C), chi-
rality (Ch), hydrogen atoms (H), donor and acceptor (DA) 
were utilized in combination with adjusting dimensions and 
holographic length to obtain a HQSAR model with good 
predictive ability.

Partial least square analysis

The partial least squares (PLS) [30] method was employed 
to deal with the linear correlation between fields and biologi-
cal activity on account of a large number of independent 
variables. First, the cross-validation method with leave-one-
out is used to select the model which has the most predictive 
ability, and then the regression analysis is performed through 
the obtained optimal number of components(N) [40]. In 
addition, non-cross-validation analysis is performed based 
on the best number of components to evaluate the model 
fitting ability. Finally, import the test set to predict its bio-
logical activity and evaluate it through QSAR models. q2

cv
 

and r2
ncv

 , standard error of estimate (SEE), the Fischer ratio 
value (F) obtained based on the optimal number of compo-
nents deemed to be important factors for judging the predic-
tive ability of the model. Additionally, the value of r2

ncvpred
 is 

calculated using the test set of compounds by formula(3). 
Higher q2

cv
, r2

ncv
, r2

ncvpred
,(q2

cv
 > 0.5, r2

ncv
  > 0.6, r2

ncvpred
> 0.5) 

Fig. 2   Molecular alignment mode. a: Molecular alignment based on 
compound 15; b: 2D structure of compound 15(blue represents the 
common skeleton)
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represent the good predictive ability of the established model 
[41].

where SD is the sum of squares of deviations between the 
average activity of molecules in the training set and the 
biological activity of molecules in the test set; PRESS is 
the sum of squares of deviations between the predicted and 
actual activity of the molecule in the test set.

Molecular docking

Molecular docking simulation experiments could illustrate 
the binding conformation of small-molecule inhibitors with 
target proteins, analyze the structural requirements for inhib-
itors to produce inhibitory effects [42]. Surflex-dock dock-
ing software in SYBYL was applied to clarify the binding 
of inhibitor molecules to the target BRD4 protein. Surflex-
dock adopts a specific site docking method to remove the 
original ligands (mostly inhibitors) on the target protein and 
place the docked molecules at a fixed site. Compare docking 
similarity to verify whether the docking result is reason-
able [32]. The docking protein is selected from the PDB 
database (PDB ID: 4OGI), which is the crystal structure of 
the first bromodomain of human BRD4 (https​://www.rcsb.
org/struc​ture/4OGI) combined with R78 202 [43]. The pro-
tein downloaded before docking must undergo a process of 
ligand extraction, hydrogenation, add charging, removal of 
water molecules to ensure the clear and complete protein 
structure [44]. The ligand is prepared by adding a Gasteiger-
Huckel charge with energy minimization performed by the 
Powell method [24]. The docking result is usually scored by 
the C-score function, including total score, crash and polar, 
as the judgment of the docking result [45]. The total score is 
greater than 5 consider stable interaction between the protein 
and the ligand with theoretically able to exert its inhibitory 
activity [46].

Results and discussion

CoMFA results

Table 2 summarizes the statistical results of the inhibitory 
activity of CoMFA models on BRD4. Considering both the 
electrostatic field and the steric field to analyze the CoMFA 
model of the training set by PLS, the optimal number of 
components is obtained in 3 that gives q2

cv
 values of 0.574, 

r2
ncv

 values of 0.947 and SEE of 0.165, F of 138.348, respec-
tively. For the CoMFA model, only the spatial and electro-
static field contributions are calculated, and the values are 
0.575 and 0.425, respectively, which proves that contribution 

(3)r2
pred

=

(

SD − PRESS

SD

)

of the stereo field to increase biological activity is greater 
than the electrostatic field. As shown in Fig. 3a, we plot the 
experimental values with the predicted values of the CoMFA 
model, it is found that the data are distributed on both sides 
of the straight line. These statistical results show that the 
model has a better predictive capability. The final results of 
the CoMFA model are listed in Table 3.

CoMSIA results

Table 4 summarizes the statistical results of the inhibitory 
activity of CoMSIA models. Considering that there are five 
different descriptor fields related to each other, we first cal-
culate the impact of each descriptor field on the predictive 
ability of CoMSIA results, which not only includes elec-
trostatic field and the steric field, but also contains hydro-
phobic (H), H-bond donor (D), H-bond acceptor (A). It was 
found that the prediction results obtained when only H-bond 
acceptor (A) is considered to be most ideal. Combining other 
descriptors with H-bond acceptor (A) are necessary and we 
finally found that H-bond acceptor (A) combined with the 
steric (S) descriptor appears model that has the best predic-
tive ability, which showed that q2

cv
 = 0.622, r2

ncv
 = 0.916, 

N = 4, F = 59.740. The contributions of two fields including 
the steric and hydrogen bond acceptor field are 0.469 and 
0.531, respectively. Figure 3b plots the linear relationship 
between the prediction results of the CoMSIA model and the 
experimental values. It can be seen that the prediction ability 
of CoMSIA is ideal, and the relationship is basically linear. 
The final results of the CoMSIA model are listed in Table 3.

Topomer CoMFA results

The prediction ability of the topomer CoMFA model largely 
depends on the cutting model of the molecular set. Com-
pound 15 with the best inhibitory activity was chosen as the 
cutting template, use “spilled in two” or “two” to divide it 
into two or three fragments, and the remaining molecules are 
automatically cut according to the cutting method separation 
in progress. After cutting, PLS is employed to perform 
regression analysis on the topomer CoMFA results. As 
shown in Table 5, the prediction results given by the four 
different cutting methods are relatively ideal, with cutting 
method 4 obtains better results than others, which gives = q2

cv

0.691, = r2
ncv

0.912, F = 79.501 and r2
ncvpred

 = 0.671. It is worth 

Table 2   Statistical parameters of CoMFA models

Descriptors q
2

cv
N SEE r

2

ncv
F

Steric (S) 0.531 4 0.115 0.975 217.714
Electrostatic (E) 0.519 3 0.244 0.885 59.037
S + E 0.574 3 0.165 0.947 138.348

https://www.rcsb.org/structure/4OGI
https://www.rcsb.org/structure/4OGI
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noting that the predictive ability of cutting method 2 is better 
than cutting method 4 given r2

ncvpred
 = 0.699, while it is not 

meaningful to discuss its steric field and electrostatic field 
due to the limitation of the cutting method that only consid-
ers the contribution of a small substituent. Figure 3c shows 
the linear relationship between the experimental value and 
the predicted value of the topomer CoMFA model based on 
cutting method 4. As topomer CoMFA has a good predictive 
ability, the correlation coefficient in Fig. 3c is close to 1.

HQSAR results

After the molecular superposition of the training set, eight-
een HQSAR models were established by combining different 
fragment parameter descriptors. As shown in Table 6, the 
best HQSAR model is obtained while combining fragment 
descriptors atoms (A), bonds (B), connections (C), donor 
and acceptor (DA) and follow the default fragment length 
4–7, which gives q2

cv
 to be 0.732 and r2

ncv
 0.931, with a 

Fig. 3   The plot of experimental and predicted activities based on training and test sets

Table 3   Calculated data for the CoMFA and CoMSIA model

Statistical parameter CoMFA CoMSIA

q2
cv

0.574 0.621
r2
ncv

0.947 0.916
SEE 0.165 0.213
F 138.348 59.740
r2
ncvpred

0.602 0.624
N 3 4
Field contribution
Steric 0.575 0.469
Electrostatic 0.425
H-bond acceptor 0.531
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hologram length of 257 and N = 4. Keep the model fragment 
parameters unchanged and alter different fragment lengths 
to obtain better model results. It was found in Table 7 that 
the best model shows significant statistical metrics of q2

cv
 to 

be 0.759 and r2
ncv

 0.963, with a hologram length of 61, N = 5 
and fragment lengths 5–8. r2

ncvpred
 obtained through external 

verification of the test set in 0.750. Figure 3d is a linear 
relationship diagram drawn between the pIC50 predicted by 
the HQSAR model and the experimentally pIC50 obtained 
from the HQSAR model based on optimal conditions, which 
is basically a straight line and the linear relationship is close 
to 1.

Analysis of the CoMFA contour maps results

In Fig. 4, the static field contour map in CoMFA and CoM-
SIA is composed of the green area (80% favored level) and 
yellow area (20% of the disfavored level), which represents 
the beneficial or detrimental effect to the the activity caused 
by the volume increase, respectively. The electrostatic con-
tour map in CoMFA has composed of 80% favored level in 
the blue area and 20% disfavored level in the red area, which 
indicates favor electropositive and electronegative, respec-
tively. The steric contour map of the CoMFA model shown 
in Fig. 4a that a yellow area is wrapped around the beginning 
of the R1 group, which means that increasing the volume of 
the substituent here is not conducive to improving the activ-
ity of the compound. For instance, the activity of compound 
2 whose R1 group is cyclohexane which is significantly 
higher than that of the compound whose R1 is substituted 

with a benzene ring. Compared with other groups, com-
pound 1 is directly connected at R1 without the rotatability 
of the methyl group and the greater steric hindrance leads 
to lower inhibitory activity. Besides, the large green area 
of the R2 group indicates that increasing the volume of the 
substituent here is beneficial to increase the activity. It is not 
difficult to find that the molecular activity of R2 = − methyl 
is much greater than that of R2 = − H inhibitor compounds.

Figure 4b is the electrostatic field contour map of the 
CoMFA model. It was found that compound 15 is basically 
surrounded by a large blue area, indicating that increas-
ing the positive charge of the group is very beneficial to 
improve the inhibitory activity. For example, the activity 
of the inhibitors will increase distinctly, whether it is add-
ing an electropositive methylpiperazine group to the end of 
the amide the benzene ring group of R3 or adding an ethyl 
group at R2 (1 > 35, 9 > 18, 4 > 17, 2 > 23, 4 > 24, 7 > 26). 
It is worth noting that a red area appears at the junction 
with the amide end, which proves that adding an electron-
egative withdrawing group here will increase the activity of 
the inhibitor. Such as compounds with negatively charged 
amide groups have higher inhibitory than that of compound 
17.18.35 without amide groups.

Analysis of the CoMSIA contour maps results

Figure 4c is the contour map of the CoMSIA model while 
considering the steric field. Similar as the results of CoMFA, 
the green area existes at the top of the R2 group and the 
yellow area presents at the linking point of the frame and 
the R3 group of compound 15, which proves that adding a 
bulky group at R2 is beneficial to increase the activity and 
an increase in bulkiness at the beginning of R3 is not con-
ducive to improving the inhibitory activity. The difference 
from CoMFA is that a green area appears at the end of the 
amide group in R3 group and the thiophene at R1, indicat-
ing that adding a bulky group in this area is beneficial to 
improve the inhibitory activity. For example, when the C 
atom connected to the N atom of the amide is changed to 
a heavier N atom, the inhibitory activity increases (19 > 1, 
21 > 3, 22 > 4); the conversion of the S atom in the thiophene 
group to the relatively lighter O atom causes the inhibitory 
activity to decrease (15 > 13,16 > 14, 33 > 31, 34 > 32).

The hydrogen bond acceptor field contour map in CoM-
SIA is composed of 70% favored level in the magenta area 
and 20% disfavored level in the cyan area, respectively, rep-
resenting that provide hydrogen bond acceptor here is ben-
eficial to increase the activity and provide hydrogen bond 
acceptor not conducive to improving the activity. Figure 4d 
is a contour map of the CoMSIA model generated when con-
sidering hydrogen bond acceptors, it was found that at the 
end of the amide of the most active compound 15, as well 
as the top of 4H-1,2,4-triazole appears the magenta area, 

Table 4   Statistical parameters of CoMSIA models

The best model is shown in bold

Descriptors q
2

cv
N SEE r

2

ncv
F

Steric (S) 0.354 4 0.239 0.894 46.293
Electrostatic (E) 0.472 5 0.199 0.927 69.516
Hydrophobic (H) 0.316 4 0.160 0.953 110.493
H-bond donor (D) -0.109 1 0.622 0.186 5.699
H-bond acceptor (A) 0.583 4 0.282 0.853 31.911
S + E 0.431 3 0.169 0.947 98.109
S + H 0.327 3 0.231 0.896 66.338
S + D 0.180 5 0.289 0.852 24.201
S + A 0.622 4 0.213 0.916 59.740
S + E + A 0.559 3 0.230 0.898 67.346
S + E + H 0.361 3 0.210 0.914 81.905
S + E + D 0.348 5 0.153 0.959 97.768
S + E + A + H 0.520 3 0.213 0.912 79.495
S + E + A + D 0.567 4 0.218 0.912 56.884
S + E + H + D 0.267 3 0.261 0.868 50.575
E + S + A + D + H 0.465 4 0.193 0.931 73.741
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proves that providing hydrogen bond acceptors here could 
increase inhibitor activity. For example, inhibitory activity 
improves while replacing the C atom at the end of the amide 
group with the N atom as a hydrogen bond acceptor (21 > 3, 
22 > 4).

Analysis of the Tomoper CoMFA contour maps 
results

Similar to the CoMFA result, Fig. 5a is the stereo field con-
tour map of compound 15 cutting to Ra group. The green 
area at the end of the R1 group indicating that adding a bulky 
group in this area is beneficial to improve the inhibitory 
activity. For instance, comparing the compound 13 with the 
most active compound 15, the inhibitory activity increases, 
while the R1 group changes from furan to thiophene, (9 > 10, 
33 > 31, 34 > 32) that follows similar principles.

Figure 5b is the contour map of the electrostatic field of 
the compound 15 Ra group. It can be seen that a large red 
area wrapped around the beginning of the Ra group and the 
right side of the thiophene group, indicating that increas-
ing the group’s negativity here is beneficial to improve 
the molecular inhibitory activity, which explains why the 
inhibitory activity of compound 22 with negatively charged 
groups on the benzene ring is higher that of compound 21 
without substituents on the benzene ring. Also, since the 
electron-rich order is 2-thienyl > 3-thienyl > 2-furyl > 3-fura-
nyl, the inhibitory activity showed 15 > 16 > 14 > 13. As the 
electron-donating ability increases, the inhibitory activity 
increases (7 > 6 > 5 > 4 > 3).

Figure 5c is a contour map of the stereo field contour 
of the Rb group of compound 15. A green area appears at 
the piperidine ring at the end of the amide, which proves 
that adding a bulky group here is beneficial to increase the 
inhibitory activity and the results are similar to the model of 

Table 5   Cutting model and statistical results of topomer CoMFA

No. Cutting mode[a] N SEE F

1 2 0.313 48.545 0.612 0.802 0.436

2 2 0.274 67.263 0.646 0.850 0.699

3 1 0.290 58.419 0.685 0.830 0.635

4 3 0.213 79.501 0.691 0.912 0.671

[a]: In the cutting method 1, 2, red represents the Ra group, black represents the Rb group, in the cutting methods 3 and 4, black 
represents the common frame, red represents the Ra group, and the green represents the Rb group.
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CoMSIA. For example, the inhibitory activity 1 > 19, 21 > 3, 
22 > 4, as each pair of compounds has the similar structure 
except that one C atom of the piperidine ring is replaced 
with a more bulky N atom. Additionally, the activity of other 
inhibitor molecules with piperidine ring or piperazine group 
in the training set is higher than compound 17, 18, 35 with-
out these two groups.

Figure 5d is a contour map of the electrostatic field exhib-
ited by the Rb group cut from compound 15 that is similar 
to the results of the CoMFA model. We can see that there is 
a red area above the amide group, indicating that adding a 
negatively charged group here is beneficial to increase the 
activity. For example, compounds 17, 18 and 35 without an 
amide group have low activities compared to others. A blue 
area at the connected C atom, indicating that adding posi-
tively charged group here is beneficial to increase the active 
group. Changing the carbon atom linked by the amide to an 
N atom will increase the activity (1 > 19, 21 > 3, 22 > 4).

Analysis of HQSAR contribution maps

The HQSAR atomic contribution map can show the 
influence of a single atom or fragment on the activity of 
inhibitors. This information helps us to further optimize 
the structure from a 2D perspective. The HQSAR contri-
bution map of compound 15 with the highest inhibitory 
activity(IC50 = 77 nM) and compound 35 with the worst 
inhibitory (IC50 = 10000 nM) effect to analyze the structural 
relationship. In the contribution maps, the atoms of different 
colors reflect the influence of their structure on the activity. 
The green or yellow on the contribution map shows a posi-
tive contribution, while orange or red indicates a negative 
contribution. Fragments of atoms show white as an interme-
diate contribution to the biological activity.

Figure 6a is the HQSAR contribution graph of compound 
35 with the lowest activity. The two carbon atoms below 
the benzene ring and the pyrimidine ring connected to it 

Table 6   HQSAR analysis 
of fragment distinctions in 
fragment size (4–7)

The best model is shown in bold

Model Fragment distinction q
2

cv
r
2

ncv
SEE Best length Component

1 A 0.621 0.991 0.219 61 4
2 B 0.606 0.804 0.318 353 3
3 C 0.628 0.773 0.335 307 2
4 A/B/C 0.681 0.849 0.273 199 2
5 A/B/H 0.632 0.862 0.280 353 5
6 A/B/Ch 0.709 0.862 0.267 83 3
7 A/B/DA 0.731 0.968 0.139 97 6
8 A/B/C/H 0.650 0.858 0.284 353 5
9 A/B/C/Ch 0.664 0.850 0.273 199 2
10 A/B/C/DA 0.732 0.931 0.193 257 4
11 A/B/H/Ch 0.632 0.867 0.274 353 5
12 A/B/H/DA 0.709 0.875 0.260 257 4
13 A/B/Ch/DA 0.663 0.892 0.241 4 3
14 A/B/C/H/Ch 0.645 0.856 0.285 353 5
15 A/B/C/Ch/DA 0.701 0.923 0.204 257 4
16 A/B/C/H/DA 0.688 0.889 0.250 97 5
17 A/B/H/Ch/DA 0.717 0.899 0.239 199 5
18 A/B/C/H/Ch/DA 0.680 0.880 0.260 353 3

Table 7   Statistical parameters 
for the different HQSAR model 
distinctions

The best model is shown in bold

Model Atom count q
2

cv
r
2

ncv
SEE Best length Component

10–1 1–4 0.547 0.870 0.271 71 5
10–2 2–5 0.625 0.898 0.240 71 5
10–3 3–6 0.668 0.893 0.240 97 4
10–4 4–7 0.732 0.931 0.193 257 4
10–5 5–8 0.759 0.963 0.145 61 5
10–6 6–9 0.651 0.912 0.218 401 4
10–7 7–10 0.699 0.952 0.165 401 5
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have red atoms, indicating that these atoms are not condu-
cive to improving the activity of the inhibitors. Other struc-
tures appear as white neutral contributions, which in gen-
eral leads to the lowest overall activity of the compounds. 
Compared with the lowest active compound 35, the HQSAR 

contribution map of the most active compound 15 shown in 
Fig. 6b has a positive contribution, yellow atom appears at 
the top of the thiophene group indicating a beneficial contri-
bution to increasing the activity. Unlike compound 35, while 
the piperidinyl group linked by the amide group is added to 

Fig. 4   a and b: CoMFA and CoMSIA steric contour maps around 
compound 15, respectively, favored (green) and disfavored (yellow); 
c: electrostatic contour maps of CoMFA: favored (blue) and disfa-

vored (red); d: Hydrogen bond acceptor contour maps of CoMSIA: 
favored (magenta) and disfavored (cyan)

Fig. 5   The topomer CoMFA 
model contour map of com-
pound 15. a and c represent 
Ra and Rb steric contour maps 
around compound 15 fragments, 
respectively, favored (green) 
and disfavored (yellow); b and 
d represent Ra and Rb steric 
contour maps around fragments 
of compound 15, respectively, 
favored (green) and disfavored 
(yellow)
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the benzene ring, the newly added oxygen atom, the methyl 
group at the end of piperidine and the hydrogen atom on 
the piperidine ring all provide positive contributions. The 
comparison results show that adding an amide group to the 
benzene ring has a significant effect on improving activity.

Molecular docking

Molecular docking could illustrate the binding of small-
molecule inhibitors as ligands to target proteins. Since we 
use Surflex-dock software to do docking at specific points, 
present ligands should extract from the original protein to 
analyze the docking results at specific points according to 
the different generated conformations. The re-docking step 
is necessary to verify our docking results, which means to 
dock the original ligand back and compare the conforma-
tion existing in the protein during docking. Figure 7a shows 
the necessary protomol that is consistent with the binding 
site of BI-2536. Figure 7b is the conformational overlay of 
the original ligand with the reference ligand performed by 
re-docking, their pose almost completely with similarity 
given by the scoring function to be 0.85, indicating that the 
docking method we adopted is reasonable. The re-docking 

consequence clearly shows that the means we adopted can 
accurately reveal the binding of small-molecule ligands to 
the target protein BRD4.

Comparing the docking results of BI-2536 to that of 
template compound 15 using the suitable drug ligand posi-
tion in Fig. 7c, d, their pose are the same as a hydrogen 
bond was formed with ASN140 amino acid residues. The 
result of re-docking gives total score, crash and polar values 
at 9.2580, -0.6745 and 1.1324, respectively. The docking 
results of the template compound 15 of the total score, crash 
and polar values are 8.4884, − 1.8777 and 1.1556, respec-
tively. In summary, two different docking results show that 
the small-molecule inhibitor binds firmly to the target pro-
tein. It is worth noting that the formation of hydrogen bonds 
between BI-2536 and ASN140 relies on carbonyl oxygen to 
provide hydrogen bond donors, while compound 15 with 
the ASN140 residue at the same position relies on N atoms 
to provide hydrogen bond acceptors, which is consistent 
with the results of the CoMSIA model that hydrogen bond 
acceptor provided at this position is beneficial to increase the 
inhibitory activity. It shows that the provision of hydrogen 
bond receptors here is a significant cause for the stable bind-
ing of the BRD4 target protein to a small-molecule ligand 
that exerts their inhibition ability.

In addition, since the R1 group does not give a hydro-
gen bond acceptor or donor capable of binding to amino 
acid residues, the highly active compound 20 and lowest 
compound 35 and with different R3 groups were selected 
dock active sites of the BRD4 protein. Figure 7e shows the 
binding map of compound 20 docked to BRD4 protein. The 
nitrogen atom on the triazole remains forms a hydrogen bond 
with the ASN140 residue and gives a higher score in total 
score, crash, polar are 8.794, − 1.3279, 1.0276, respectively. 
Figure 7f showed a molecular docking diagram of lowest 
compound 35 that acts as a ligand to provide hydrogen 
bond receptors for forming two hydrogen bonds with amino 
acid residues GLN85 and ASP88, which are given of total 
score, crash, polar is 5.9321, − 2.6832, 1.6461, respectively. 
According to the known compound activities and docking 
results, it seems that there is no need to form hydrogen 
bonds at the R3 group of the compound as the ligand, which 
is consistent with the docking result of BI-2536 as the ligand 
R78 202 in Fig. 1b. The increased terminal volume at R3 
increases the movable range of the ligand molecule. While 
the R3 terminal group of compound 35 is smaller and the 
formation of hydrogen bonds makes it more rigid, which 
further rationalizes verifies the HQSAR results.

Structure–activity relationship analysis 
and summary

We have thoroughly discussed the structural requirements of 
4,5-dihydro-[1, 2, 4] triazolo [4,3-f]pteridine derivatives as 

Fig. 6   Atomic contribution diagrams of compound 35 (a) and com-
pound 15 (b)
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BRD4 protein inhibitors and provided newly design ideas for 
cancer treatment drugs by establishing different QSAR mod-
els. The QSAR contour model of compound 15 with the best 
inhibitory effect indicates that the rotatability of the group 
should be increased at the beginning of the R1 group to avoid 
large steric hindrance. Meanwhile, the end of the R1 group 

should be added with a negatively charged and bulky group. 
The methyl group at the R2 group or other bulky groups is 
necessary to improve the inhibitory activity and the benzene 
ring at R1 should also be added with a more electronegative 
amide group. Finally, the bulky group is considered to be 
connected at the end of the amide. Figure 8 summarizes 

Fig. 7   Ligand re-docking result and template compound dock-
ing result. a: Model of interface bag for the specific site of original 
ligand(silver represents BI-2536 as the active site of R78 202 ligand); 
b: Superimposition of the reference ligand (the green stick represents 
the re-docked ligand, the red stick represents the reference ligand); 
c: The original ligand R78 202 re-docking result with the BRD4 
protein; d: The docking result of the best binding of template com-

pound 15 with BRD4 target protein; e: Docking results of compound 
20 with the best score binding in the active site of the BRD4 target 
protein; f: Docking results of compound 35 with the best score bind-
ing in the active site of the BRD4 target protein (magenta dotted line 
represents hydrogen bonds, the green sticks represent amino acid resi-
dues)

Fig. 8   Structural modification tips derived from QSAR studies
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the QSAR research on the potency structure relationship of 
inhibitor compounds, which provides effective help for the 
future design of new BRD4 inhibitor compounds.

Design newly BRD4 inhibitors based on QSAR 
and molecular docking

Four representative novel compounds with theoretical inhib-
itory effects were designed to verify the results of the struc-
ture speculation based on the summarized structure–activity 
relationship. We do not change the methyl group at R2 that 

can significantly increase the inhibitory activity and retain 
the triazole group that provides hydrogen bond acceptor. 
Changing the group connected to the amide on the benzene 
ring of the R3 group to increase the bulkiness and its posi-
tive charge and simultaneously to change the oxygen on the 
amide to a more negatively charged S atom. In addition, the 
methyl group at the junction of the R1 group is retained, 
and the thiophene group at the end is replaced with other 
groups with stronger electronegativity. The designed novel 
compounds structure is shown in Table 8. The topomer 
CoMFA model and HQSAR model with the best predictive 

Table 8   Structure and predicted activity of newly designed molecules

No. Structure pIC50(Pred)[a] pIC50(Pred)[b]

T1 7.76 7.427

T2 7.74 7.43

T3 7.82 7.715

T4 7.73 7.12

[a]: predicted by Topomer CoMFA model cutting method 4; [b]: predicted by HQSAR model 10-5.
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ability are used to predict their activities. The ideal results 
were further verified that the modified information through 
QSAR modeling testifies valid and reasonable. Nevertheless, 
the predictive power of the QSAR model and the inhibi-
tory activity of designed compounds remains to be verified 
in vivo or in vitro.

The docking situation of 4 newly designed compounds 
with theoretically good inhibitory effects is shown in Fig. 9. 
The T1 compound in Fig. 9a, T2 compound in Fig. 9b, T4 
compound in Fig. 9d still rely on the nitrogen atom on the 
triazole to form a stable hydrogen bond with ASN140. The 
terminal of the interface does not interact within the accept-
able range on account of the protomol has fewer amino acids 
or farther away. It is worth noting that the optimal conforma-
tion of compound T3 does not form a hydrogen bond through 
the N atom on the triazole, but instead forms hydrogen 
through the O atom at the end of the benzene ring amide 
group with the residue ILE146 through the inversion of the 
conformation, which is exposed to the protein without form-
ing an interaction. The molecular docking results declare the 
importance of the amide group at the end of R3 and maintain 
a strong hydrogen bond in the first bromine domain to have 
a response for improving the inhibiting ability.

Conclusion

In this work, a series of 4,5-dihydro-[1, 2, 4] triazolo [4,3-f] 
pteridine derivatives that inhibit the overexpression of BRD4 
protein is selected to establish QSAR statistical models. The 
contour map provides different effects in molecular activity 
by diverse substituents. The R1 group should be rotatable and 

bulky. The methyl group at R2 has an important effect on the 
increase in activity and R3 should be a negative and bulky 
group. Compared to the analysis of the BI-2536 molecular 
docking results applied to clinical drugs, the hydrogen bond 
receptor at the top of the framework should be considered 
during designing new inhibitor molecules. Furthermore, 
four new compounds were designed and predicted based on 
structural modifications with ideal docking results, further 
verifying the accuracy of the QSAR results. Therefore, these 
models can not only be used to predict this kind of com-
pound inhibitory activities as BRD4 inhibitors, but also can 
guide the further design of BRD4 inhibitors.
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Fig. 9   Docking results of 
newly designed molecules. a: 
Newly designed T1 compound 
as a ligand for optimal binding 
to BDR4 protein; b: Newly 
designed T2 compound as a 
ligand for optimal binding 
to BDR4 protein; c: Newly 
designed T3 compound as a 
ligand for optimal binding 
to BDR4 protein; d: Newly 
designed T4 compound as a 
ligand for optimal binding to 
BDR4 protein(magenta dotted 
line represents hydrogen bonds, 
the green sticks represent amino 
acid residues)
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