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Abstract 
The main study’s purpose is to detect novel natural products (NPs) that are potentially selective MAO-B inhibitors and, 
additionally, to computationally reposition the marketed drugs with a new therapeutic role for Parkinson’s disease. To reach 
the goals, 3D similarity search, docking, ADMETox, and drug repurposing approaches were employed. Thus, an unbiased 
benchmarking dataset was built including selective and nonselective inhibitors for MAO-B compliant with both ligand- and 
structure-based virtual screening approaches. A retrospective and prospective mining scenario was applied to SPECS NP 
and DrugBank databases to detect novel scaffolds with potential benefits for Parkinson’s disease patients. Out of the three 
best selected natural products, cardamomin showed excellently predicted drug-like properties, superior pharmacological 
profile, and specific interactions with MAO-B active site, indicating a potential selectivity over MAO-B. Two marketed 
drugs, fenamisal and monobenzone, were proposed as promising candidates repurposed for Parkinson’s disease. The appli-
cation of shape, physicochemical, and electrostatic similarity searches protocol emerged as a plausible solution to explore 
MAO-B inhibitors selectivity. This protocol might serve as a rewarding tool in early drug discovery and can be extended to 
other protein targets.
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Abbreviations
AUC​	� Area under the curve
BMF	� Bemis–Murcko framework
CG4	� Chemgauss4
CS	� ComboScore
CoS	� ColorScore
CoT	� ColorTanimoto
FCoTv	� FitColorTversky
FTv	� FitTversky
FTvC	� FitTverskyCombo
FRED	� Flexible ligand–rigid protein docking
HBA	� Hydrogen bond acceptor
HBD	� Hydrogen bond donor
HRM	� Harmine
LB	� Ligand based
MAO-A	� Monoamine oxidase A
MAO-B	� Monoamine oxidase B
MAOIs	� Monoamine oxidase inhibitors
SPECS NP	� SPECS natural products
O	� Overlap
PDB	� Protein Data Bank
q1	� Query 1
q2	� Query 2
RBN	� Rotatable bond
RMSD	� Root mean squared deviation
ROC	� Receiver operating characteristic
ROCS	� Rapid overlay of chemical structures
RCoTv	� RefColorTversky

RTv	� RefTversky
RTvC	� RefTverskyCombo
SB	� Structure based
SAG	� Safinamide
ShT	� ShapeTanimoto
SCo	� ScaledColor
TC	� TanimotoCombo
VS	� Virtual screening

Introduction

Worldwide, over six million people suffer from Parkin-
son’s disease [1]. The monoamine oxidases (MAOs) are 
the enzymes responsible for the metabolism of monoam-
ine neurotransmitters such as serotonin, norepinephrine, 
and dopamine, which regulate their concentrations in the 
central and peripheral tissues [2]. The MAOs exist as two 
isoforms, MAO-A, and MAO-B, which are the products of 
X-chromosomal gene Xp1 123, showing over 70% sequence 
similarity [3]. The two isoforms display distinct substrates 
and inhibitor specificities: MAO-A has a higher affinity 
for hydroxylated amines (noradrenaline and serotonin), 
whereas MAO-B interacts with non-hydroxylated amines 
(benzylamine and beta-phenylethylamine) [4]. Dopamine 
and tyramine show related affinities for both isoforms [5]. 
By their fundamental role in key physiological processes, 
both MAO isoforms are involved in the pathogenesis of 
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various neuropsychiatric disorders, including mood disor-
ders, depression, Alzheimer’s disease, Parkinson’s disease, 
etc. [6]. Although the administration of MAO inhibitors 
results in health improvement in the cases of certain psy-
chiatric and neurological disorders, side effects and safety 
concerns co-occur [4]. Accordingly, MAOIs represent an 
alternative therapy when all other medications fail [1]. The 
identification of selective irreversible inhibitors of MAO-A 
and MAO-B elucidated partially these issues [4]. The rela-
tively selective irreversible inhibitors of MAO-B, selegiline, 
and rasagiline, and the new effective, reversible MAO-B 
inhibitor, safinamide (SAG) were marketed for the treat-
ment of Parkinson’s disease [4, 7]. Overcoming the main 
drawbacks of MAO inhibitors, irreversibility, and deficient 
selectivity requires continuous identification of new inhibi-
tors that use the existing knowledge to elaborate rational 
design strategies.

Chemoinformatics tools are nowadays intensively used in 
the drug development process, and associated with experi-
mental methods guide successfully the identification of 
novel drug candidates, ligand–target interactions [8], and 
concentrated potentially active ligands in targeted chemi-
cal libraries [8]. Additionally, in silico tools can predict 
off-target interactions, which require structural information 
about ligand and target proteins, as well as of pharmacoki-
netic properties [9–11] to prioritize the most promising 
molecules. However, a comprehensive theoretical investi-
gation of selectivity is not substantial due to the absence of 
standard datasets adjusted on selectivity [12]. Nowadays the 
most frequently used virtual screening tools are similarity-
based methods and docking. Ligand-based virtual screen-
ing (LBVS) relies on knowledge of the chemical structure 
of the compounds that bind to a protein target. They can 
provide predictive models suitable for hit/lead identifica-
tion and optimization. Previously, MAO-A/B inhibitors 
were successfully developed using a ligand-based design 
strategy—3D-Quantitative Structure–Activity Relationship 
(3D-QSAR) [13]. These studies underlined that heterocyclic 
structure (oxadiazole, pyrrole, piperazine) defines a crucial 
pharmacophore feature to design MAO-B inhibitors [14]. 
Structure-based virtual screening (SBVS) is frequently used 
in hit/lead identification, by prioritizing a subset of com-
pounds that have to be experimentally tested for biological 
activity [15]. Molecular docking involves the explicit predic-
tion of the binding mode of each ligand inside the receptor 
active site and scoring to estimate the binding affinity [15].

The current analysis is aimed at identifying the shape pat-
tern, physicochemical features, and specific ligand–receptor 
interactions that are correlated with selective and nonselec-
tive inhibition of MOA-B, respectively. The main goal is to 
detect novel natural products that are potentially selective 
MAO-B inhibitors, and repurposing of marketed drugs for 
the treatment of Parkinson’s disease, by using LBVS and 

validate them by docking and ADMETox properties pre-
diction. The employment of high-quality benchmarking 
data sets, such as our novel selectivity oriented dataset for 
MAO-B, including experimentally validated selective and 
nonselective MAO-B inhibitors, are indispensable to retro-
spectively validate the virtual screening (VS) methodologies 
before applying it prospectively.

Methods

Datasets

Standard validation dataset for MAO‑B

The standard validation dataset was built by collecting data 
points based on our previous work [16], which was adapted 
to the prerequisites of MAO-B selectivity problematic by 
setting the selectivity thresholds and topologically validated 
using BMF’s and MACCS keys. The bioactivity data for 
MAO-A and MAO-B were extracted from CHEMBL [17], 
retaining target type “single protein,” and standard relation 
“=”. In the case of multiple values for a compound-target 
pair, the minimum activity value was kept, followed by 
joining MAO-A with MAO-B biochemical data, identify-
ing shared compounds, and removing duplicates. The salts 
were discarded, the charges and stereochemistry were sys-
tematized with the help of InstantJChem (Instant JChem, 
v.5.12.4, http://www.chema​xon.com). The non-drug-like 
ligands with RBNs > 20 or MW ≥ 600 were prefiltered 
according to the criteria adopted by Mysinger [18]. A pre-
liminary physicochemical property filter to reduce “arti-
ficial enrichment,” which influences mainly SBVS, was 
applied [19]. Thus, the maximum and minimum values 
of drug-like descriptors registered for selective MAO-B 
inhibitors, calculated using FILTER (FILTER, OpenEye 
Scientific Software, Santa Fe, NM. http://www.eyeso​pen.
com), which show better compliance to Lipinski’s rule of 
five (RO-5) [20] were enforced as a target-specific prop-
erty filter: HBA = 0÷6, HBD = 0 ÷ 7, MW = 172.25 ÷ 570.76, 
RBN = 0 ÷ 17, XLogP = -0.27 ÷ 9.49, Polar Surface Area 
2dPSA = 16.61 ÷ 106.38 (Fig. 1). The compounds showing 
IC50 > 20 μM against MOA-B were removed, resulting 501 
compounds. The selectivity index (SI) for 501 compounds 
was calculated, based on potency ratios, i.e., half inhibitory 
concentrations (IC50), against the main target MAO-B and 
related target protein MAO-A: SI = IC50MAO-A/IC50MAO-B 
where IC50MAO-A stands for the affinity of the “ligand A” 
against MAO-A and IC50MAO-B is the affinity of the same 
ligand for MAO-B. The lowest threshold of SI for selec-
tive MAO-B inhibitors was set at 100, whereas the high-
est SI limit for nonselective inhibitors was established at 
10. Based on this, we have: (1) 103 compounds showing 

http://www.chemaxon.com
http://www.eyesopen.com
http://www.eyesopen.com
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IC50 < 1000 nM against MAO-B and SI > 100 designated as 
selective; and (2) 377 compounds presenting SI < 10 denoted 
as nonselective. The Bemis–Murcko scaffolds (BMF) [21] 
of MAO-A/B inhibitors were extracted with the help of 
InstantJChem (Table 1), resulting in 20 unique BMF for 
selective and 97 for nonselective MAO-B inhibitors (Figs. 2, 
3). Since the number of unique BMF is low, we extended the 

number of ligands per framework such as the highest BMF/
compound ratio is of 2 (Table 1) [18]. The binary selectivity 
sets (Table 1) were assembled according to selectivity class 
assignment, resulting in 33 selective and 150 nonselective 
MAO-B inhibitors. The distribution of biological activities 
for selective and nonselective MAO-B inhibitors is normal, 
showing the pIC50 maxima shifted toward higher values 

Fig. 1   Distribution of drug-like properties within selectivity directed dataset

Table 1   IC50, selectivity index, 
Bemis–Murcko frameworks for 
benchmarking datasets

Dataset No. compounds SI range MAO-A/MAO-B IC50 (nM) BMF/compound

Selectives 33 106.11 ÷ 13615.38 1.18 ÷ 483 0.606
Nonselectives 150 7.2·10−5 ÷ 9.73 18 ÷ 950000 0.647
SI gap 96.38
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for selectives (pIC50 = 8) and to lower values (pIC50 = 5.5) 
for nonselectives (supplementary material). The SI gap 
between selective and nonselective MAO-B inhibitors 
extending 90 units guarantees the absence of boundary 
issues regarding the selectivity assignment (Table 1) [12]. 
However, several highly potent MAO-B inhibitors are 
not always selective, showing low nanomolar IC50 values 
(< 20 nM) for both MAO isoforms, e.g., CHEMBL2204752 
IC50MAO-A = 6.6 nM, IC50MAO-B = 4.8 nM, CHEMBL3398531 

IC 50MAO-A = 14   nM,  IC 50MAO-B = 17   nM,  and 
CHEMBL3398530 IC50MAO-A = 4 nM, IC50MAO-B = 20 nM 
(https​://www.ebi.ac.uk/chemb​l/) [17]. The scaffolds of selec-
tive and nonselective MAO-B inhibitors are shown in Figs. 2 
and 3.

Accurate validation datasets are necessary to assess vir-
tual screening algorithms accurately, assuring the absence of 
the following problematic issues: (1) the lack of similarity of 
selectives and nonselectives regarding simple physicochemical 

Fig. 2   Distribution of BMF within selective MAO-B inhibitors subset

Fig. 3   Distribution of BMFs (> 1%) within nonselective MAO-B inhibitors subset

https://www.ebi.ac.uk/chembl/
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descriptors which is denoted as “artificial enrichment” [19]; 
(2) low diversity of chemical space of selective class illustrated 
by a reduced number of chemotypes, the so-called analogue 
bias [22]; (3) “false negative” bias, which refers to the inclu-
sion of active compounds into negative or decoy dataset [23]. 
The absence of “artificial enrichment” will be demonstrated by 
applying the mean (ROC-AUC) leave-one-out cross-validation 
with reference to low-dimensional physicochemical properties 
[19] (“Results and discussion” section). The extraction and 
multiplicity verification of BMF assures the omission of “ana-
logue bias” in both selective and nonselective MAO-B subsets, 
while the “false negative” bias was excluded using experimen-
tally validated nonselective MAO-B inhibitors. Considering 
the importance of the natural compounds for the development 
of many drugs, 400 natural products extracted from the SPECS 
NP database (their drug-like properties are shown in supple-
mentary material) were used in prospective virtual screening 
investigation (https​://www.specs​.net, accessed in February 
2020). Additionally, the approved DrugBank dataset was used 
for drug repurposing experiments to identify new possible 
indications of existing marketed drugs as modifying agents 
for Parkinson’s disease.

Assignment of ionization states and generation 
of tautomers

Thus, 400 natural compounds from SPECS NP and 2454 
approved DrugBank dataset were prepared for docking by 
generating ionization states and tautomers at pH = 7.2 ± 0.2 
employing LigPrep (LigPrep v.3.1, https​://www.schro​dinge​
r.com/) from Schrödinger suite.

Conformer generation

Fast Rigid Exhaustive Docking (FRED), Rapid Overlay of 
Chemical Structures (ROCS), and Electrostatic Similarity 
for Lead Hopping (EON) use multiple rigid conformations 
to evaluate biding site complementarity and shape similarity, 
respectively. Therefore, the conformational space of each mol-
ecule has to be sampled before the screening. The conform-
ers for MAO-B inhibitors included in the validation dataset, 
natural compounds from SPECS NP, and approved Drug-
Bank were generated using OMEGA with default parameters 
(OMEGA v.2.5.1.4, OpenEye Scientific Software, Santa Fe, 
NM. www.eyeso​pen.com) [24]. Energy minimization of the 
conformers was done using the MMFF94 force field (http://
www.eyeso​pen.com) [25].

3D Shape and electrostatic similarity search

Shape and chemical similarity coefficients were calcu-
lated with the help of ROCS software from OpenEye suite 
(ROCS v. 3.2.1.4, OpenEye Scientific Software, Santa Fe, 
NM. http://www.eyeso​pen.com) [26]. The basic concept 
of ROCS is that molecules are similar in shape if their 
volumes overlay well [26]. ROCS quantify and ranks the 
database molecules by means of Tanimoto-based coef-
ficients, e.g., ShapeTanimoto (ShT), TanimotoCombo 
(TC), ComboScore (CS), ColorScore (CoS), ColorTani-
moto (CoT), ScaledColor (SCo), Overlap (O) (Eq. 1) and 
Tversky-based indexes: FitTversky (FTv), FitColorTversky 
(FCoTv), FitTverskyCombo (FTvC), RefTversky (RTv), 
RefColorTversky (RCoTv), RefTverskyCombo (RTvC) 
(Eq. 2), which were used for further evaluation.

where I stand for the self-volume overlaps terms and the 
O terms denote the overlaps between molecules A and B, 
whereas β = 1 − α.

Electrostatic Similarity for Lead Hopping (EON) 
measures the electrostatic similarity of small molecules 
using a field-based algorithm which accounts for elec-
trostatic potential in addition to shape (EON v. 2.2.0.5, 
OpenEye Scientific Software, Santa Fe, NM. http://www.
eyeso​pen.com). EON generates two 3D electrostatic Tan-
imoto coefficients (ET), ET_coulomb (EON_ET_coul), 
and ET Poisson Boltzmann (EON_ET_pb) and a com-
bined one ET-Combo (EON_ET_C), which sum Shape 
Tanimoto (EON_ET_ShT) and Poisson Boltzmann term 
(EON_ET_pb).

The reference molecules were chosen to include 
essential information, i.e., shape, structural features, 
related to selective interaction with MAO-B: (1) safi-
namide a selective MAO-B inhibitor (SAG) ((S)-(+)-
2-[4-(f luorobenzyloxy-benzylamino)propionamide) 
(SI > 13,038, IC50MAO-B = 0.00767 μM), denoted query 
1 (q1); and (2) the lowest energy conformer of selec-
tive inhibitor (2E)-2-[(5-bromofuran-2-yl)methylidene]-
5-methoxy-2,3-dihydro-1H-inden-1-one (SI = 42, 
IC50MAO-B = 0.0044  μM) denoted query 2 (q2) [27] 
(Fig. 4). 3D Similarity search was applied in a retrospec-
tive manner to our in-house benchmarking validation 
dataset for MAO-B to identify the coefficients which 
yield the best AUC values, and to calculate similarity 
thresholds. Afterward, a 3D similarity search was applied 

(1)TanimotoA,B =

OA,B

IA + IB − OA,B

(2)TverskyA,B =

OA,B

�IA + �IB
,

https://www.specs.net
https://www.schrodinger.com/
https://www.schrodinger.com/
http://www.eyesopen.com
http://www.eyesopen.com
http://www.eyesopen.com
http://www.eyesopen.com
http://www.eyesopen.com
http://www.eyesopen.com
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prospectively to SPECS NP and approved DrugBank 
datasets to identify similar compounds that may display 
potentially selective inhibition against MAO-B. The 
workflow diagram shown in Fig. 5 compiles the stages 
completed in this section.

Protein preparation

The X-ray structures of MAO-A cocrystallized with 
harmine (HRM) (PDB ID: 2z5x) and MAO-B complex 
with SAG (PDB ID: 2v5z) downloaded from Protein Data 
Bank (https​://www.rcsb.org/) were prepared for docking 
using MakeReceptor (MakeReceptor v.3.2.0.2, OpenEye 
Scientific Software, Santa Fe, NM. http://www.eyeso​pen.
com): (i) active site boxes: 7622 Å3 and 5041 Å3, (ii) 
inner/outer contours: 750 Å3 and 585 Å3. In the absence 
of any constraints, the default parameters were involved. 
Water molecules of the active site that exceeded 5Å from 
cocrystallized ligands were deleted, considering only 
water molecules that may provide realistic energetic sta-
bility to the resulting protein–ligand complex [28].

Docking

To estimate the binding affinity of the investigated mol-
ecules, docking analysis was performed employing FRED 
software (FRED v.3.2.0.2, OpenEye Scientific Software, 
Santa Fe, NM. www.eyeso​pen.com) [29, 30]. The confor-
mationally sampled ligands and target proteins were treated 
as rigid structures during the docking process. The lowest 
energy ten docking poses were retained for each ligand. The 
generated ligand–protein complexes were visually inspected 
by comparing the atomic coordinates of each docked ligand 
with the X-ray coordinates of the reference ligands, SAG, 
and HRM. The Chemgauss 4 (CG4) scoring function [29, 
30] was used to score ligand poses placement inside the 
active site. The most likely binding conformations were 
selected based on the binding mode, significant interactions 
with key binding site residues, and the values of the CG4 
score.

The performance of the docking experiment was checked 
by redocking cocrystallized ligands SAG and HRM into 
active sites MAO-B (PDB ID: 2v5z), and MAO-A (PDB 
ID: 2z5x), respectively. The root-mean-square deviation 
(RMSD) values between the coordinates of the atoms of 

Fig. 4   The structure of the 
reference molecules used in 3D 
similarity search: (S)-(+)-2-[4-
(fluorobenzyloxy-benzylamino)
propionamide] (SAG) (q1) and 
(2E)-2-[(5-bromofuran-2-yl)
methylidene]-5-methoxy-2,3-di-
hydro-1H-inden-1-one (q2) 
(Marvin Sketch, ChemAxon)

Fig. 5   Workflow scheme

https://www.rcsb.org/
http://www.eyesopen.com
http://www.eyesopen.com
http://www.eyesopen.com
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cocrystallized ligands and docked poses were calculated. 
After acknowledging the docking accuracy, the prioritized 
SPECS NP and approved DrugBank datasets were docked 
into MAO-A and MAO-B active site. A single docked struc-
ture for each molecule was retained.

Evaluation methods

The ROC-AUC method is recurrently used to assess the 
effectiveness of a diagnostic test. The ROC curve is repre-
sented based on the sensitivity (Se, Eq. 3), which designates 
the fraction of actives predicted as actives, as a function of 
(1 − Sp) where Sp represents the specificity or true negative 
rate (the fraction of inactives predicted as inactives, Eq. 4), 
at any threshold [31],

where TP (true positives) designates the number of cor-
rectly predicted actives; FN (false negatives) is the number 
of incorrectly predicted inactives; TPR (true positive rate) 
represents the fraction of correctly predicted actives divided 
by the total number of inactives when the ith active in the 
ranking list is recovered. The ROC curve defining optimal 
distributions shows no overlap between the Se and (1 − Sp) 
scores for actives and, respectively, inactives. The greater the 
value of the AUC (Eq. 5), the better classification is achieved 
by the virtual screening method regarding the identification 
of selective compounds. A special case represents the ROC 
curve for a data set of actives and inactives displaying ran-
domly distributed classes, where Se = 1 − Sp (AUC = 0.5), 
indicating the random assignment of the compounds.

Validation

The validation of custom made selectivity focused dataset 
for MAO-B was performed using the arithmetic mean of the 
area-under-curve (AUC) of receiver operating curve (ROC) 
denoted mean (ROC AUCs), by applying Leave-One-Out 
(LOO) Cross-Validation (CV) [32], which have to show val-
ues close to 0.5. The topological similarity between selectives 
and nonselectives was demonstrated by employing MACCS 
structural keys (https​://www.knime​.com/). The absence of 

(3)Se =
TP

TP + FN

(4)Sp =
TN

TN + FP

(5)AUC = 1 −
1

TP + FN

TP+FN
∑

i=1

FPR
i

(6)
TPR

x
= TPRatx% FP, where x = 0.5% , 1% , 2% , 5% , 10% ,

“artificial enrichment” is proved by mean (ROC AUCs) val-
ues close to 0.5 using six basic drug-like physicochemical 
descriptors HBA, HBD, MW, RBN, XlogP, 2DPSA. During 
individual AUC values calculation, the reference molecule 
was eliminated from the vector containing the similarity data. 
This validation was necessary to demonstrate the effectiveness 
of the methodology used to lower the analogue biases in the 
course of validation dataset construction. Virtual screening 
experiments were validated by calculating AUCs [31] (Eqs. 5 
and 6) using in-house developed software, ETICI (Evaluation 
Tool In ChemInformatics) [33].

ADME and toxicity related risk profiles

Although significant progress has been made in the last 
years, accurate prediction of several essential pharmaceuti-
cal descriptors is still a challenge, because of complex funda-
mental physiological mechanisms [34]. The chronic character 
of Parkinson’s disease demands the treatments to be lifelong 
and therefore the drugs have to be safe and well tolerated for 
long periods [1]. Therefore, ADME (absorption, distribution, 
metabolism, excretion) properties and the toxicity risk profile 
of the prioritized natural compounds from the SPECS NP data-
base were manifold estimated using the QikProp module of 
Schrödinger (QikProp v. 5.2, https​://www.schro​dinge​r.com/), 
SwissADME [35] and Osiris Property Explorer (Osiris, http://
www.organ​ic-chemi​stry.org/prog/peo/). The wide variety of 
predicted drug-like properties are given in the Results section.

Drug repositioning

In silico approaches such as 3D similarity, pharmacophore 
modeling, docking [11], whether used conjointly with high-
throughput screening (HTS) or independently, reported several 
approved drugs interacting with new multifunctional protein 
targets, which simplified the repositioning for other diseases 
[36]. Advances in rational drug repositioning for Parkinson’s 
disease with potential clinical uses provide a possible expedi-
tious direction to drug discovery [1]. In the current paper, we 
investigate potential inhibitory activity toward MAO-B of the 
computationally repurposed candidates as potential disease-
modifying agents for Parkinson’s disease. Drug safinamide 
(Fig. 4), a selective MAO-B inhibitor, used for the treatment of 
Parkinson’s disease since February 2015 in Europe and March 
2017 in the USA, was employed as a reference molecule for 
the repurposing of approved DrugBank dataset.

https://www.knime.com/
https://www.schrodinger.com/
http://www.organic-chemistry.org/prog/peo/
http://www.organic-chemistry.org/prog/peo/
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Results and discussion

Workflow

The workflow scheme (Fig. 5) adopted in this paper includes 
(1) construction of selectivity-based MAO-B dataset; (2) 
retrospective 3D similarity search (shape, physicochemical, 
and electrostatics) involving our custom made selectivity 
oriented dataset for MAO-B; (3) identification of 3D simi-
larity coefficients with significant AUC values; (4) calcula-
tion of similarity thresholds; (5) prospective 3D similarity 
search of SPECS NP and DrugBank datasets to identify 
novel potentially selective MAO-B inhibitors; (6) docking 
experiments carried out to identify specific ligand–MAO-B 
interactions; (7) prediction of ADMETox profile of the hits.

Validation of selectivity oriented dataset

In order to validate the benchmarking dataset, the mean 
(ROC AUCs) parameter, based on physicochemical descrip-
tors and MACCS fingerprints, was derived. In the case of 
physicochemical descriptors, the mean (ROC AUCs) value 
resulted from the LOO CV procedure is 0.653. Although it 
cannot be evaluated as ideal, it does not provide substan-
tial artificial enrichment and similar values can be found in 
the literature [32]. The 70% of BMFs identified as shared 
between selective and nonselective MAO-B inhibitors meet 
the criteria used to design the benchmark data sets for virtual 
screening [37]. Furthermore, we used MACCS keys to cal-
culate the mean (ROC AUCs), which give indications about 

the topological similarity between selective and nonselective 
MAO-B inhibitors, which is satisfactory (0.604). “False neg-
ative” bias was excluded by using confirmed experimental 
nonselectives. Thus, the selectivity oriented benchmarking 
dataset for MAO-B, developed by us, is free of VS prob-
lematic biases including “analogue bias“, “artificial enrich-
ment,” and “false negative” bias and can be employed fur-
ther for evaluation of various LBVS and SBVS methods. 
Further, we used MAO-B selectivity focused dataset in retro-
spective VS experiments involving shape, physicochemical, 
and electrostatic 3D similarity methods.

Retrospective 3D similarity

Regardless of the origin of the 3D reference molecule 
structure, i.e., bioactive conformation (SAG, q1) and the 
lowest energy conformer ((2E)-2-[(5-bromofuran-2-yl)
methylidene]-5-methoxy-2,3-dihydro-1H-inden-1-one, q2), 
the quality of alignments and implicitly overall enrichments 
yielded by ROCS are satisfactory. As can be seen in Fig. 6, 
the MAO-B selective inhibitors arrange more systematically 
on reference molecules displaying slight structural variabil-
ity localized at position 3 of ring B belonging to q1 and a 
larger structural fluctuation of the substituent at position 4, 
which is responsible for the affinity for MAO-B. Similarly, 
the overlays on q2 show larger structural irregularities on 
the linker and furan ring for nonselective MAO-B inhibitors 
related to selective ones. The structural diversity of our cus-
tom made selectivity oriented dataset for MAO-B is higher; 
therefore, the overlays look more evenly than one can expect. 

Fig. 6   ROCS overly of the top 
ten selective and nonselective 
MAO-B inhibitors from selec-
tivity focused dataset against 
query q1 (a) and (c); against 
query q2 (b) and (d), ranked by 
TC (BIOVIA Discovery Studio, 
www.3dsbi​ovia.com)

http://www.3dsbiovia.com
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However, the overlays on q1 are of better quality than those 
observed for q2.

The 3D similarity algorithm retrieves hits with diverse 
topologies; however, ShT values higher than 0.8 (against 
both q1 and q2) observed for selectives are higher (18.18%) 
than those observed for nonselectives (11.33%) (Fig. 7). 
Still, their SI values register a large variation, since the geo-
metrical distribution of crucial molecular features gives, to a 
certain degree, information regarding size and shape require-
ments to support ligand–receptor interactions [38].

The analysis of AUC values (Fig. 8) emerging from 3D 
similarity searches was performed for our custom made 
selectivity focused MAO-B dataset in addition to queries q1 
and q2. The AUCs are shown in Fig. 8, while their standard 
deviations are included in the supplementary material. The 

global discriminative performance of AUC for the selectivity 
focused dataset is satisfactory, showing values greater than 
0.7 for FTv, FTvC, and TC (q1) and FTvC, FTv, TC, ST, 
CS, and FCoTv (q2). ShT enrichment is satisfactory, mak-
ing differences among selective and nonselective MAO-B 
inhibitors, but shape similar compounds show various phys-
icochemical properties and pharmacophore arrangements, 
i.e., the AUCs for CS and CoT which include “color fea-
tures” are lower 0.666 and 0.582 for q1, whereas against q2 
the AUCs are of 0.610 and 0.705 (Fig. 8). Although both 
queries q1 and q2 are selective against MAO-B (Fig. 4), 
they didn’t show a noticeable similarity between themselves 
(TC = 0.959, ShT = 0.712, CoT = 0.247). In terms of AUC 
q2 performs slightly better than q1, on regular basis, e.g., 
the highest AUC value provided by query q2 is of 0.751 

Fig. 7   The compounds showing shape similarity (ShT > 0.8 toward query q1 or q2) and different values of SI

Fig. 8   The AUCs resulted from 
3D similarity shape, color, and 
electrostatic similarity searches
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(FTvC), which in the case of query q1 is of 0.741 (FTv) 
(supplementary material). The 3D coefficients, which yields 
the best enrichments for selectivity oriented dataset, include 
both shape and color features. This is consistent with the pre-
vious observation, which states that selectivity is determined 
by both shape, and pharmacophore features [38]. Excepting 
shape-based coefficients ShT and FTv, the coefficients which 
include color field, i.e., CoS, TC, FCTv, FTvC, and CS fur-
nish more accurate rankings (Fig. 8). Tversky scores involve 
asymmetric comparison, which depends on the molecular 
size of the query MWq1= 302.349 and MWq2= 333.181 
and database molecules MWaverage = 293.012 for selectives 
and MWaverage = 349.074 for nonselectives. Wherefore, 
RTv, and FTv scores fluctuate more widely than Tanimoto-
based scores. FTv displayed higher AUC values compared 
to RTvC. The AUC corresponding to Tversky coefficients 
ranges 0.437 ÷ 0.741 for q1, and 0.509 ÷ 0.750 for q2. 
FTv-based coefficients fluctuate in the range 0.650 ÷ 0741 
(q1), and 0.702 ÷ 0.751 (q2), exceeding the AUC values 
of RTv coefficients which range 0.437 ÷ 0.597 (q1), and 
0.510 ÷ 0.617 (q2). Hence, it results that MAO-B selective 
inhibitors are prioritized more appropriately at the top of the 
ranking list by the FTv-based coefficients by applying q2.

The highest AUC values for EON electrostatic coeffi-
cients were recorded for EON-ST 0.747 (q2), 0.738 (q1), 
EON_ET_C 0.738 (q1), and EON_ET_pb 0.702 (q1). In the 
case of query q2, the maximal AUC value is only 0.683 for 
EON_ET_C. Further, we used shape, physicochemical and 
electrostatic similarity coefficients whose AUCs are higher 
than 0.7: TC (q1, q2), CS (q2), ShT (q2), FCTv (q2), FTv 
(q1, q2), FTvC (q1, q2), EON_ET_C (q1), EON_ET_pb 
(q1), EON_ET_ST (query q1, q2) in a prospective experi-
ment to prioritize novel natural compounds from SPECS 
NP database with potential ability to inhibit selectively 
MAO-B. Apart from AUC calculation, we estimated the 
average values of 3D similarity coefficients for selective 
and nonselective compounds to establish the thresholds for 
further prospective virtual screening (supplementary mate-
rial). These threshold values which register a relevant dif-
ference between selectives and nonselectives were used to 
select natural compounds from SPECS NP and DrugBank, 

whose similarity values exceed explicitly the average value 
for selective MAO-B inhibitors (Table 2). A total number 
of 310 3D similarity values from the SPECS NP database 
(Table 2), which satisfy the thresholds of any of six 3D coef-
ficients relative to q1, were recorded which corresponds to 
182 unique compounds. Among these 182 compounds, one 
compound (AI-372/20970054; 1-(2,4-dihydroxyphenyl)-
2-phenylethanone) comply with all six 3D coefficient thresh-
olds. In the case of query q2, 208 similarity values exceed 
at least one of the seven 3D coefficient thresholds enforced, 
are associated with 110 compounds (Table 2), of which two 
compounds, AA-504/20834003 (cardamomin, (E)-1-(2,4-
dihydroxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one) and 
AC-776/25122088 ((E)-1-(2-hydroxy-4-methoxyphenyl)-3-
phenylprop-2-en-1-one), complies with all seven thresholds, 
including the compound which obeys the conditions for q1. 
Similar treatment of DrugBank database prioritized two 
drugs fenamisal (DB06807) and monobenzone (DB00600) 
which satisfy all seven thresholds in favor of q1, whereas 
two drugs thiohexam (DB14200), benzylparaben (DB14176) 
whose similarity coefficients values obey the thresholds cor-
responding to q2 were excluded from the study since they 
are allergens and show other potential adverse effects such 
as endocrine disruption, and oxidative DNA damage [39].

Docking outcomes

In the first step, the ability of FRED to reproduce the 
interactions observed in the X-ray co-crystals of SAG 
with MAO-B (PDB ID: 2v5z) and of HRM with MAO-A 
(PDB ID: 2z5x) was checked. The crystallographic 
structures of the ligands were extracted and redocked 
into the 2v5z and 2z5x binding sites. The reproduction 
of the conventional hydrogen bonding interaction and 
π-donor hydrogen bond of SAG with Gln206, and car-
bon–hydrogen bond with Ile199 detected in the X-ray co-
crystal 2v5z was noticed. The hydrophobic interactions 
observed between SAG and MAO-B binding site residues 
occurs with Leu171 (π-sigma), Ile199, Ile316, Phe343 
and Tyr398 (π-alkyl), Tyr326 (π-π T-shaped), and with 
Cys172 (π-sulfur) (Fig. 9). Regarding the HRM redocking, 

Table 2   The thresholds for 
similarity coefficients and the 
number of natural products 
from SPECS and drugs from 
DrugBank which exceed the 
threshold values

NP represents the number of natural products from the SPECS NP database

Coefficient Query q1 NP No. of drugs Coefficient Query q2 NP No. of drugs

FTv 0.826 19 578 FTvC 1.320 20 264
FTvC 1.205 19 321 EON_ShT 0.729 14 20
EON_ET_C 0.841 69 26 FTv 0.845 34 733
TC 0.893 23 108 TC 1.020 17 57
EON_ET_pb 0.179 146 194 ShT 0.726 28 254
EON_ShT 0.662 34 56 CS 1.152 56 190

FCoTv 0.475 39 150
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significant hydrophobic interactions between HRM and 
MAO-A active site residues appear with Tyr444, Tyr407, 
Leu337, Ile180 and Ile335 (π-alkyl), Tyr407 (π–π stacked), 
Phe208 and Il335 (π-sigma), and with Cys323 (π-sulfur) 
(supplementary material). For both redocked ligands, the 
specific water hydrogen bonds were reproduced. These 
good results were also confirmed by the very low RMSD 
values of 0.589 Å and 0.564 Å, respectively, calculated 
between the best docked pose of SAG (Fig. 9a) and HRM 
(supplementary material) and of their X-ray coordinates. 

These arguments attest that the docking procedure used in 
the current investigation is appropriate and can be further 
applied to the compounds selected by the 3D similarity 
method from SPECS NP and DrugBank databases.

The three compounds from the SPECS NP database 
AA-504/20834003, AC-776/2512208, and AI-372/20970054 
which adhere to all 3D coefficient thresholds (Table 2, 
Fig. 10) were subjected to docking in the binding sites of 
MAO-B and MAO-A receptors to investigate their presum-
able specific interactions with MAO-B.

Fig. 9   3D (a) and 2D (b) 
representations of interactions 
of safinamide (PDB ID: SAG, 
query q1) with 2v5z binding 
site; the X-ray structure of SAG 
is depicted in dark gray and 
the best docked pose of SAG is 
shown in green
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According to the CG4 score results, all compounds  
showed higher binding affinity (CG4AA-504/20834003 
= − 15.149, CG4AC-776/2512208 = − 14.237, and 
CG4AI-372/20970054 = − 13.655) for MAO-B than for 
MAO-A (CG4AA-504/20834003 = − 13.019, CG4AC-776/2512208 
= − 13.287, and CG4AI-372/20970054 = − 12.390). The visual 
analysis of the docking outcomes indicated that the orien-
tation of the bound possesses of these three compounds 
(Fig.  11) closely mimic the orientations of the native 
ligands in the X-ray crystal structures of MAO-A (sup-
plementary material) and MAO-B (Fig. 9).

Hence, AA-504/20834003 and AC-776/2512208 tightly 
bind to MAO-B by forming H-bonding interactions (1) 
their carbonyl group with Tyr326 and Gln206, and (2) 
4-OH group of AA-504/20834003 and a 4-OCH3 group of 
AC-776/2512208 with Tyr435. The interaction with Tyr326 
residue of MAO-B is known to be essential for the substrate/
inhibitor selectivity [40]. Moreover, the Ile199 and Ile316, 
which are also known as critical residues for selective 
interaction with MAO-B [41], showed strong hydrophobic 
interaction with these natural compounds. The unsubstituted 
aromatic rings of both ligands participated in hydropho-
bic π-alkyl interactions with Leu164, Ile316, Ile199, and 
supplementary π–π-T-shaped interaction with Phe168 for 
AA-504/20834003. The substituted aromatic rings of both 
ligands are involved in π-alkyl interactions with Leu171 
and Ile198. We also observed direct π-alkyl interaction (not 
water-mediated) with Cys172. The 4-methoxy moiety of 
AC-776/2512208 substituted aromatic ring made п-sigma 
type contacts with Tyr398 and Tyr435. Additionally, the 
conserved water molecules within the receptor active site 
were important for enhancing the interaction of these com-
pounds with MAO-B. In this light, two water molecules 
mediated hydrogen bonds between both AC-776/2512208 
and AA-504/20834003 and the MAO-B receptor as fol-
low: (1) HOH1170 bridged the substituted aromatic ring 
of compounds with Tyr435, Ile198, Gly205, and Gln206 
residues, and (2) HOH1229 bridged the carbonyl unit with 
Tyr326, Gln206, and Ile199. We also observed water-medi-
ated H-bonding (HOH1155) with Cys172 and the 4-OH unit 
of the substituted aromatic ring of AA-504/20834003. The 

water-mediated hydrogen bonding interactions were similar 
to that of the SAG ligand.

AI-372/20970054 binds to MAO-B by forming H-bond-
ing interactions as follows: (1) the carbonyl unit with 
Tyr398, and (2) the 2-OH and 4-OH of the substituted aro-
matic ring with Tyr435, Cys172, and Gly434, respectively. 
Moreover, the substituted aromatic ring of the ligand is 
involved in п-п-stacked interactions with Tyr398, Tyr435, 
and FAD cofactor. By contrast with the other two ligands, 
the substituted aromatic rings make two п-alkyl interactions 
with Leu171 and Ile198 and one п-sulfur with Cys172. The 
compound orientation mimics the placement of the native 
ligand into the active site but it is slightly displaced to FAD 
compared to the positioning of the other two compounds. 
This could be assigned to the lack of the ethylene unit and 
the methoxy group. Furthermore, the less prominent inter-
actions with Tyr444, Tyr407, and Ile335 are considered to 
play an important role in MAO-A catalytic activity (sup-
plementary material), allowed an increased selectivity of 
all three ligands to MAO-B. Likewise, Geha and co-workers 
[42] suggested that Tyr407 and Tyr444 in MAO-A and the 
corresponding Tyr398 and Tyr435 in MAO-B may form an 
aromatic sandwich that consolidates the substrate binding. 
All three ligands were situated into the aromatic cage framed 
by FAD aromatic ring, Tyr326, Phe343, Tyr398, and Tyr435 
residues of MAO-B active site. Taken together, these results 
predicted all three natural compounds as selective MAO-B 
inhibitors. The outcomes are also in line with the continuous 
need of developing specific MAO-B inhibitors since they, 
used mainly for the treatment of Parkinson’s disease, have 
the advantage of less severe side effects compared to the 
drugs which are MAO-A inhibitors [6].

ADME and toxicity risk profiles

The SPECS NP top hits were passed through the ADME 
and toxicity related risks filters to evaluate their drug-
like properties. Thus, passive gastrointestinal absorption 
(HIA) and brain permeability (BBB) properties were pre-
dicted simultaneously with SwissADME software (Fig. 12) 
[35]. The AC-776/25122088, AA-504/20834003, and 
AI-7372/20970054 are predicted as passively crossing the 

Fig. 10   The chemical structure of top-ranked hits from the SPECS NP database
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Fig. 11   Three-dimensional 
(3D) protein–ligand interac-
tions of AA-504/20834003 
(a), AC-776/2512208 (b), and 
AI-372/20970054 (c) with the 
binding residues of MAO-B
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BBB (in the yellow region), being not subject to active efflux 
(red dots).

Also, six physicochemical properties such as lipophilic-
ity, size, polarity, solubility, flexibility, and saturation are 
considered for Bioavailability Radar construction. A pool 
of descriptors defining the pink area on the radar plot of 
the molecule has to fall entirely in the delimited area to be 
considered drug-like (supplementary material). The pink 
area denotes the optimal range for each property (polar-
ity: TPSA between 20 and 130 Å2, lipophilicity: XLOGP3 
between − 0.7 and + 5.0, solubility: log S not higher than 6, 
saturation: the fraction of carbons in the sp3 hybridization 
not less than 0.25, size: MW between 150 and 500 g/mol, 
and flexibility: no more than 9 rotatable bonds. The Swis-
sADME parameters values from Table 3 and supplementary 
material indicate that all compounds obey the mentioned 
criteria, as follows: (1) have good oral bioavailability, (2) 
are completely contained in the pink area, and (3) exhibit 
drug-like properties.

The ADME properties values predicted by QikProp soft-
ware from the Schrödinger suite (Table 4) fall into the rec-
ommended ranges, indicating that all three SPECS NP have 
an excellent pharmacokinetic profile with high bioavailabil-
ity, good water solubility and good predicted BBB perme-
ability. Hence, we can state that the molecules investigated 
in the current paper exhibit drug-like properties.

OSIRIS calculations are used generally to estimate the 
risks of side effects as well as drug relevant properties of 
the compounds. Thus, AA-504/20834003 has no muta-
genic, tumorigenic, irritant, or reproductive effective poten-
tial. Probably, the supplementary hydroxyl group and the 

migration of the methoxy unit at the 6-substitution posi-
tion of the AA-504/20834003 aromatic ring compared with 
AC-776/25122088 reduced completely the side effects risk. 
AC-776/25122088 displayed only the reproductive effect 
risk. Compound AI-372/20970054 shows potential high 
risks for undesired effects like mutagenicity and irritant. 
Conclusively, ADME and toxicity risk profiles suggest 
AA-504/20834003, in comparison with the other two com-
pounds, display excellent predicted drug-like properties and 
superior pharmacological profiles.

Drug repositioning of DrugBank database

To expand the chemical space of MAO-B inhibitors by repo-
sitioning of approved drugs from DrugBank [43], the same 
3D similarity search scenario applied to the SPECS NP data-
base was used. The top hits retrieved by both queries q1 and 
q2 include drugs used to treat several health issues such as 
depigmentation monobenzone (DB00600), and tuberculosis 
fenamisal (DB06807).

The two approved drugs (Fig. 13) prioritized by all 3D 
coefficients (Table 2) were further docked in the active site 
of MAO-B (2v5z). Ten lowest energy drug poses were ana-
lyzed to identify the pose with the lowest docking score and 
significant interactions with binding site residues, which can 
illustrate their possible activity on MAO-B.

DB06807 (fenamisal) compared with DB00600 
(monobenzone) was found to be the best molecule based 
on its lowest docking score (CG4DB06807 = − 13.039 and 
CG4DB00600 = − 12.243). Despite the structural differences 
that contribute to slightly different placement in the receptor 

Fig. 12   The WLOGP-versus-
TPSA referential for predicted 
MAO-B inhibitors of SPECS 
NP and DrugBank; the white 
and yellow ellipses refer to 
intestinal absorption and to 
blood–brain barrier, respec-
tively
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active site, the approved drugs displayed interesting molec-
ular interactions with the MAO-B receptor (Fig. 14) sug-
gesting a potential role of their skeletal structure regarding 
the presumable activity against MAO-B. The fenamisal ori-
entation mimics the arrangement of the SAG in the active 
site but it is slightly displaced toward FAD compared to the 
positioning of the monobenzone which simulates perfectly 
the SAG alignment. In terms of structural and MAO-B inter-
actions, fenamisal behaves similarly to AI-372/20970054. 
Both approved drugs make π–π T-shaped interaction with 
Tyr326 residue which is essential for MAO-B selectivity 

[40]. Likewise, strong hydrophobic interactions of π-alkyl 
type were achieved between the unsubstituted ring of 
monobenzone with Ile199, Leu164, and Ile316 residues, also 
known to be critical for MAO-B selectivity [41]. Additional 
π–π-stacked interactions with Tyr398 and Tyr435 and donor 
H-bond with Gln206 were observed for fenamisal. The latter 
was also made by monobenzone. Moreover, fenamisal binds 
to MAO-B by forming H-bond interactions (1) at carbonyl 
unit with Tyr398 and (2) at the 2-OH unit with Tyr435. We 
observed that HOH1155 connected Cys172 and Tyr435 resi-
dues to the 2-OH unit of fenamisal substituted aromatic ring. 

Table 3   Physiochemical parameters and toxicity related risks profile of the three SPECS NP and the two DrugBank predicted compounds by 
SwissADME and OSIRIS Property Explorer software

a The red color circles indicate properties with high risks of undesired effects like mutagenicity, reproductive, or irritant effect, whereas the green 
color circles indicate drug-like conforming behavior (calculated with OSIRIS Property Explorer software)

Molecule AA-
504/20834003

AC-
776/25122088

AI-
372/20970054

DB06654 
(Safinamide)

DB01367 
(Rasagiline)

DB01037 
(Selegiline)

DB06807 
(Fenamisal)

DB00600 
(Monoben-
zone)

SPECS NP Approved drugs for Parkinson’s disease Repurposed drugs

RBN 4 4 3 7 2 4 3 3
HBA 4 3 3 4 1 1 3 2
HBD 2 1 2 2 1 0 2 1
TPSA 66.76 46.53 57.53 64.35 12.03 3.24 72.55 29.46
Water 

solubility, 
Log S

Soluble Moderately 
soluble

Soluble Soluble Soluble Soluble Soluble Moderately 
soluble

Lipophilicity, 
XLOGP3

3.50 4.06 3.04 2.20 1.83 2.90 3.15 3.43

WLOGP 2.89 3.19 2.52 2.48 1.65 2.26 2.20 2.82
MLOGP 1.83 2.42 1.99 2.41 2.58 3.25 2.22 2.69
GI absorption High High High High High High High High
BBB per-

meant
Yes Yes Yes Yes Yes Yes Yes Yes

P-gp substrate No No No No No No No No
CYP1A2 

inhibitor
Yes Yes Yes No No Yes Yes Yes

CYP2C19 
inhibitor

No Yes No Yes No No No Yes

CYP2C9 
inhibitor

Yes Yes No No No No Yes Yes

CYP2D6 
inhibitor

No No No Yes Yes Yes No Yes

CYP3A4 
inhibitor

Yes No No Yes No No No No

Skin permea-
tion, Log 
Kp

− 5.46 − 4.97 − 5.53 − 6.58 − 6.05 − 5.38 − 5.46 − 5.09

Toxicity riska  Mutagenic  Mutagenic  Mutagenic  Mutagenic  Mutagenic  Mutagenic  Mutagenic  Mutagenic
 Tumorigenic  Tumorigenic  Tumorigenic  Tumori-

genic
 Tumori-
genic

 Tumori-
genic

 Tumori-
genic

 Tumorigenic

 Irritant  Irritant  Irritant  Irritant  Irritant  Irritant  Irritant  Irritant
 Reproductive 
effective

 Reproductive 
effective

 Reproductive 
effective

 Reproduc-
tive effec-
tive

 Reproduc-
tive effec-
tive

 Reproduc-
tive effec-
tive

 Reproduc-
tive effec-
tive

 Reproductive 
effective
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Contacts of π-sigma type with Leu171 and of π-sulfur type 
with Cys172 were realized by both drugs.

In the absence of experimental values for ADME and 
BBB permeation fenamisal and monobenzone have been 
subjected to ADME and toxicity risk filters as the hits 
originating from the SPECS NP database to allow a direct 
comparison of predicted properties. The passive gastrointes-
tinal absorption (HIA) and brain permeability (BBB) com-
puted simultaneously with SwissADME (Fig. 12) indicated 
both approved drugs to passively permeate the BBB (yel-
low region) and not to be effluated from the CNS (red dot). 
The lipophilicity, size, polarity, solubility, flexibility, and 
saturation used for Bioavailability Radar construction were 
located in the delimited pink area on the radar plot, pointing 
that both approved drugs respect the drug-like properties 
(Table 3 and supplementary material). As for SPECS NP, 
the OSIRIS Property Explorer was used to check the poten-
tial toxicity of these candidates. Toxicity screening results 
presented in Table 3 showed that both drugs pose a high risk 
of side effects like tumorigenicity. Furthermore, fenamisal 
presents a high risk of mutagenicity while monobenzone 
poses a high irritant effect.

In short, our drug repurposing experiment is able to 
identify two drugs that can be repositioned for Parkinson’s 
disease. Because these drugs have indications for other dis-
eases, in the first step they have to be assessed for BBB 
penetration in vivo [1] and if proved so, then clinically tested 
for their efficacy in Parkinson’s disease treatment. Athauda 
et al. reviewed the safety and potential efficacy of several 

promising candidates repurposed for Parkinson’s disease 
which undergoes the latter stages of clinical testing. They 
pointed out that drugs with no indication for the central 
nervous system, e.g., ambroxol, deferiprone, etc. cross the 
blood–brain barrier [1]. However, fenamisal and monoben-
zone have low molecular weight, low hydrogen bond donors 
and acceptors, and high lipid solubility, which facilitates the 
passage of the lipid membrane [20].

Conclusions

In this study, 3D similarity methods including shape, 
physicochemical, and electrostatics were engaged in a 
retrospective calibration experiment to ascertain the most 
appropriate similarity coefficients and estimate their asso-
ciated thresholds for prospective screening. A novel stand-
ard validation dataset for MAO-B focused on selectivity, 
validated by mean (ROC-AUC) cross-validation procedure 
based on MACCS keys and physicochemical descriptors, 
was generated. Nine 3D similarity coefficients showing 
AUC > 0.7 in retrospective virtual screening experiment, 
containing various levels of structural information, were 
further involved in a prospective screening experiment on 
SPECS NP and Drug Bank databases using a consensus 
scheme. The interactions of the prioritized hits includ-
ing three natural compounds and two approved drugs with 
MAO-B were confirmed by docking as potentially selec-
tive inhibitors for MAO-B. From these natural compounds, 
AA-504/20834003 exhibited great predicted drug-like 
properties, an excellent pharmacological profile, and spe-
cific interactions with the MAO-B binding site. Moreo-
ver, drug reposition was used to explore the efficacy of 
already marketed drugs fenamisal, and monobenzone that 
could potentially be repurposed for treating Parkinson’s 
disease. We assume that onward development of this kind 

Table 4   ADME parameters 
prediction for predicted SPECS 
NP using QikProp module

1 = AA-504/20834003; 2 = AC-776/25122088; 3 = AI-372/20970054
a The polar surface area < 140 Å2

b The predicted octanol/water partition coefficient, logP (acceptable range − 2 to 6.5)
c The predicted aqueous solubility, logS; S in moldm-3 (acceptable range − 6.5 to 0.5)
d Predicted apparent Caco-2 cell permeability in nm/sec (acceptable range: < 25 poor, > 500 great)
e The predicted brain/blood partition coefficient, (acceptable range: − 3.0 to 1.2)
f The predicted IC50 value for blockage of HERG K+ channels, (acceptable range: below − 5)
g The predicted human oral absorption on 0 to 100% scale, (acceptable range: < 25% poor, > 80% high)

ID MW PSAa QPlogPo/wb QPlogSc QPPCacod QPlogBBe QPlogHERGf %HOAg

1 270.284 74.378 3.000 − 3.765 506.879 − 1.137 − 5.508 92.924
2 254.285 55.086 3.621 − 3.908 1580.784 − 0.587 − 5.664 100.000
3 228.247 69.054 2.660 − 3.234 582.007 − 0.896 − 5.250 92.01

Fig. 13   The chemical structure of top-ranked drugs
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of investigation for prioritization of potentially selective 
inhibitors for closely related enzymes represents an advan-
tage for the drug discovery process.
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