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Abstract 
Excessive cell proliferation due to cell cycle disorders is one of the hallmarks of breast cancer. Cyclin-dependent kinases 
(CDKs), which are involved in the transition of the cell cycle from G1 phase to S phase by combining CDKs with cyc-
lin, are considered promising targets with broad therapeutic potential based on their critical role in cell cycle regulation. 
Pharmacological evidence has shown that abnormal cell cycle due to the overexpression of CDK6 is responsible for the 
hyperproliferation of cancer cells. Blocking CDK6 expression inhibits tumour survival and growth. Therefore, CDK6 can 
be regarded as a potential target for anticancer therapeutics. Thus, small molecules that can be considered CDK inhibitors 
have been developed into promising anticancer drugs. In this study, combined structure-based and ligand-based in silicon 
models were created to identify new chemical entities against CDK6 with the appropriate pharmacokinetic properties. The 
database used to screen drug-like compounds in this thesis was based on the best E-pharmacophore hypothesis and the best 
ligand-based drug hypothesis. As a result, 147 common compounds were identified by further molecular docking. Surpris-
ingly, the in vitro evaluation results of 20 of those compounds showed that the two had good CDK6 inhibitory effects. The 
best compound was subjected to kinase panel screening, followed by molecular dynamic simulations. The 50-ns MD studies 
revealed the pivotal role of VAL101 in the binding of inhibitors to CDK6. Overall, the identification of two new chemical 
entities with CDK6 inhibitory activity demonstrated the feasibility and potential of the new method.
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Introduction

Breast cancer, which accounts for 1/4 of all malignant 
tumours in the world [1], is a common and high-risk malig-
nant tumour for women, and breast cancer is an active 
research area that has attracted substantial attention from 
scholars. The current literature on breast cancer covers all 
aspects of prevention and early detection as well as treat-
ment and beyond. Studies have shown that the abnormal cell 
cycle caused by the abnormal effects of proto-oncogenes 
and tumour suppressor genes directly manifests as infinite 
growth of breast cancer cells, which is the most common and 
basic biological characteristic of breast cancer. Therefore, 
controlling abnormal cell cycle is the most direct way to 
effectively inhibit tumour growth.

Cell cycle regulation is a complex biological process 
involving many genes and proteins, which together form an 
extensive network of signalling molecules. CDKs belong to 
the serine/threonine protein kinase family, and these pro-
teins are at the heart of cell cycle regulation [2]. CDKs have 
various isomers and are known for their broad-spectrum 
therapeutic potential against uncontrolled regulation. The 
CDK4/6-CycD-INk4-pRb-E2F signalling pathway plays an 
important role in promoting the transition of the cell cycle 
from the G1 phase to the S phase. The amplification of 
the CDK4/6 gene caused by mutation or cell cycle inhibi-
tor deficiency can be observed in multiple tumours. It was 
reported that CDK6 has a unique function different from that 
of CDK4, and it is involved in cell metabolism [3–5] and cell 
differentiation [6, 7], transcription, and regulation of DNA 
repair [6, 7]. CDK6 inhibitors could limit the survival and 
growth of tumour cells, promote the apoptosis of tumour 
cells and improve the drug sensitivity of tumour cells. Excit-
ingly, it was demonstrated that FDA-approved CDK6 inhibi-
tors have a good therapeutic effect on breast cancer. In gen-
eral, CDK6 is a promising target for drug development, and 
efficient drug design is very meaningful for the treatment of 
breast cancer in the future.

CDK6 has attracted much attention for many decades, 
and many inhibitors have been developed. To date, three 
approved drugs for breast cancer have shown significant 
clinical activities [8]. Moreover, palbociclib and riboci-
clib, which target pancreatic cancer and colorectal cancer, 
also represent a promising clinical therapeutic strategy. In 
addition, some CDK6 inhibitors, such as 7-hydroxystauro-
sporine, FLX-925, lerociclib, and alvocidib hydrochloride, 
are currently in clinical trials. Furthermore, some CDK6 
inhibitors are pyrimidine derivatives, such as pyrimidine, 
pyridine, pyrimidinethiophene, aminopyrimidine, bisamino-
pyrimidine, and pyrimidineindole derivatives [9–12]. Other 

CDK6 inhibitors have structures such as fascaplysin, dioxo-
thiazol, and lycoline or their derivatives [13–15].

In the present study, as shown in Fig. 1, the X-ray crys-
tal structures of the target proteins in complex with CDK6 
inhibitors and various CDK6 inhibitors were applied to 
design structure-based and ligand-based models. Ligand-
based pharmacophores were built based on known CDK6 
inhibitors with common pharmacophore features. The 
E-pharmacophore model was built on the receptor–ligand 
complex with Glide XP scoring terms. E-pharmacophore 
is a hypothesis based on the complementarity of receptor 
and ligand features. These models generated in silicon were 
applied in parallel to screen the drug-like databases Chem-
Div and ChemBridge. Consequently, molecular docking was 
performed on the molecules identified by pharmacophore 
screening. Considering the key residues, good ADMET 
properties, binding energy, and structural diversity, several 
compounds were selected for biological activity tests. To 
study the selectivity of the hit compound, the best candidate 
with high activity was subjected to kinase panel screening. 
Ultimately, MD simulations were carried out to determine 
the accurate binding mode between the protein and the 
ligand. Overall, the results showed the success of our virtual 
screening method to identify new CDK6 inhibitors, and this 
scaffold is worthy of further optimization studies.

Materials and methods

Protein preparation and binding site analysis

The RCSB Protein Database (PDB) provided the X-ray 
structures of the following seven Homo sapien CDK6 pro-
teins and their respective inhibitors, namely, 3NUP, 3NUX, 
4AUA, 4EZ5, 5L2I, 5L2S, and 5L2T. As shown in Table 1, 
these small-molecule inhibitors derived from high-resolu-
tion complexes in PDB have inhibitory activities ranging 
from 10 to 7200 nM. All the selected proteins were then 
prepared using Protein Preparation Wizard (Maestro module 
of Schrödinger) with the default parameters, including the 
elimination of water molecules, the addition of hydrogen 
atoms, and filling in missing residues. Restraint minimi-
zation was carried out with the OPLS3 force field with a 
root-mean-squared deviation (RMSD) convergence to 0.3 Å 
[16]. Among these candidate proteins, the optimal protein 
was selected based on the results of Glide Extra precision 
(XP) Docking results and SiteMap simulation. These native 
ligands were prepared and re-docked to the ATP-binding site 
of CDK6 with Glide XP docking, and the RMSD between 
the conformations of bound and docked inhibitors was 
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calculated. A smaller RMSD between the conformations of 
the docked and bound compounds indicated a greater like-
lihood of retrieving bioactive conformations of the com-
pounds. SiteMap is a tool for recognizing, visualizing, and 
evaluating protein binding sites in Schrödinger. SiteMap 
provided an algorithm for binding site identification, and 
the evaluation can help researchers locate binding sites with 
a high degree of confidence and predict the druggability of 
those sites [17]. SiteScore was used to assess a site’s propen-
sity for ligand binding, and the docking site was considered 
druggable only when the SiteScore was > 1.0 [18].

E‑pharmacophore generation and validation

In addition to providing ligand information, E-pharmaco-
phores with XP description can be used to further deter-
mine the features that contribute the most to the bind-
ing energy. The Pharmacophore Alignment and Scoring 
Engine (PHASE) of the Schrödinger module was employed 
for hypothesis generation with six default chemical fea-
tures, including a positive ionizable group (P), a negative 
ionizable group (N), an aromatic ring (R), a hydrogen bond 
acceptor (A), a hydrogen bond donor (D), and a hydropho-
bic region (H) [19]. For E-pharmacophore generation, all 
the refined cocrystal ligands were re-docked onto the cor-
responding prepared protein structures using XP docking 
with standard van der Waals scaling at 0.8 and a partial 
charge cut-off of 0.15. Initially, seven pharmacophore 

models were designed for all the crystal structures. Then, 
the accuracy of these E-pharmacophore hypotheses was 
validated with a dataset consisting of active and inactive 
compounds.

A dataset comprising of 88 active compounds and 1000 
inactive compounds was used to validate these generated 
pharmacophore hypotheses. These 88 active compounds 
are established CDK6 inhibitors selected from the ChemBL 
database. The inactive compounds (decoys) were retrieved 
using  Decoyfinder2.0 software. We focused on robust initial 
enhancement (RIE), Boltzmann-enhanced discrimination 
of receiver operating characteristic (BEDROC), receiver 
operating characteristic (ROC), and area under the accu-
mulation curve (AUCU) metrics to assess the quality of the 
pharmacophores generated in this work. RIE was selected 
as the first metric, which is less susceptible to the length of 
the dataset than enrichment factor (EF). It represented active 
ranks by weighting a continuously decreasing exponential 
term [20]. The second metric, BEDROC, generated from the 
ROC and possessing a probabilistic meaning [20], also used 
to evaluate the significance of results. In addition, AUCU 
and ROC are well-recognized standards to quantify the reli-
ability of pharmacophore models, and they were used to 
estimate the ability of the hypothesis to identify active and 
inactive compounds [20]. Based on the criteria above, the 
E-pharmacophore hypotheses without discriminating ability 
were discarded, and the top-ranked pharmacophore models 
were used for screening the filtered databases.

Fig. 1  Virtual screening work-
flow
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Table 1  Cocrystal inhibitor structures for E-pharmacophore from PDB

PDB-ID Co-crystal 
ligand

Ligand structure IC50-nM Resolution

3NUP 3NU - 2.6 Å

3NUX 3NV - 2.7 Å

4AUA 4AU 720 2.31 Å

4AZ5 0RS 300 2.7 Å

5L2I LQQ 16 2.75 Å

5L2S 6ZV 10 2.27 Å

5L2T 6ZZ 39 2.37Å
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Ligand‑based pharmacophore generation

Although structure-based computational studies are satisfac-
tory, ligand-based studies are also important. Ligand-based 
3D pharmacophores, the spatial arrangement of chemical 
features common to at least two active ligands, are used 
to propose the essential interactions for ligand binding 
and were used to identify potential candidates from these 
databases. In this study, a ligand-based 3D pharmacophore 
model was built with PHASE in Schrödinger using another 
92 inhibitors collected from the literature [14, 21, 22] and 
ChEMBL database (https ://www.ebi.ac.uk/chemb l/) with 
 IC50 values ranging from 0.01 to 30,000 nM. Ligand-based 
pharmacophore generation included ligand preparation, 
pharmacophore site creation, common pharmacophore iden-
tification, hypothesis scoring, and QSAR model analysis.

Before pharmacophore building, the structures of these 
inhibitors were sketched and prepared using the default 
setting of LigPrep, and the energy of the inhibitors was 
minimized with the OPLS3 force field. Conformers were 
explored through macromodel combined with the MCMM/
LMOD (mixed torsional/low-mode) method, which is the 
most powerful conformation searching method currently 
available. The maximum number of conformers was 1000 
per structure. The conformers were filtered through a rela-
tive energy threshold of 21 kJ/mol and deviation beyond 
0.5. Subsequently, these conformers were minimized with 
the Polak–Ribiere Conjugate Gradient (PRCG). Then, the 
 IC50 values of these compounds were converted into  pIC50 
values. Compounds with  pIC50 value greater than 6.8 are 
considered active, compounds with a  pIC50 value less than 
6.0 were considered inactive, and the rest were moderately 
active compounds. Therefore, these compounds were sepa-
rated into active, inactive, and moderately active compounds 
based on these threshold values. Thereafter, these prepared 
ligands were subjected to common pharmacophore hypoth-
esis construction, and the generated hypotheses were ranked 
by several score functions.

The generated ligand-based pharmacophores that sur-
vived the scoring process were subsequently subjected to 
3D-QSAR analysis in PHASE to validate the developed 
pharmacophores. First, with these aligned ligands randomly 
split into training and test sets at a ratio of 3:1, atom-based 
QSAR analysis was performed with five PLS factors and the 
built parameters [23, 24]. Then, the training set compounds 
were considered for 3D-QSAR model generation with a 1.00 
Å grid spacing, and the test compounds were used to vali-
date the QSAR models. Variables with |t value| < 2.0 were 
eliminated for good predictions of the test set compounds, 
and 36 ligands were eliminated for leave-more-out (LMO) 
cross-validation. LMO-CV, where more than one chemical 
was left out of the validation at a time, had a stronger CV 
than LOO-CV [25]. The correlation between the chemical 

structural components (independent variable-dependent 
components) was also analysed for these developed ligand-
based pharmacophores. The best hypothesis was further 
validated and selected based on the values of the correlation 
coefficients of the training set (R2) and test set (Q2).

Pharmacophore‑based virtual screening

These selected pharmacophores were applied to screen the 
library of compounds. The compound libraries used for vir-
tual screening were prepared using the LigPrep module of 
Schrödinger with the OPLS3 force field. During this process, 
low-energy 3D structures were generated. The two prepared 
compound libraries were then filtered using Lipinski’s rule 
of five to retain the drug-like molecules. [26]. The retrieved 
hits remained when their fitness value was better than 1.8 
because the fitness values of the approved CDK6 drugs are 
better than 1.7 (palbociclib: 1.86, abemaciclib: 1.780, and 
ribociclib: 1.738). All the retrieved hits from E-pharmaco-
phores and 3D-pharmacophore were further subjected to 
molecular docking refinement.

Docking‑based virtual screening

These retrieved inhibitors were prepared and docked in the 
active site of CDK6 using the HTVS-SP -XP virtual screen-
ing workflow of Glide. High-throughput virtual screening 
(HTVS) docking is intended for the rapid screening of very 
large numbers of ligands. HTVS has a much more restricted 
conformation sampling than SP docking and cannot be used 
with score-in-place and predetermined values. Glide SP is 
a protocol for screening ligands of unknown quality, while 
Glide XP helps determine all reasonable conformations of 
low-energy conformers at the designated binding site and is 
considered a refinement tool for eliminating false-positive 
findings. Extraprecision (XP) docking and scoring is a more 
powerful and discriminating procedure that takes longer to 
run than SP. XP is designed to be used on ligand poses that 
have been determined to be high-scoring using SP docking. 
Therefore, HTVS, SP and XP docking were carried out for 
molecular docking screening, and compounds with docking 
scores of better than − 9.0 were retained (the average dock-
ing score of known CDK6 inhibitors was − 9.0). Considering 
the minimum docking score, structural diversity, and interac-
tions with the key residue, 35 compounds were subjected to 
IFD docking, ADMET property prediction and post-docking 
Prime MM/GBSA evaluation.

Induced‑fit docking

Induced-fit docking is a mixed molecular docking and 
dynamics method in which the receptor is flexible and the 
ligand is rigid during the docking study [27, 28]. It aims to 

https://www.ebi.ac.uk/chembl/
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improve the docking of ligands and find the optimal binding 
model of proteins and small molecules. First, the 5L2S pro-
tein was subjected to energy minimization using the OPLS3 
force field with an implicit solvation model. Then, a grid box 
was generated at the centroid of the ligand, which was simi-
lar in size to the workspace ligand. After that, these hits were 
docked to the rigid protein with a van der Waals (VDW) 
radius scaling of 0.5 for the atoms in both the protein and the 
ligand. Residues within 5.0 Å of the corresponding ligand 
positions were included in the Prime refinement. A final 
round of Glide XP docking and scoring was carried out for 
the shortlisted protein structures. The IFD score indicated 
the binding energy for the protein–ligand complex, and a 
higher negative IFD score means more favourable binding 
with the target.

Free binding energy calculation

The binding free energies of the selected docking com-
plexes were calculated by using the generalized Born sur-
face area of molecular mechanics with the Prime module of 
Schrödinger. Prime MM-GBSA is a well-known method to 
determine solvation free energy resulting from electrostatic 
effects within a generalized Born model. It has been used for 
the MD simulations, energy minimization, protein–ligand 
binding affinity predictions, and identification of the impor-
tant residues for the protein–protein interactions. [29]. In 
this study, Prime MM/GBSA with VSGB 2.0 models and 
OPLS3 force field was used for ligand binding and ligand 
strain energy estimation. The structures of the complexes 
from the IFD docking with good docking scores were further 
considered for binding free energy calculations, which were 
calculated as follows.

where ΔE, ΔG, and ΔGSA represent the minimized energy, 
solvation free energy, and surface area energy of the com-
plex, protein, and ligand, respectively.

ADMET prediction

Effective and safe drugs exhibit high potency, affinity, and 
selectivity against the molecular target, along with adequate 
absorption, distribution, metabolism, excretion, and tolera-
ble toxicity (ADMET). Evaluation of the ADMET properties 

ΔGbind = ΔGsolv + ΔE + ΔGSA

ΔGSA = GSA(complex) − GSA(ligand) − GSA(protein)

ΔGsolv = Gsolv(complex) − Gsolv(ligand) − Gsolv(protein)

ΔE = Ecomplex − Eligand − Eprotein

is considered indispensable because it can significantly 
improve the success rate of drug development and reduce 
development costs in drug discovery. The QikProp model in 
Schrödinger was used to evaluate the pharmacological prop-
erties of the candidate compounds to exclude compounds 
with unsuitable ADMET properties. The QikProp applica-
tion predicts a number of ADMET parameters and identifies 
drug-like compounds on the basis of values obtained for 
95% of known drugs. The MW (molecular weight), QPlogS 
(predicted aqueous solubility), and RO5 (Lipinski’s rule of 
five) were used for drug-likeness evaluation. The gut-blood 
barrier (QPPCaco) and blood–brain barrier (QPPMDCK), 
skin permeability, and predicted  IC50 value for the blockage 
of HERG  K+ channels were also predicted.

Cell proliferation inhibition

MCF-7 cells were purchased from American Type Culture 
Collection (ATCC, Manassas, VA, USA) and were main-
tained in Gibco™ Dulbecco’s modified Eagle’s medium 
under aseptic conditions in a 37 °C humidified  CO2 incu-
bator supplemented in 10% heat-inactivated foetal bovine 
serum (Biological Industries). Following two generations, 
the cells were treated with 25% trypsin–EDTA solution 
and then seeded in 96-well plates with 8 × 103 cells per 
well in 100 μL of complete culture medium for an MTT 
(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium 
bromide) assay.

The antitumour effects of the studied compounds were 
tested on MCF-7 cell lines with an MTT assay as previously 
described. Multiple studies have indicated that the overex-
pression of CDK6 in cancer cells and their oncogenesis 
could be disrupted by CDK6 inhibitors. In short, after 24 h 
of incubation to reattach and recover, the seeded cells were 
treated with the test compounds at an initial concentration 
of 30 µM in triplicate. The two test compounds were first 
dissolved in high-grade DMSO and then diluted in culture 
medium to five different concentrations (1.875 μM, 3.75 μM, 
7.5 μM, 15 μM, and 30 μM).

To avoid bystander cytotoxicity, the final DMSO con-
centration was kept at less than 0.1%. Three wells were left 
untreated as cell-based negative controls, and three wells 
of cell culture medium were left as blanks. Palbociclib at 
different concentrations was used as the positive control. 
After 72 h of incubation, the media were removed, and then, 
the cells, including the controls, were treated with DMEM 
containing MTT (0.5 mg/mL) solution, incubated for 3 h 
at room temperature, and inspected periodically for purple 
formazan precipitate. With the media discarded, 100 μL of 
DMSO was added to dissolve the formazan crystals. The OD 
value (optical density) of each well was measured at 490 nm 
with a microplate reader following 30 min of incubation at 
37 °C in the dark. Finally, their  IC50 values were determined 
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by dose–response curves, and data analysis was performed 
with the GraphPad Prism package.

CDK6 kinase assay

The CDK6 kinase assay was performed by Shanghai Well-
feng Biotech. In this assay, the CDK6/cyclin D3 activity was 
determined with ELISA with the enzyme, substrate, ATP 
and inhibitors diluted in kinase buffer for both the reac-
tion mixture (kinase reaction in the presence of substrate) 
and blank control (kinase reaction in the absence of sub-
strate). The reaction was initiated by adding 3 μL of ATP 
into 30 μL of buffer solution containing HIT8 and HIT14 at 
different concentrations or DMSO (1 μL), CDK6/cyclin D3 
(0.20 nM), HEPES-Na (50 mM, pH 7.5),  MgCl2 (5 mM), 
biotin-pRb (773-924, 200 nM), BSA (0.05%), Tween-20 
(0.02%), and DTT (1 mM). Then, the reaction was quenched 
with EDTA-Na (120 mM, pH 8.0, 10 μL) and incubated for 
2 h. Following incubation of the detection solution (40 μL) 
containing Eu-W1024 anti-rabbit IgG antibody (2 nM), 
antiphospho-pRb (S780) antibody (143 ng/mL), and SA-
APC (40 nM) in detection buffer for 30 min, the plate lumi-
nescence was recorded with PE EnSpire. The  IC50 values 
were determined using GraphPad Prism Software.

Kinase panel screening

The best compound was subjected to kinase panel screening 
by Eurofins Pharma Discovery Services. The optimal com-
pound, HIT14, was tested for its ability to inhibit 105 kinases 
at a concentration of 2 μM. First, the reaction buffer, which 
contained 0.02% Brij35, 0.1 mM  Na3VO4, 10 mM  MgCl2, 
2 mM DTT, 1 mM EGTA, 0.02 mg/mL BSA, 1% DMSO, 
and 20 mM HEPES (pH 7.5), was prepared. Afterwards, 
the required cofactors were added to each kinase reaction 
separately as needed. In the enzyme reaction procedure, 
the required cofactors were added to fresh buffer solution, 
and then the selected kinases at a concentration of 20 μM 
were added. After gently mixing all the components, the 
test compound (HIT14) was dissolved in DMSO and added 
to the reaction mixture. 105-ATP (specific activity 500 μCi/
μL) was added to initiate the reaction, and the mixture was 
incubated at room temperature for 2 h. In the initial screen-
ing of over 105 kinases, HIT14 was tested by a single-dose 
duplicate prepared at a concentration of 2 μM. Staurosporine 
was used as a control compound in a 5-dose  IC50 mode with 
10-fold serial dilutions starting at 20 μM. The reaction was 
carried out with ATP at a concentration of 10 μM.

Molecular dynamic simulation

To identify accurate combination modes and the key amino 
acid residues for CDK6 inhibition, MD simulation studies 

were applied to the docked pose of the hits. MD simulations 
provide details regarding the motion of individual atoms in 
a molecule [30, 31]. MD simulations help sample the con-
figurational space with atomic force fields within nanosec-
onds, thus revealing molecular conformations and facilitat-
ing the evaluation of their interactions with water, ions or 
low-molecular-weight ligands. [32]. In the present study, the 
most promising candidate compounds were subjected to MD 
simulations. The solvation system including the solute and 
solvent water molecules necessary to neutralize the system 
was generated via the System Builder. The system was an 
explicit solvent with the TIP3P model in a cubic box. There 
were 10 Å buffer regions between intramolecular protein 
atoms and the box sides to specify the conformation and the 
size of the repeating unit. Moreover, 2  Na+ counter ions were 
added to neutralize the system, and 0.15 M NaCl solution 
was used to mimic the physiological environment. The com-
plex was restricted with a force constant of 1 kcal/mol Å2, 
and minimization was carried out using the limited memory 
Broyden–Fletcher–Goldfarb–Shanno algorithm with the ini-
tial steepest descent processed until the gradient threshold 
was 25 kcal/mol Å2. Similarly, the protein was restricted 
only at 0.1 kcal/mol Å2, and minimization was repeated. 
Furthermore, the system was gradually heated from 0 to 
300 K, with a force constant of 2.0 kcal/mol Å2 applied to 
the complexes throughout the heating process. Under the 
constant temperature/constant pressure ensemble, the limit-
ing force constant was gradually reduced, and the compos-
ites were sequentially simulated with force constants of 2.0, 
1.5, 1.0, 0.5, and 0.1 kcal/mol Å2 to simulate 500 ps. Since 
then, a 50-ns unrestricted molecular dynamics simulation 
was carried out with the OPLS3 force field in Schrödinger 
Desmond. Berendsen and Martina–Tobias–Klein barostats 
were used to maintain the isothermal-isobaric ensemble 
at 300 K and 1 atm. Moreover, short-term bonds or non-
bonding interactions could be obtained using the RESPA 
integrator with a time step at 2.0 fs. A long-range interac-
tion cut-off radius of 9 Å was used in combination with the 
smooth particle mesh Ewald summation. Finally, the struc-
tural and configurational trajectories were recorded every 
5 ps by visually inspecting the 3D structures.

Results and discussion

Protein preparation and binding site analysis

Seven cocrystal structures of different resolutions were 
retrieved from the PDB. The ligands contained diverse 
structural scaffolds. Protein preparation wizard was used 
to ensure the structural correctness of the proteins in the 
OPLS3 force field. The refined protein structures obtained 
are shown in Fig. S1. Through the Glide extra precise (XP) 
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docking model in Schrödinger, all the refined native ligands 
were docked at the respective prepared protein structures. 
As shown in Table 2, the protein with PDB-ID code 5L2S 
was selected for further docking studies since the 5L2S pro-
tein showed the highest identification ability with an aver-
age RMSD of 0.86 Å and a better SiteScore (1.108) and XP 
docking score for its native ligand (-12 kcal/mol) (Table S1).

E‑pharmacophore

The E-pharmacophore approach, integrating the pharmaco-
phore concept with protein–ligand XP energetic descriptions, 
was explored to generate the E-pharmacophore hypothesis. 
In this thesis, all the crystal structures of CDK6 were applied 
to develop the pharmacophore models. At least four out of 
seven pharmacophore sites were selected for matching. 
Information about these energetically beneficial sites, includ-
ing certain specific interactions, is potentially beneficial for 
the design of new inhibitors. The E-pharmacophore method 
was validated in terms of the RIE, ROC, and BEDROC 
parameters (alpha = 160.9, alpha*Ra = 13.0140; alpha = 8.0, 
alpha*Ra = 0.6471; alpha = 20.0, alpha*Ra = 1.6176, respec-
tively) based on the retrieval rate of the active ligands in 
the database containing inactive compounds. Overall, the 

enrichment analysis results indicated that the pharmacoph-
ore model is applicable for subsequent docking screening. 
As shown in Table 3 and Fig. 2, the best pharmacophore, 
called ‘hypothesis 3NUX’, presented good screening perfor-
mance with the highest RIE value (8.58), BEDROC value 
(above 0.84), and optical EF1% value (11.24). Moreover, in 
summary, this model can distinguish the active and inactive 
compounds well based on the receiver operating character-
istic (ROC) graphs (0.83) and area under the ROC curve 
(0.87). Therefore, hypothesis 3NUX (HDDRR; Fig. 2) was 
selected for subsequent database screening.

Ligand‑based pharmacophore

In view of the built-in pharmacophore features, a num-
ber of pharmacophore hypotheses with different features 
were developed and ranked by survival score, which took 
into account the vector, volume, survival inactive score, 
selectivity, and the number of matches [33]. Atom-based 
3D-QSAR studies were performed to validate and select 
the developed pharmacophore. As mentioned above, the 
initial data were randomly separated into training and test-
ing sets. Seventy-two compounds were in the training set 
used to develop the 3D-QSAR model, and the remaining 

Table 2  Cross-validation results 
using XP docking of Glide 
module

a Average RMSD values between native ligand poses and docking poses
b Standard deviation of these RMSD values

PDB-ID 3NUP 3NUX Native ligands from complexes Averagea SDb

4AUA 4EZ5 5L2I 5L2S 5L2T

3NUP 2.28 1.1 0.18 1.4 1.28 1.4 0.87 1.21 0.63
3NUX 2.27 2.49 0.17 2.4 0.52 0.97 1.81 1.52 0.96
4AUA 2.23 1.13 0.13 2.37 1.03 1.18 1.35 1.35 0.76
4EZ5 2.27 0.99 0.19 0.61 1.22 1.48 1.13 1.13 0.66
5L2I 2.29 1 0.17 1.4 0.99 0.88 2.46 1.31 0.81
5L2S 0.82 1.1 0.08 0.48 1.07 1.01 1.46 0.86 0.45

Table 3  Validation result of 
E-pharmacophore hypothesis

EF1% was defined as the ratio of the actives recovered and the faction of decoys was recovered at that 
point; BEDROC represented Boltzmann-enhanced discrimination receiver operator characteristic area; 
RIE is robust initial enhancement which weights with a continuously decreasing exponential term on active 
ranks; ROC represented receiver operator characteristic area under the curve; AUAC represented the area 
under the accumulation curve

Hypothesis EF1% BEDROC 
alpha = 160.9

BEDROC 
alpha = 20.0

BEDROC 
alpha = 8.0

RIE ROC AUAC 

3NUP 1.12 0.12 0.022 0.015 0.22 0.01 0.5
3NUX 11.24 0.90 0.865 0.841 8.58 0.83 0.87
4AUA 11.24 0.86 0.794 0.719 7.97 0.66 0.8
4EZ5 8.99 0.79 0.599 0.609 5.93 0.63 0.75
5L2I 12.36 1.00 0.79 0.723 7.83 0.68 0.80
5L2S 3.37 0.23 0.275 0.309 2.73 0.38 0.6
5L2T 12.36 1.00 0.708 0.600 7.02 0.52 0.74
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24 molecules were used as the test set to verify the gen-
erated model. In addition, the ‘leave more out’ (LMO) 
cross-validation method was applied to evaluate the pre-
dictive ability of the 3D-QSAR models. As a result, the 
best hypothesis code AADHRR.81 (Fig. 3a) was selected 
based on its good prediction of both the training and test 
sets with a high R2 value of 0.9362, a high Q2 value of 
0.8229, and a low SD value of 0.2984 (in Table 4). The 
distances between the pharmacophore features in the 
hypothesis are also shown in Fig. 3a, and the plots of the 
actual vs predicted activities of the compounds in the data-
set are depicted in Fig. 3b. As a consequence, hypothesis 
AADHRR.81 was selected for novel compound screening 
from the ChemDIV and ChemBridge databases.

Pharmacophore‑based virtual screening

The E-pharmacophore model and ligand-based pharmaco-
phore were combined to screen the databases. With dis-
tance matching tolerances of 2.0 Å, the identified mole-
cules were ranked on their fitness score (range from 0 to 3) 
with a cut-off > 1.7. The fitness score fully considered the 
alignment score, volume score, vector score, and RMSD 
of the aligned ligand. In the light of the two pharmaco-
phores described above, 108,736 and 37,201 compounds 
against CDK6 were screened from the compound libraries 
in parallel (Table 5).

Fig. 2  E-pharmacophore properties. a E-pharmacophore feature of 
3NUX, H7 represented hydrophobic site; R10, R11 represented aro-
matic ring; D4, D5 represented H-bond donor. b Distance of E-phar-

macophore features, c ROC curve of pharmacophore hypothesis 
3NUX, d EF1% of hypothesis
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Docking‑based virtual screening

The molecules with a high fitness score were deemed active 
inhibitors. Separated docking screening approaches were 
applied to reduce the false-positive rate. The retrieved 
compounds were further docked on the crystal structure 
of CDK6 (5L2S) using the built-in scoring function, and 
compounds with a docking score higher than -9.0 were fil-
tered from the virtual screening workflow. The number of 
hits retrieved from pharmacophore and molecular docking 
is presented in Table 5. Next, by further analysing the inter-
actions between these compounds and key residues, 147 
common compounds were identified and selected. Notably, 
these compounds interacted with the key VAL101 residue 
in the ATP-binding pocket [21, 22, 34]. The hits retrieved 
in this virtual screening workflow were subsequently com-
pared with the literature using the SciFinder database. Over-
all, 35 compounds that have not been reported to have with 

antitumour or kinase inhibitory effects were selected through 
this method.

IFD docking

Induced-fit docking (IFD) simulations were carried out using 
the novel 35 candidate molecules obtained from the docking 
simulations. The binding of each molecule to the protein 
was judged based on the IFD score, which was similar to the 
Glide XP score but with some differences. Although their 
conformations significantly different from those produced 
by rigid docking, the IFD scores, ranging from − 448.43 to 
− 524.29 kcal/mol (in Table S3), indicating a good binding 
model.

ADMET analysis

Analysis of the ADMET properties improves the quality of 
drug development by reducing costs, thereby increasing the 
success rate. In the present study, the ADMET properties 
of each candidate compound were analysed. As shown in 
Table S5, QP logPo/w and QPlogS were viewed as the first 
standards, representing the absorption and distribution of the 
drug within the body, respectively. Furthermore, QPPCaco, 
QPlogHERG, QPlogBB, and QPPMDCK are critical param-
eters. We explored whether the compounds violated the RO5 
parameter, and their advantageous pharmacogenetic proper-
ties revealed their potential as candidate hits. For instance, 3 

Fig. 3  a Measurement of 
AADHRRR.81 pharmaco-
phoric site, pharmacophore 
features were represented by 
light red sphere for hydrogen 
bond acceptor (A) with the 
arrows pointing in the direction 
of lone pairs, green sphere 
for hydrophobic regions (H), 
and orange torus for aromatic 
rings (R), b Scatter plot of the 
predicted activity  (pIC50) versus 
activity (experiment  pIC50) on 
PLS factor

Table 4  Statistical results of the 
best ligand-based hypotheses

Survival, the survival score of the hypotheses; Factors, number of factors in the partial least square regres-
sion model; SD, standard deviation of the regression; R2, value of R2 for the regression; R2

CV, cross-vali-
dated R2 value, computed from predictions obtained by a leave-N-out approach; Stability, stability of the 
model predictions to changes in the training set composition; RMSE, Root-mean-square error of the test 
set; Q2, value of Q2 for the predicted activities of the test set

Hypo-ID Survival Selectivity Factor SD R2 R2
CV Stability RMSE Q2

AADHRRR.81 3.727 2.819 5 0.2984 0.9362 0.8059 0.922 0.4534 0.8229

Table 5  Statistical results in a different procedure

Hypothesis-ID Total com-
pounds

Total 
screened

HTVS SP XP

3NUX 389,369 79,899 15,370 2263 27
3NUX 90,947 28,837 26,004 279 49
AADHRRR.81 90,947 22,039 19,858 103 43
AADHRRR.81 389,369 15,162 374 68 28
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hits (numbered C2, C3 and C23) violated one of Lipinski’s 
rules of five. In addition, some compounds, such as C23 and 
C30, showed undesirable water solubility. The skin perme-
ability of some compounds, such as C2, C3, C21, C23, and 
C28, needed to be improved. Consequently, 20 compounds 
with good pharmacokinetics and appropriate toxicological 
properties were identified.

Free binding energy

Post-docking Prime MM-GBSA was carried out to esti-
mate the complex-binding free energies (ΔGbind values) 
and elucidate the binding affinities. This method consid-
ered the effects of desolvation and thermodynamics [35]. 
The ΔGbind values varied slightly from those determined 
through docking, as various types of energy were considered. 
A Prime energy calculation produces the Prime Energy and 
in addition generates individual contributions to the energy 
of various types, such as coulomb energy, covalent binding 
energy, Van der Waals energy, and generalized Born electro-
static solvation energy. The coulomb interactions fluctuated 
because a mixture of charged and neutral residues was con-
sidered. The Vdw and Lipo values essentially accounted for 
VDW and hydrophobic interactions during inhibition. The 
molecules retrieved from the docking screening displayed 
good binding free energies, and some of these hits displayed 
ΔGbind values higher than that of the native ligand of 5L2S 
(− 59.409 kcal/mol) (Table S5). The hydrogen bond energy 
indicated the contributions of hydrogen bonds, which were 
significant in the interactions of some compounds, such as 
HIT3, HIT10, and HIT18, with the target protein. In general, 
the binding free energy calculation based on the Prime MM-
GBSA method also supports the stability of the HIT-CDK6 
complexes.

Anti‑tumour and kinase assay

The 20 compounds retrieved in this study were purchased, 
and a tumour suppression assay was carried out with a pri-
mary concentration of 30 µM. As shown in Table 6 and 
Fig. 4a, two compounds out of these showed cell inhibi-
tion relative to the control group in the concentration range 
of 1.875–30  μM, and their  IC50 values were 21.13  µM 
and 12.32 µM. Then, these two compounds were tested 
for their CDK6 kinase inhibitory potential at concentra-
tions of 10 µM, 5 µM, 2.5 µM, 1.25 µM, and 0.625 µM. 
A dose–response curve with increasing doses is shown 
in Fig. 4b. As a result, HIT8  (IC50 = 3.22 µM) and HIT14 
 (IC50 = 1.48 µM) could be promising hits for optimization 
against the CDK6 enzyme.

Thus, two inhibitors targeting CDK6 were obtained, and 
their binding modes are shown in Fig. 5. All of the dock-
ing results suggested that these compounds, which are 

structurally distinct, were located in the ATP-binding pocket, 
and they may show specific ATP competitive binding. Simi-
lar to previous reports, each compound formed one or more 
hydrogen bonds with the VAL101 residue [21, 22, 34]. As 
plotted in Fig. 5a, b, the novel compound HIT8 formed a 
H-bond with the main chain NH and the backbone carbonyl 
of VAL101, and the distal benzene of HIT8 reached a more 
polar and solvent-exposed region in the ATP-binding pocket, 
which consisted of amino acid residues such as ASP104 and 
THR107. Compared with the binding modes of the crystal-
lized ligand of 5L2S (the structure is shown in Table 1), 
both the key hydrogens in the hinge region and the key inter-
actions with the core of the scaffold were maintained. As 
shown in 5C and 5D, there were two hydrogen bonds with 
the key amino acid VAL101. In addition, the distal benzene 
of HIT14 can reach a more polar and solvent-exposed region 
and form a polar interaction with ASP104 and THR107. 
Their binding model also suggested that the polar group-
substituted benzene ring may enhance the strength of the 
H-bond with the amino acids LYS43 and ASP163, which 
might stabilize the protein–ligand binding model. The above 
molecular docking analyses revealed that the identified hits 
had excellent binding modes with the target protein and 
would provide meaningful lead compounds for novel CDK6 
inhibitor discovery.

Kinase panel screening

To investigate the possible kinase inhibitory activity of the 
new compound, HIT14 was tested against a panel of 105 
different kinases at Eurofins Pharma Discovery Services. 
The screening results revealed remarkable inhibitory activ-
ity against CDK6 kinase. The compound was initially tested 
at a single-dose concentration of 2 μM. At this concentra-
tion, 78% inhibition of the enzymatic activity of CDK6 

Table 6  Statistics data of retrieved hits in primary screening

NO. Compounds retrieved in silicon; mean, mean inhibition rate from 
three parallel measurements; SD, standard error of the mean from 
three parallel measurements

NO. Mean SD NO. Mean SD

HIT1 28.03572 0.013 HIT11 46.52571 0.0157162
HIT2 9.107142 0.0030551 HIT12 − 8.035714 0.0064291
HIT3 8.928572 0.0041633 HIT13 1.071429 0.0077675
HIT4 − 8.75 0.0178979 HIT14 63.58429 0.0086603
HIT5 19.10714 0.0083865 HIT15 − 8.571428 0.0168028
HIT6 4.107143 0.0152753 HIT16 4.464286 0.008544
HIT7 21.07143 0.0075498 HIT17 28.92857 0.0140119
HIT8 56.76638 0.0041633 HIT18 13.57143 0.0060828
HIT9 5 0.0017321 HIT19 7.321429 0.0106927
HIT10 5.535714 0.0060828 HIT20 − 4.285714 0.0081445
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kinase was observed. Since CDK4 and CDK6 have exten-
sive homology, this novel compound also inhibited CDK4 
(Fig. 6, Table 7).

Molecular dynamic simulation

The binding pocket primarily comprised ILE19, GLU21, 
TYR24, VAL27, ALA41, LYS43, PHE98, GLU99, HIS100, 
VAL101, ASP102, GLN103, ASP104, ASP145, LYS147, 
GLN149, ASN150, LEU152, and ALA162. The best 

compound, HIT14, the binding mode of which is shown in 
Fig. 5c, d, was selected for the MD study. Compared with 
molecular docking, MD simulations provide a more accurate 
estimation of binding affinities and binding poses, as it is 
focused on the dynamic aspects of different protein confor-
mational stages, namely, snapshots. It was observed that the 
novel compound formed stable interactions with the CDK6 
protein in the 50 ns MD simulations. As shown in the RMSD 
plot (Fig. 7A), although fluctuations occurred, which may 
be caused by intramolecular H-bond interactions (seen in 

Fig. 4  Inhibition effects of 
HIT8 and HIT14 a cell inhibi-
tion of HIT8 and HIT14, b 
graph plot of CDK6 inhibition

Fig. 5  3D and 2D map of the binding pose of the best 2 compounds from IFD docking results
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Figure S3), the protein was stable approximately 2 ns after 
the simulation, and the system finally reached equilibrium. 
Multiple H-bonds between the ligand and VAL101 were 
detected in the MD simulations (Fig. 7b, c). In addition, 
hydrogen bonds between the CDK6 protein and ILE19 
and GLN149 mediated by a water molecule were detected. 
Other amino acid residues showed hydrophobic interac-
tions with the ligands. In addition to hydrophobic contacts, 
there existed additional hydrogen bonds to HIS100 and a 
water bridge to ILE19 (Fig. 7b). Additionally, H-bonds with 

VAL101 were present for over 50% of the MD simulation 
time, and the water bridge with GLN149 and π-π stacking 
with PHE98 occurred in 11% and 24% of the total simula-
tion time, respectively (Fig. 7c). From the above analysis, 
it could be concluded that compounds stably bound in the 
ATP-binding pocket of the CDK6 protein, and VAL101 was 
significant for protein–ligand stabilization.

Conclusion

In summary, two novel CDK6 inhibitors with diverse struc-
tures have been identified from the compound libraries 
ChemDiv and ChemBridge, which contain 50,000 drug-like 
compounds, through an approach combining structure-based 
and ligand-based computational studies. The computational 
methods were applied in parallel to fetch a maximum num-
ber of compounds from each independent methodology. 

Fig. 6  Summary of kinase 
inhibitory profile of HIT14 
at 2 μM over a panel of 105 
kinases

Table 7  Summary of kinase inhibitory profile of the new agent 
HIT14 at 2 μM over a panel of 105 kinases

Kinase % inhibition Kinase % inhibition

CDK4/cyclinD3 52 17 kinases 26–50
CDK6/cyclinD3 78 Others < 25

Fig. 7  Protein ligand interaction in MD simulation a RMSD of complex 14, b stacked bar charts of protein–ligand 14, c ligand atom of hit14 
interactions with the protein residues
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The availability of X-ray crystal structures and a number of 
known inhibitors of CDK6 provide a gateway for performing 
efficient in silico studies models on this target.

In this study, energetically optimized pharmacophore 
models were generated on the cocrystal structures of all 
proteins and validated via datasets containing active and 
inactive compounds. As a consequence, the pharmacoph-
ore hypothesis derived from the crystal structure coded 
3NUX (HDDRR) displayed good identification ability with 
an RIE value of 8.58 and BEDROC values of 0.90, 0.865, 
and 0.841. Furthermore, the model could distinguish active 
compounds from inactive compounds because the ROC and 
AUCU were up to 0.8. In addition, ligand-based pharmaco-
phore code AADHRRR.81, which had the highest survival 
score (3.727), R2 value (0.9362), and Q2 value (0.8229) 
and a low SD value (0.2984), was generated and selected. 
After that, to retrieve the maximum number of compounds, 
these hypothesis models were used to screen the libraries 
in parallel. Then, a multilayer molecular docking screening 
workflow was performed to screen the compounds retrieved 
from the pharmacophore model. To obtain the maximum 
sensitivity (true positive rate) of the model, the compounds 
screened from the E-pharmacophore and 3D-QSAR phar-
macophore models were separately subjected to molecular 
docking during the virtual screening process. In this pro-
cess, a total of 20 new compounds with the characteristics of 
good pharmacophore features, ADMET properties, reliable 
binding modes and scaffold diversity were screened. These 
compounds were selected for the in vitro antitumour assay 
and CDK6 kinase inhibition assay, and their structural diver-
sity and molecular interactions with key amino acids in the 
target were considered. This resulted in the identification of 
two structurally distinct CDK6 inhibitors with  IC50 values 
in the range of 1.48–3.22 μM. The 2 lead compounds both 
showed H-bonds and solvent exposures similar to the native 
inhibitor and provide a good platform for lead modification 
and optimization.

The kinase panel screening of the best hit revealed that it 
could inhibit CDK6. Despite its inhibitory effect on CDK4, 
the compound showed good selectivity towards other target 
kinases. Molecular dynamics studies of these hits suggested 
that VAL101 was the pivotal residue for stable ligand bind-
ing within the pocket, which has been reported in several 
earlier studies. The potent CDK6 inhibitors screened in this 
combined methodology validate the feasibility and robust-
ness of combined models and multilayer screening work-
flows. The structural moieties identified in this study could 
be further explored by medicinal chemistry for designing 
specific and potential CDK6 inhibitors.
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