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Abstract 
Quantitative structure–activity relationships (QSAR) and molecular docking studies have been performed on a series of 35 
α-glucosidase inhibitory derivatives. The QSAR models have been developed by genetic algorithm-multiple linear regres-
sion (GA-MLR) and least squares-support vector machine (LS-SVM) methods to correlate the conformational descriptors 
to the inhibitory activity. The obtained models with 5 descriptors were validated and illustrated to be statistically significant. 
They had desirable prediction based on squared correlation coefficient (R2), cross-validated correlation coefficient (Q2), 
root-mean-squares error (RMSE) and Fisher (F) parameters (R2 = 0.951, Q2 = 0.931, RMSE = 0.121, and F = 114.629 for 
GA-MLR model, and R2 = 0.989, Q2 = 0.987, RMSE = 0.056 and F = 543.754 for LS-SVM model). The crucial descriptor 
named DELS was explored to have the highest correlation with the inhibitory activity and thus has been chosen to build a 
simple model. The QSAR model developed with this mono-descriptor showed appropriate results of the predicted model 
using LS-SVM method (R2 = 0.888, Q2 = 0.872, RMSE = 0.185 and F = 221.459). Also, molecular docking which focuses 
on the interaction between ligands and α-glucosidase in the protein active site considered different binding positions to find 
the best binding mode. It helped the QSAR study to propose more comprehensive details of the compounds structures and 
was used to design more active compounds. The most active designed compound had a high inhibitory activity of 9.22 that 
can be proposed for the treatment of diabetes type 2.
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Introduction

Diabetes is known as the seventh reason for death world-
wide [1], and about 438 million people will suffer from 
this disease by 2030 [2]. In the diabetes category, diabetes 
type 2 is the most common illness which includes about 
80–90% of diabetic cases [3]. There are two important 
factors with a major influence on diabetic problems. The 
first one is the insulin hormone which is released by the 
pancreas and converts glucose to the required energy of 
the cells, and the second one is the enzyme α-glucosidase 
that breaks long-chain carbohydrates into small ones such 
as glucose and fructose. In the body of a diabetic patient, 
enough insulin is not released or it does not work properly, 
while α-glucosidase continues its activity. This leads to the 
aggregation of glucose in the blood (hyperglycemia) which 
can hurt different organs of the body, especially the nerves 
and blood vessels [4]. Therefore, inhibiting the catalytic 
activity of α-glucosidase is considered as a solution to con-
trol the amount of glucose in the blood particularly in indi-
viduals with diabetes mellitus type 2 [5, 6]. Some different 
glycosidic inhibitors of α-glucosidase have been used such 
as miglitol [7], voglibose and acarbose [8]; although these 
inhibitors are effective, they have some side effects such as 
flatulence, diarrhea and abdominal discomfort and have to 
be used in combination of other medications to increase 
efficiency [9]. Thus, great attention is paid to discover or 
design novel and efficient inhibitors. Among various admix-
tures, heterocyclic compounds are notable options. They can 
be used to synthesize and produce new drugs due to their 

synergy with most of the molecular targets [10]. Pyridine 
as a heterocyclic compound and primitive section of many 
natural compounds have received much attention to be used 
in a new generation of drugs [11].

Pharmacists believe that the chemical properties of any 
segment in a drug depend on its structure. So, structural 
knowledge is required to anticipate pharmaceutical func-
tion. In order to save time and investment in the process of 
designing effective medicines, more useful methods than 
trial and error are required and QSAR serves as a beneficial 
computer tool for this purpose. This method makes a rational 
relationship between the structure of compounds and their 
properties and finally predicts the biological activities of the 
compounds to be prepared. QSAR is a mathematical rela-
tionship between biological activity and chemical properties 
of compounds in form of Yi = Fi (X1, X2,…, Xn) where Yi is 
the dependent variable  (IC50) and Xi refers to a molecular 
descriptor as the independent variable [12–16].

Molecular docking as a complementary tool for QSAR 
modeling is an advantageous method to calculate the 
descriptors that contain significant structural information 
of the compounds. The main role of this method is to seek 
different orientations of ligands in protein active sites as the 
receptor. In this way, molecular docking generates a series 
of complexes and predicts the best orientation for ligand 
binding [17].

A survey on recent works about the inhibition of 
α-glucosidase reveals that different compounds have been 
studied to inhibit its activity using a computer analytical tool 
as QSAR [1, 4, 7, 18, 19]. But there is not any investigation 
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on arylated hydrazinyl thiazole derivatives that possess inhi-
bition properties against this enzyme. Hence, in this study, 
the required effective concentration for causing 50% inhi-
bition  (IC50) of α-glucosidase for 35 arylated hydrazinyl 
thiazole-based pyridine derivatives has been predicted by 
the QSAR models. In this process, two different modeling 
methods, namely MLR and LS-SVM, were used to predict 
the inhibitory activity. On the other hand, molecular dock-
ing has been used to interpret the binding interactions of the 
compounds and calculate all available descriptors. These 
compounds were considered as ligands, and molecular dock-
ing describes the different binding positions of the ligands 
in the active sites of the target protein (α-glucosidase). This 
work was especially aimed to build the easiest model for the 
descriptor. This goal needs to follow the QSAR and molecu-
lar docking procedures. Then validation of the calculated 
models is required. After all of these efforts to find the most 
simple model, the statistical results of the predictive model 
will be compared with previous works in this scope. Moreo-
ver, some new compounds have been designed by combining 
QSAR and molecular docking results with improved inhibi-
tory activities.

Materials and methods

Data set

The data set is obtained from the research of Ali et al. [11] 
shown in Table 1. It consists of 39 arylated hydrazinyl thia-
zole-based pyridine derivatives which were synthesized by 
two-level reaction patterns. These heterocyclic compounds 
consist of favorable α-glucosidase inhibitory activity. On 
the other hand, the new synthetic compounds have construc-
tive likeliness as for example pyridine ring, thiazole ring 
and hydrazine moiety. The remarkable point is the exist-
ence of the same amidine moiety as in the antidiabetic agent 
“metformin.”

In this work, 4 compounds containing  NO2 (ionic com-
pounds) have been removed and the remained 35 deriva-
tives were studied. The  IC50 values varied in a range of 
1.4–168 µM. They were converted to their equivalent  pIC50 
(− logIC50) values. Figure 1 and Table 1 exhibit the chemi-
cal structures and experimental inhibitory activity values of 
these compounds.

Geometry optimization of compounds

Three-dimensional (3D) structures of the compounds were 
pre-optimized based on minimum energy molecular geom-
etries by the HyperChem package (Ver. 7.0) [20]. The RM1 
optimization method was used for the initial optimization of 
compounds. The HyperChem output files were introduced to 

Gaussian software [21], and optimization of compounds was 
performed based on a semi-empirical (PM6) method with 
a frequency cycle to find the lowest energy level in every 
compound (the most stable state of a compound).

Molecular descriptors calculation and selection

QSAR modeling needs some favorite descriptors to describe 
the relationship between the chemical structure and activity 
of the molecules. There is various software with a differ-
ent theoretical basis for this purpose. Here, Dragon soft-
ware (Ver 7.0) [22] has been used to calculate descriptors. 
It contains about 4485 descriptors which are divided into 
several categories including topological and geometrical, 
ring descriptors, 2D autocorrelation, GETAWAY (GEom-
etry, Topology and Atom-Weights AssemblY) descrip-
tors, physical properties which include zero-, one-, two- 
and three-dimensional descriptors. In the first step, about 
2100 descriptors were calculated for QSAR analysis. If two 
descriptors have a correlation coefficient higher than 0.9, 
one of them has to be excluded [23]. Also, all the duplicate 
and zero descriptors are useless descriptors that have to be 
removed. So, the number of remained descriptors is reduced 
to about 978 descriptors. To build the final QSAR model, 
these descriptors should be chosen proportional to the data 
set [24, 25].

Model construction and evaluation parameters

QSAR models were developed using the genetic algorithm 
(GA) technique. GA provided the final practical descrip-
tors of the model, and GA-MLR as a linear method and 
LS-SVM as a nonlinear method were applied to construct 
the QSAR models. To evaluate the model, the data set was 
divided into two subsets: a test set and a train set. The model 
is built based on the train set, and its efficiency is analyzed 
based on its performance on the test set. The y-scrambling 
method was used to choose the test set. In this method, all 
compounds sorted with descending data and about 20% of 
the data was chosen as the test set (7–10 compounds).

Assessment of the model performance was performed 
via the leave-one-out (LOO) cross-validation method. This 
is the most popular method to evaluate a QSAR model. 
In this method, there is a sample set of n members. Each 
member would be set aside in turn, and the modeling would 
be applied to the other n − 1 remaining members. This pro-
cess will be continued until all members are put aside once. 
Every time, the R2 parameter is evaluated and the values 
closer to unity lead to less error for activity prediction [26]. 
The applicability domain and some other important param-
eters such as RMSE and F have to be studied for a more 
thorough validation as an inevitable step of QSAR modeling.
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As stated earlier, to verify a QSAR model, usually, the 
LOO cross-validation procedure is applied. The outcome 
represented by the cross-validated correlation coefficient 
(R2), which is calculated based on the below formula:

Here yi,ŷi and ȳ are the actual, estimated and averaged (over 
the entire data set) activities, respectively [25]. According 

(1)R2 = 1 −

∑
�

yi − ŷi
�2

∑∑

(−ȳ)2

to the literature, a good model should pass the following 
conditions [19, 27]:

(2)Q2
> 0.5

(3)R2
> 0.6

(4)
(

R2 − R2
0

)

∕R2
< 0.1 or

(

R2 − R2�
0

)

∕R2
< 0.1

Table 1  Chemical structures, experimental and predicted inhibitory activity  (pIC50) values (µM)

*MLR.pred = Predicted  pIC50 values by GA-MLR method
**SVM.pred = Predicted  pIC50 values by LS-SVM method

Compound SMILES pIC50 MLR.pred* SVM.pred**

1 C(= S)(N)N/N = C/c1cccnc1 3.92 3.87 3.96
2 c1(c2nc(C/N = C/c3cccnc3)sc2)ccccc1 3.75 3.94 3.87
3 c1c(c2nc(N/N = C/c3cccnc3)sc2)ccc(c1)c1ccccc1 3.62 3.56 3.72
4 NCc1ccc(c2nc(N/N = C/c3cccnc3)sc2)cc1 4.21 4.4 4.39
5 c1ccncc1/C = N/NC1 = NC[C](C = S1)c1cccc(c1)Br 3.94 3.97 3.98
6 c1ccncc1/C = N/NC(= S)/N = C(\Br)/c1ccc(cc1)Br 4.01 3.98 4.05
7 c1ccncc1/C = N/Nc1nc(cs1)c1ccc(cc1)Cl 4.54 4.45 4.43
8 c1ccncc1/C = N/Nc1nc(cs1)c1cc(ccc1)Cl 4.33 4.35 4.32
9 c1ccncc1/C = N/Nc1nc(cs1)c1cc(c(cc1)Cl)Cl 5.21 5.22 5.24
10 c1ccncc1/C = N/Nc1nc(cs1)c1c(cc(cc1)Cl)Cl 4.15 4.26 4.21
12 c1ccncc1/C = N/Nc1nc(cs1)c1cc(ccc1)O 4.87 4.88 4.94
13 c1cc(ncc1)/C(= N/NC(= S)N)/C 3.91 4.24 4.01
14 C1C[C@H](NCC1)/C(= N/Nc1nc(cs1)c1ccccc1)/C 4.61 4.47 4.46
15 C1C[C@H](NCC1)/C(= N/Nc1nc(cs1)c1ccc(cc1)c1ccccc1)/C 4.06 3.98 4.09
16 C1C[C@H](NCC1)/C(= N/Nc1nc(cs1)c1cccc(c1)Br)/C 4.26 4.51 4.47
17 C1C[C@H](NCC1)/C(= N/Nc1nc(cs1)c1ccc(cc1)Br)/C 4.38 4.37 4.3
18 c1cc(ncc1)/C(= N/Nc1nc(cs1)c1cc(ccc1)Cl)/C 5.25 5.22 5.13
19 c1cc(ncc1)/C(= N/Nc1nc(cs1)c1cc(c(cc1)Cl)Cl)/C 5.85 5.8 5.63
21 c1cc(ncc1)/C(= N/Nc1nc(cs1)c1cccc(c1)O)/C 5.19 5.35 5.21
22 c1c(cncc1)/C(= N/NC(= S)N)/C 4.06 3.89 3.96
23 c1c(cncc1)/C(= N/Nc1nc(cs1)c1ccccc1)/C 4.44 4.23 4.3
24 c1c(cncc1)/C(= N\Nc1nc(cs1)c1ccc(cc1)c1ccccc1)/C 3.78 3.9 3.96
25 c1c(cncc1)/C(= N\Nc1nc(cs1)c1cccc(c1)Br)/C 4.39 4.4 4.33
26 c1c(cncc1)/C(= N/Nc1nc(cs1)c1ccc(cc1)Br)/C 4.27 4.3 4.35
27 c1c(cncc1)/C(= N\Nc1nc(cs1)c1cc(ccc1)Cl)/C 4.67 4.82 4.76
28 c1c(cncc1)/C(= N/Nc1nc(cs1)c1ccc(c(c1)Cl)Cl)/C 5.6 5.65 5.59
30 c1c(cncc1)/C(= N\Nc1nc(cs1)c1cccc(c1)O)/C 5.09 5.15 5.04
31 c1cnccc1/C(= N/NC(= S)N)/C 3.93 3.95 3.96
32 c1c(ccnc1)[C@@H](NNc1nc(cs1)c1ccccc1)C 3.9 4.01 4.03
33 c1c(ccnc1)[C@@H](NNc1nc(cs1)c1ccc(cc1)c1ccccc1)C 3.77 3.7 3.87
34 c1c(ccnc1)[C@@H](NNc1nc(cs1)c1cc(ccc1)Br)C 4.19 4.11 4.09
35 c1c(ccnc1)[C@@H](NNc1nc(cs1)c1ccc(cc1)Br)C 4.07 4.16 4.12
36 c1c(ccnc1)[C@@H](NNc1nc(cs1)c1cc(ccc1)Cl)C 4.58 4.52 4.5
37 c1c(ccnc1)[C@@H](NNc1nc(cs1)c1ccc(c(c1)Cl)Cl)C 4.93 4.82 4.88
39 c1c(ccnc1)[C@@H](NNc1nc(cs1)c1cc(ccc1)O)C 4.99 4.91 4.92
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Q2 coefficient of leave-one-out cross-validation, R2 squared 
correlation coefficient, k slope of the regression line through 
the origin, R0

2 regression of the anticipated activities opposed 
to observed activities.

Other important statistical parameters that are required 
to have a perfect comparison between different models are 
defined as: S standard error of estimation, F Fischer ratio.

And RMSE values calculated as follows [27]:

where yi the experimental value of the activity, y0 the pre-
dicted value of inhibitory activity using the model, ns the 
number of molecules in the data set, lower values of “S” 
and “RMSE” together with a higher measure of “F” means 
that the model can forecast the biological activity with lower 
error, and it can reveal the high prediction potential of the 
QSAR models.

Applicability domain

The applicability domain is a theoretical space in which 
the predictions of QSAR are reliable. There are different 
approaches to determine the applicability domain, but here 
the most common method, i.e., the William plot is used. It 
involves the calculation of the standardized residuals versus 
leverage amounts. Calculation of the leverage (hi) for each 
compound and its threshold is defined in Eqs. (7) and (8), 
respectively. Compounds with leverage more than warning 

(5)0.85 ≤ k ≤ 1.15

(6)RMSE =

�

�

�

�

∑
�

yi − y0
�2

ns

leverage (h*) usually had a great influence on the model. A 
point in the right side of h* with a residual more than 3 or 
less than − 3 is known as the over-fitted point.

In Eq. (7), xi is the descriptor vector of the query molecule 
and X is the k × n matrix containing the k descriptor values 
for the train molecules (n members).

In Eq. (8), k is the number of descriptors in the selected 
model, and n is defined as the number of objects in the train 
set [28].

Molecular docking

Molecular docking is an accurate approach to predict the 
binding affinity and orientation of ligands to the target mol-
ecules which is enzyme α-glucosidase in our study. Since the 
3D structure of the protein was not available in the protein 
data bank, the homology modeling method is applied as an 
alternative solution. This method predicts the structure of an 
unknown protein based on the structure of similar proteins 
from the same family [29]. In this study, the homology mod-
eling was used with the template 3A47 [30].

Then molecular docking was run by AutoDock 4.2 soft-
ware [31]. For all docking parameters, standard values were 
used. A two-dimensional schematic representations of the 
docking results including binding sites and interactions of 
inhibitor with ligands were proposed using LIGPLOT [32].

(7)hi = xT
i

(

XTX
)−1

xi

(8)h∗ =
3(k + 1)
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Fig. 1  The basic structure of different pyridine derivatives under study based on hydrazinyl
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QSAR and molecular docking could be applied for 
designing new inhibitors. According to the basic structures, 
i.e., arylated hydrazinyl thiazole-based pyridine scaffold, 
new inhibitors have been designed to reduce the inhibitory 
level. The results of QSAR and molecular docking of the 
main compounds were carefully investigated to detect the 
most effective basic structures. Then, the best structures 
were modified by replacing some of their branches with 
various useful components. So, some new basic structures 
were produced (about 126).

Results and discussion

MLR and LS‑SVM models

To find a statistically rational QSAR model, the number of 
independent variables has to be determined through a reli-
able approach so that in this study the final number of model 
descriptors was set by the “breaking point” method. This 
method is based on the sloping trend of statistical parameters 
versus the number of descriptors. Figure 2 shows that the 
slope of the breaking point diagram starts to drop off from 
the fifth descriptor. As far as the smallest suitable number of 
descriptors is concerned, the breaking point is the optimum 
number of descriptors [19], which is 5 in this case.

GA was used to select the most effective descriptors in 
a huge space of different features. The selected descriptors 
were then assessed to be incorporated in the final model. 
Consecutively, the final models were built on the 5 selected 
descriptors as presented in Table 2.

The linear function including the selected variables was 
obtained using GA-MLR method as below:

The equation indicates descriptors G1p and GATS4s have 
the highest coefficients in the model, and they have a direct 
relationship with  pIC50. To better illustrate the influence of 
these variables, their correlation with each other and  pIC50 
was calculated and the results are collected in Table 3. It has 
been demonstrated that descriptor DELS provides the high-
est correlation with the inhibitory activity which makes it a 

(9)

pIC50 = −2.127 − 0.007(D∕Dtr05) + 0.248(DELS)

+ 2.586(GATS4s) + 11.277(G1p) − 1.605(H4m)

Q
2

&
 R

2 

Number of Descriptors

Q2 R2

Fig. 2  Breaking point plot of the model to find the best number of 
descriptors to build the final QSAR model

Table 2  Molecular descriptors 
of the best model with 5 
descriptors

Molecular 
descriptor

Type Description

D/Dtr05 Ring Distance/detour ring index of order 5
DELS Topological indices 2D descriptor from molecular graphs and independent of conformations
GATS4s 2D autocorrelations Geary autocorrelation of lag 4 weighted by I-state
G1p WHIM Geometrical descriptors based on statistical indices calculated on the 

projections of the atoms along principal axes
H4m GETAWAY H Autocorrelation of lag 4/weighted by atomic masses

Table 3  The correlation 
between 5 descriptors of the 
best-structured model and the 
inhibitory activity  (pIC50)

pIC50 D/Dtr05 DELS GATS4s G1p H4m

pIC50 1
D/Dtr05 0.305 1
DELS 0.796 0.445 1
GATS4s 0.223 0.626 0.162 1
G1p − 0.218 − 0.676 − 0.344 − 0.446 1
H4m − 0.074 0.180 0.355 0.395 − 0.004 1
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crucial descriptor to build the model. So, a mono-descrip-
tor model named simple model was made with descriptor 
DELS.

Evaluation of the models

GA-MLR model includes 5 final variables as the most 
influential descriptors. To assess the nonlinearity relation 
between the descriptors and  pIC50 a reliable model was con-
structed based on 5 selected descriptors by use of the LS-
SVM method. The results of this model were significant. So, 
it is a good solution to compare the predictive ability of the 
model through two different methods.

One of the evaluation methods is the comparison of sta-
tistical parameters related to QSAR models. In this case, 
parameters such as Q2, R2, RMSE, F and S were calculated 
for the MLR and LS-SVM models. These results for the GA-
MLR model based on 5 descriptors and 10 test compounds 
in Table 4 represent a good prediction capacity. The model 
has a high multiple correlation coefficient (0.951) and a low 
prediction error. Figures 3 and 4 illustrate the calculated and 
experimental values of  pIC50 for the train and test data set, 
respectively. The maximum prediction error was a 5.028% 
error which is acceptable.

The regression line indicates the comparison between pre-
dicted and experimental values in Fig. 5. Also, the residual 
graph of the MLR model with 5 final descriptors is shown 
in Fig. 6. As it is obvious, congestion of compounds either 

for train or for test set shows they are well distributed, and 
none of them has unaccepted distance from the fitted lines.

According to Fig. 7, in the applicability domain analysis, 
one point (compound 12) with a residual more than 3 in 
William plot was predicted with slightly higher error. These 
errors may be due to an error in experimental data. The other 
points all stayed in the determined applicability domain by 
William plot.

On the other hand, the statistical results of the LS-SVM 
model with 5 descriptors in Table 4 describe that the model 
can predict appropriately and it is more useful than its MLR 
model. Like the MLR model, in the LS-SVM model based 
on 5 descriptors, the residual graph in Fig. 8 demonstrates 
the proper distribution of the data set.

Table 4  The statistical results of 
GA-MLR and LS-SVM models 
with 5 descriptors

Overall Train set Test set

R2 Q2 RMSE F RMSE F Q2 R2 RMSE R2

GA-MLR 0.951 0.931 0.121 114.629 0.100 98.075 0.946 0.963 0.179 0.919
LS-SVM 0.989 0.987 0.056 543.754 0.950 99.456 0.953 0.966 0.144 0.947

pI
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2 3 5 9 106
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0 13 14 1
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15 16 17

t
18 21 24 25 26 27 28 29 31
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33321
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3534

Fig. 3  Comparison of predicted and experimental values of train data set with their specific error prediction in the MLR model with 5 descrip-
tors

pI
C

50

4 7 8 11 112 19 20 222 23 Tes30 t set

Exprimental

Predicted

Fig. 4  Comparison of predicted and experimental values of test data 
set with their specific error prediction in the MLR model with 5 
descriptors
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As it is shown in Fig. 9, in the William plot of this model 
all compounds stand in the applicability domain. As a 
result, both linear and nonlinear models have an acceptable 
predictive capacity for inhibitory activity calculation. The 

predicted values of  pIC50 using these models are displayed 
in Table 1.

To ensure the stability of these models, they were vali-
dated with different test groups and nearly all of them repre-
sented good results. Table 5 indicates the average statistical 
values of ten new LS-SVM models. These results prove that 
the fitness of the model is not dependent on the selected test 
set as by varying the test and train set it still can predict sat-
isfactorily. Therefore the models present favorable statistical 
results to be trusted as reliable predictive models.

Descriptors analysis to explore a simple model

The effectiveness of each descriptor in the QSAR model 
is investigated with sensitivity analysis. In this method, a 
descriptor is eliminated and the difference between RMSE 
values in this state and the base case (with all descriptors) 
is observed. A greater difference means that the descriptor 
had a more profound role in the model [27].

Figure 10 describes the calculated sensitivity test values 
to find the most effective descriptors in the model.
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d 
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Experimental Values

Train Test

Fig. 5  The regression line of the MLR model with 5 descriptors
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Fig. 6  The residual graph of the MLR model with 5 descriptors
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Fig. 7  The William plot of MLR model with 5 descriptors
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Fig. 8  The residual graph of the LS-SVM model with 5 descriptors

 

Fig. 9  The William plot of the LS-SVM model with 5 descriptors
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Different descriptors as independent variables in the 
linear equation come from several categories in Dragon 
descriptors and thus convey different structural information 
about the compounds. DELS is a topological descriptor with 
a positive sign in the MLR equation that discloses basic 
information about the size of molecules, degree of branch-
ing, flexibility and the overall shape topological indices 
which are 2D descriptors based on graph theory concepts 
[19]. Another essential descriptor, GATS4s, is the Geary 
autocorrelation of lag 4 weighted by I-state, containing 
information about the distribution of inherent state along 
with the topological structure [33]. The higher value of this 
descriptor leads to higher  pIC50. H4m is H autocorrelation 
of lag 4/weighted by atomic masses which is a GETAWAY 
descriptor [34] whose lower values cause higher  pIC50. 
Descriptor G1p is the 1st component symmetry directional 
WHIM index/weighted by atomic polarizabilities [35]. It 
has a positive sign in the MLR equation, and thus, the  pIC50 
value increases at higher values of this descriptor (the higher 
value of  pIC50 indicates a lower value of inhibitory activity). 
The last descriptor D/Dtr05 is a ring descriptor [36] with a 
negative sign in the linear equation and a negative effect on 
 pIC50 based on the sensitivity test.

As expected (according to Table 3) DELS descriptor 
had the main role among all descriptors. Results show that 
H4m, GATS4s, D/Dtr05, and G1p stand in the next places, 
respectively.

Table 3 illustrates that the DELS descriptor has a high 
correlation (0.796) with  pIC50 which is verified by sensitiv-
ity analysis too. Therefore, it seems necessary to make a 
comparative study between the base model and the model 
constructed with this descriptor. To evaluate the sim-
ple QSAR model constructed by the use of the LS-SVM 
method, the statistical results were derived, and as reported 
in Table 6, they present a satisfactory accuracy.

According to this table, R2 = 0.888, Q2 = 0.872, 
RMSE = 0.185 and F = 221.459, which means the simple 
model can be a favorable model to predict  pIC50 values of 
the compounds with a high degree of reliability. Besides, 
the regression line in Fig. 11 and residual diagram in Fig. 12 
show the acceptable dispersion of compounds by the simple 
model.

Table 5  The average statistical results of ten LS-SVM models with various random test groups of compounds based on 5 descriptors in the 
model

Overall Train set Test set

Q2 R2 F RMSE R2 Q2 F RMSE R2 F RMSE

0.96 0.97 235.24 0.09 0.96 0.90 95.69 0.10 0.94 10.89 0.13

Fig. 10  Sensitivity test of model descriptors to find the most effective 
variable on the LS-SVM model based on 5 descriptors

Table 6  The statistical results 
of the simple model with 
DELS descriptor based on the 
LS-SVM method

Overall Train–test

R2 Q2 RMSE F S R2
train R2

test Q2
train Ftrain RMSEtrain

LS-SVM 0.888 0.872 0.185 221.459 0.190 0.877 0.708 0.855 173.745 0.191

Pr
ed

ic
te

d 
Va

lu
es

Experimental Values

Train Test

Fig. 11  The regression line of the simple model with one descriptor
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Not only the selected model with a specific test group had 
good statistical results, but also other different test groups 
were studied and showed acceptable ability to predict the 
inhibitory activity. The final results of models based on the 
DELS descriptor with different test groups are summarized 
in Table 7.

As the final result, in this research, a simple model with 
only one descriptor (DELS) through the LS-SVM method 

was extracted to predict  pIC50 values of α-glucosidase 
inhibitors with good statistical features. However, the other 
calculated models using GA-MLR and LS-SVM methods 
had better statistical results albeit with 5 variables and the 
nonlinear model had even better prediction capability. The 
best R2 value in previous studies is 0.872, and most of these 
studies had used just a single linear or nonlinear method to 
build their QSAR models. Hence, it seems necessary to com-
pare different linear and nonlinear models to find the best 
model for  pIC50 prediction. Table 8 presents a summarized 
survey on various works in this scope, and it can be observed 
that this work has better results in comparison with recent 
studies in this field. Therefore, the presented models can 
be useful to predict the inhibitory activity of these special 
α-glucosidase inhibitors.

Homology modeling

The baker’s yeast α-glucosidase was applied in the homol-
ogy modeling approach. A suitable structural template was 
found for homology modeling in the Protein Data Bank 
(PDB) at the National Center for Biotechnology and Informa-
tion (NCBI). The amino acid sequence of the α-glucosidase 
was inputted using BLAST and PSIBLAST algorithms and 
was retrieved with 72.51% identification to build the homol-
ogy model that comprises 584 amino acid residues from 
the SWISS-PROT protein sequence data bank (http://www.
expas y.org/sprot /; Accession No.). Figure 13 shows sequence 
alignment between yeast α-glucosidase and the template 
3A47 taken from SWISS-MODEL site. The structure of the 
simulated protein was designed and is depicted in Fig. 14.

The Ramachandra  servera was used to evaluate the accu-
racy of amino acid placements which was determined to be 

Re
si
du

al

pIC50 Train Test

Fig. 12  The residual diagram of the simple model with DELS 
descriptor

Table 7  The average results 
of six LS-SVM models with 
different test groups for the 
simple model

Average overall 
results

Average 
train–test 
results

Q2 R2 R2
train R2

test Q2
train

0.85 0.83 0.78 0.75 0.74

Table 8  Comparison between recent QSAR and molecular docking studies on the α-glucosidase enzyme

*R2 prediction

Authors Year Molecu-
lar dock-
ing

Compound Model type Q2 R2 Des. no. Data. no. Data. no./des 
no.

Syahrul 
Imran [1]

2015 Yes Flavone hydrazone MLR 0.705 0.848 4 21 5.25

Leila Din-
parast [4]

2015 Yes Benzimidazole deriva-
tives

MLR 0.69 0.600 2 14 7

Yan Liu 
[18]

2008 No xanthone derivatives MLR 0.839 0.872 3 33 11

Khairedine 
Kraim 
[19]

2009 No xanthone and curcumi-
noid

MLR 0.815 0.857 5 44 8.8

Asadollahi-
Baboli 
[7]

2018 Yes tetracyclic oxindole 
derivatives

GA-PLS/SVM 0.871 0.837* 4 34 8.5

This work 2019 Yes Arylated hydrazinyl thia-
zole based pyridine

MLR
SVM

0.987 0.989 5 35 7

http://www.expasy.org/sprot/
http://www.expasy.org/sprot/
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equal to 97% according to Fig. 15. In other words 97% of 
the amino acids have been located in allowable zones which 
indicates the high quality of the forecasted structure.

Molecular docking

Molecular docking was exerted on the compounds to cal-
culate useful descriptors and considering different orienta-
tions of ligands in the α-glucosidase active site. All docking 
features were obtained by the use of AutoDock tools and 
binana [37]. Different models were established by these 
descriptors, but none of them had good statistical results as 
good as Dragon descriptors to apply the significant effect in 
QSAR modeling.

The different binding mode of ligands with protein was 
considered. The impressive interaction of the inhibitors with 
the diversified residues in the active site of the enzyme was 
gained.

Finding a rational relation between these compounds and 
their structures to understand how some compounds had 
the most activity depends on their structural properties, and 
often it is hard work. In this study, three of the most active 
compounds are shown in Fig. 16: compound 9, 19 and 28. 
The common residuals in these compounds comprise from 
Phe (177, 311, 157) and Arg (312, 439) groups. They had 
an effective role to improve  pIC50 values. Also, it demon-
strated the hydrophobic interactions between the enzyme 
and ligands, different atoms in the structures and their posi-
tions, the residuals, hydrogen binding and the other connec-
tions. The best binding position of protein with ligands in 
the active site receptor is useful to design and produce some 
new drugs.

Different descriptors of the calculated QSAR model 
already described physical and topological properties, 
geometry, ring structures and atom binding position have 
a significant effect on the inhibitory activity. Also, infor-
mation from molecular docking processes can be used to 
understand the structure of the compounds with more details 
which helps QSAR explain compounds structurally and find 
the best compounds to produce medicine. So, according to 
the QSAR and docking findings, it is necessary to notice 
how atoms are gathered to construct the complexes.

Analysis of designed compounds

New inhibitors have been designed based on arylated 
hydrazinyl thiazole-based pyridine scaffold by QSAR and 

Fig. 13  Amino acid alignment in homology modeling of yeast α-glucosidase

Fig. 14  Structure of the simulated protein with homology modeling 
method to use it in molecular docking study instead of real protein 
structure
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molecular docking approach. A study of the inhibitors 
reveals that halogen molecules (F and Cl atoms) and OH 
have a key role in increasing the inhibitory activity. The 
most active designed inhibitors are shown in Table S1 and 
Figure S1 (as supporting information in supplementary 
materials) with their structures and calculated  pIC50 values 
using the presented MLR model based on 5 descriptors. All 
 pIC50 values are better than the main inhibitors of the study. 
Of course, these values need to be verified experimentally 
after the synthesis of the designed compounds.

In the docking process, the correlation between free 
energy and  pIC50 values was calculated for all designed 
compounds. Although the correlation has been improved 
in comparison with the main descriptors, it still does not 
have a significant value (− 0.226). Also, the interaction of 
molecules by different amino acids was investigated. The 
common residuals that have been repeated almost in all 

inhibitors are the Phe (157, 177, 158 and 311). Two struc-
tures with high activity had a hydrophobic interaction of His 
239, Arg 312 and Asp 349. 2D representation of the most 
active new structures A1, A2 and B3 is shown in Fig. 17.

Conclusion

In the present study, two different approaches, namely GA-
MLR and LS-SVM methods, were applied to establish linear 
and nonlinear QSAR models to predict the biological activ-
ity of a set of arylated hydrazinyl thiazole-based pyridine 
derivatives. Among various descriptors calculated, the 5 
most potent descriptors were selected via GA to build the 
final QSAR model. DELS descriptor among the selected 
descriptors had the highest correlation (0.796) with  pIC50. 
It was able to build a QSAR model solely with favorable 

Fig. 15  The precision of amino 
acid replacement in the accurate 
zone via homology modeling
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prediction ability. In previous studies on α-glucosidase 
inhibition, the best-reported value for R2 was about 0.872, 
while in the present study with a QSAR model with 5 final 
descriptors the value of R2 is 0.989 in the nonlinear model 
and it is about 0.888 in the simple model (using descrip-
tor DELS based on LS-SVM method). Thus the presented 
models even the simple model can forecast the inhibitory 
activity of the compounds with higher accuracy than the 
previous modeling studies. Also, branching information and 
the size of molecules that come from the DELS descriptor 

had been considered as the most effective subjects on inhibi-
tory activities of the compounds. Three of the best predicted 
 pIC50 values belong to compounds 9, 19 and 28 all have an 
aromatic ring connected to two branches of Cl atoms next 
to each other which reveals the fundamental role of halo-
gen atoms in the inhibition of enzyme activities. Finally, 
the most active designed compounds (addressed as A1 in 
this study) had the best  pIC50 value of 9.22 comparable to 
the basic data set.

Fig. 16  2D representation of the most active docked structures in molecular docking study: compound 9, 19 and 28
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