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Abstract

An efficient, eco-friendly protocol has been described for the chemoselective synthesis of tetracyclic pyrido-fused diben-
zodiazepines derivatives via catalyst-free, three-component reaction of dimedone, 1,2-diamines, 3-formylchromones, and
malononitrile. The significant advantages of this cascade approach are to create two new rings and four new ¢ bonds contain-
ing three C—N and one C—C bond, as well as the breakdown of a C—O bond.
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Introduction

Dibenzo-[1,4]diazepines are seven-membered heterocyclic
compounds containing two nitrogen atoms. These molecu-
lar scaffolds are the essential core of many biological com-
pounds [1]. They display excellent medicinal properties
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such as HIV protease inhibitors [2], hepatitis C virus (HCV)
NS5B, polymerase inhibitors [3], cystathionine f-synthase
inhibitors [4], neuromedin B receptor antagonist [5], antima-
larial [6], antitumor [7], analgesic [8], and antitrypanosomal
[6].

The modification of dibenzo-[1,4]diazepines from
1,4-diazepine fragment has been prominent in the synthe-
sis of tetracyclic systems. Accordingly, various derivatives
have been synthesized according to their therapeutic prop-
erties, including pyrido[2,3-b]benzo-1,4-diazepines and
dipyrido[3,2-b:2,3-¢]-1,4-diazepines [9].

Further, fused heterocycle to diazepine nitrogen leads to
bioactive properties [10]. For example, pyridooxazepines
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are progesterone receptor modulators that are used in contra-
ception, hormone replacement therapy (HRT), treatment of
gynecological disorders, and cancer [11]. Pyridodiazepines
are non-steroidal glucocorticoid receptor with anti-inflam-
matory activity [12]. Pyrrolo-1,5-benzoxazepines are also
used to induce apoptosis in acute lymphoblastic leukemia
cells [13]. Altogether, these structures improve the tendency
toward the cholecystokinin (CCK?2) receptor involved in the
pathological situation [14]. Some representative benzodiaz-
epines that fused to heterocycles are shown in Fig. 1.

Accordingly, due to the therapeutic significance of diben-
zodiazepines, various synthetic methods have been reported
in the literature [1, 15-23]. However, the synthesis of the
fused-heterocyclic compound containing dibenzodiazepines
backbone is underdeveloped [24]. Pyrido-fused dibenzo-
diazepines were synthesized through a multistep strategy
coupling/reduction/N-formylation/ring-closing/hetero-
Diels—Alder sequence [12]. But, this procedure employs a
multistep method, a toxic reducing reagent, and harsh reac-
tion conditions for the synthesis of tetracyclic compounds
[11]. So, developing an efficient approach for rapid access to
tetracyclic structures using cascade reactions is remarkable.

There are two conventional approaches for the synthesis
of dibenzodiazepines, which involve: 1. enaminones which
obtained from the reaction of 1,3-dicarbonyl and o-phe-
nylenediamines were treated with aldehydes in the presence
of acetic acid under reflux [21, 25]; 2. o-phenylenediamines
were added to Michael adduct intermediate of the reaction
of aldehyde and dimedone [26].

Fig. 1 The structure of ben-
zodiazepines fused with some
heterocyclic moieties
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Due to the ease and high efficiency of these methods,
dibenzodiazepine can be considered as the primary core, and
pyrido moiety can be attached to the two remaining positions
of the seven-membered ring.

In addition, the Knoevenagel reaction, which is widely
used for C=C bond formation, is based on nucleophilic addi-
tion in which the active hydrogen compound is added to the
carbonyl functional group along with the removal of water.
In our laboratory, a broad range of heterocyclic compounds
has been synthesized based on Knoevenagel condensation
[27-34].

The intermediate obtained from 3-formylchromones
and malononitrile has three electrophilic sites: 1. carbon 4
atom, which belongs to the carbonyl group; 2. carbon atom
2, which is considered as a hidden aldehyde; and 3. the Kno-
evenagel C=C bond. So, in the reaction with enaminone,
these different possible pathways may result in various prod-
ucts. Inspired by these facts, we were interested in examining
the reaction of Knoevenagel adduct as a suitable substrate
with enaminone without using any catalyst or strong acid
in relatively short reaction time. So, we commenced our
investigation of the catalyst-free multi-component reaction
of dimedone, 1,2-diamines, 3-formylchromones, and malo-
nonitrile (Scheme 1).

An extensive literature survey revealed that the ben-
zylidene-malononitrile substrates, the double bond of Kno-
evenagel adduct intermediate, undergo Michael addition
reaction to produce benzimidazo[1,2-a]quinoline [35]. Nev-
ertheless, in our approach, the pyrone position is selectively
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Scheme 1 One-pot cascade strategy for the generation of dibenzo[b,flpyrido[1,2-d][1,4]diazepines

attacked, and the double bond made by Knoevenagel con-
densation is ultimately involved in the enlarging of the ring
underreacting with an amine group and forms a tetracyclic
compound. Therefore, this reaction is beneficial due to the
formation of a pyrido-fused dibenzodiazepine via Knoev-
enagel adduct intermediate.

Results and discussion

Inspired by the above results, we became attracted to know
the condition, which leads to the reaction of enaminone 4
with Knoevenagel adduct 5. For this purpose, initially, we
explored the reaction of 3-formylchromones with malo-
nonitrile at room temperature in the mixture of H,O and
EtOH to make the Knoevenagel adduct intermediate. Next,
the sequential addition of enaminone gave us dibenzo[b,f]
pyrido[1,2-d][1,4]diazepine in 35% yield. Later, in order to
improve efficiency and to facilitate the formation of enami-
none via grinding under solvent-free conditions at 80 °C,
the sequential one-pot reaction continued under the same
conditions. However, this method was not effective because
of low efficiency and difficulties in purification.

The scope of the methodology was optimized under dif-
ferent solvents. Because of the low synthesis efficiency of
enaminone in all solvents but ethanol, the reaction was done
in ethanol, and the best yield was obtained. Gratifyingly, the
new tetracyclic pyrido-fused benzodiazepines 3a—3h were
reached in 70-90% yields at room temperature. To opti-
mize the reaction time, we repeated the reaction in ethanol
at reflux. We successfully observed that the products were
formed in a shorter time of 8 h (instead of 3 days) (Table 1).

Having the optimal conditions in hand, we then examined
the scope of the reaction between substituted enaminone
substrates and 3-formylchromones derivatives. As shown
in Table 2, we synthesized tetracyclic compounds from
straightforward and available starting materials. It is worth
noting that the electron-withdrawing or -donating moieties

on the aromatic rings had no significant effect on the overall
efficiency.

Putting the chlorine atom on the chromone ring in the
starting material was also assisting the hydrolysis of the
nitrile group. It resulted in the formation of amide in the
final step. Because phenol is a weak acid, electron-with-
drawing substituents on the ring make phenolate ion more
stable and phenol more acidic through the delocalization
of the negative charge and inductive effects. As a result,
due to the presence of chlorine and ketone substituents on
the 6-chloro-3-formylchromone moiety, the intramolecular
proton transfer is provided, and the amino vicinal electron-
donating substituent also accelerates the reaction conditions
for the hydrolysis of nitrile group. The structure of repre-
sentative compound 3d was established from single-crystal
X-ray analysis and is depicted in Fig. 2.

The mass spectrum of 3d displayed a molecular ion
peak at m/z=>504.16, which was compatible with a 1:1:1:1
adduct of 6-chloro-3-formylchromone, malononitrile, dime-
done, and o-phenylenediamine. The '"H NMR spectrum of
3d showed signals in the aliphatic regions related to two
methyl groups (6=0.96 and 0.99 ppm) and two methylene
groups (6=1.94, 2.14 ppm). Both the 6-membered hetero-
cyclic hydrogens peak appear as a singlet signal. The aryl
moieties give typical signals in the aromatic region. Also,
two singlet signals in §=9.23 and 6=9.97 ppm showed
the protons of an amide and phenolic O-H, respectively. In
the carbon spectrum, 27 particular resonances are consist-
ent with the structure of the dibenzo[b.flpyrido[1,2-d][1,4]
diazepine 3d. Carbonyl carbon and amide groups resonated
at 6=189.36, 6=193.82, and 6=171.12.

The plausible mechanism of this chemoselective cascade
reactions is proposed, as shown in Scheme 2. At first, the
3-formylchromone 1a undergoes Knoevenagel condensation
with malononitrile to give adduct 5. Also, the condensation
of dimedone with o-phenylenediamine 2a forms enaminone
4. The selective nucleophilic addition of 4 to the pyrone ring
may create an open-chain intermediate 6. This cascade reac-
tion would proceed with nucleophilic substitution of amine
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Table 1 The optimization
conditions for the synthesis of 3

(0]
(0]
R1 CNO. OHN EtOH
+ + —_— >
CN reflux
o) HoN R?
Me
1 2
Entry* Solvent Substrate® Temp (°C) Time (h) Yield! (%)
1* H,O/EtOH 6-Cl-3-formylchromone r.t. 72 35
2° H,O/EtOH 6-Cl-3-formylchromone 80 7 35
3 Solvent free 6-ClI-3-formylchromone 80 10 -
4 EtOH 6-Cl-3-formylchromone r.t. 65 84
5¢ EtOH 6-Cl-3-formylchromone 80 8 84
6 H,O/EtOH 3-formylchromone r.t. 60 25
7 H,O/EtOH 3-formylchromone 80 5 25
8 EtOH 3-formylchromone r.t. 68 83
9 EtOH 3-formylchromone 80 83

‘We successfully observed that the products formed in a shorter time of 8 h (instead of 3 days). The best

results were highlighted in bold

#All runs were performed on a 1-mmol scale

®In H,0/EtOH, the first step was completed in 10 min at room temperature and then in 3 days under the

same conditions

“In H,O/EtOH, the first step was completed in 10 min at room temperature; then, the reaction temperature
ranged from room temperature to 80 °C

4Under the same condition, by changing the substrate, it did not have much effect on yield

¢ After reducing the solvent volume, the product was purified by recrystallization

to the f-position of the ketone carbonyl. The enlarging the
number of rings is continued, possibly with the subsequent
addition of the amino group of the diazepine to the C=EN
triple bond.

Imine group of intermediate 8 would convert to an amine
by a [1, 3]-H shift, and the desired product of pyrido-fused
dibenzodiazepine 3 may be formed.

In conclusion, we have investigated a catalyst-free three-
component reaction of dimedone, 1,2-diamines, 3-formyl-
chromones, and malononitrile for selective synthesis of
dibenzo[b flpyrido[1,2-d][1,4]diazepine derivatives. Since
most of the fused seven-member heterocyclic compounds
are prepared using a catalyst, or in microwave condition, the
substrate type can provide the conditions for the catalyst-
free reaction. In previous catalytic systems, aldehydes have
been used as a substrate. We disclosed that the generated
Knoevenagel adduct would act as a soft electrophile and
initiate a novel cascade sequence. The pyrone ring can also
undergo ring-opening and secondary cyclization reactions.
Other advantages of this method are that all starting materi-
als are presented in the product without any metal catalyst, a

@ Springer

green reaction medium, ethanol, is used, and the purification
is performed without chromatography.

Experimental

Melting points were measured on an Electrothermal 9100
apparatus. Elemental analyses for C, H, and N performed
using a Heraeus CHN-O-Rapid analyzer. IR spectra were
recorded as KBr pellets on a NICOLET FTIR 100 spectrom-
eter. Mass spectra were recorded on a FINNIGAN-MATT
8430 mass spectrometer operating at an ionization poten-
tial of 70 eV. '"H NMR (500 MHz) 'H NMR (300 MHz)
and '>*C NMR (125 MHz) '3C NMR (75 MHz) spectra were
obtained using Bruker DRX-500 AVANCE and Bruker
DRX-300 AVANCE spectrometers. All NMR spectra at
room temperature were recorded in DMSO-d,. Chemical
shifts are reported in parts per million (6) downfield from
an internal tetramethylsilane reference. Coupling constants
(J values) are reported in hertz (Hz). The following symbols
indicate spin multiplicities: brs (broad singlet), s (singlet),
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Table 2 Synthetic approach to dibenzo[b,f]pyrido[1,2-d][1,4]diazepines

R! CNO., O H,N
S
+ +
CN
() HoN

(0]
EtOH
—_—
reflux
R2

Me 3a, 83%

Me

3d, 84%

Me 3g, 70%

Me’
Me  3f,77%

Me 3h, 79%

d (doublet), t (triplet), td (triplet of doublets), dd (doublet
of doublets), and m (multiplet). All chemicals were pur-
chased from Merck or Aldrich and were used without further
purification.

Dibenzolb,f]pyrido[1,2-d][1,4]diazepine; general
procedure

The solution of dimedone (1 mmol) and 1,2-diamines
(1 mmol) in EtOH was magnetically stirred at reflux for
1.0 h. Subsequently, the resulting enaminone was reacted
with Knoevenagel adduct derived from 3-formylchromone

(1 mmol) and malononitrile (1 mmol). Upon completion
(50-60 min) as monitored by TLC, the reaction mixture was
filtered to give the crude product, which was further washed
with EtOH to obtain pure product.

4-Amino-1-(2-hydroxybenzoyl)-12,12-dimethyl-14-oxo-10
,11,12,13,14,14b-hexahydrodibenzo[b,f]pyrido[1,2-d][1,4]
diazepine-3-carbonitrile (3a, C,;H,,N,05)

Yellow powder, mp=223-226 °C, 0.5 g, yield: 83%. IR

(KBT) (V0 cm™): 3317 (NH,), 3052 (CH), 2215 (CN),
1713 and 1632 (C=0), 1582 and 1483 (Ar). Anal. Calcd. for
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Fig.2 ORTEP diagram for the tetracyclic compound of 3d

C,;H,,N,0;5 (452.18): C, 71.67; H, 5.35; N, 12.38%. Found:
C, 71.60; H, 5.26; N, 12.29%. MS (EI, 70 eV): m/z (%) =452
(12), 437 (26), 384 (18), 355 (21), 302 (21), 282 (100), 254
(32), 191 (29), 132 (29). '"H NMR (400.13 MHz, DMSO-
dg): 6y 1.01 (6H, s, 2 CH3), 2.00 (1H, d, 2Jyy=16.0 Hz,
CH,), 2.20 (1H, d, *Jyy=16.2 Hz, CH,), 2.51 (2H, AB,,

2Jqu=16.5 Hz, CH,), 5.60 (1H, s, CH'*"), 6.63 (2H, bs
NH,), 6.64-7.34 (8H, m, 8 CH of Ar), 7.15 (1H, s, CH?),
9.34 (1H, s, NH), 9.94 (1H, s, OH). '>C NMR (100.00 MHz,

Knoevenagel
condensation

NH2

‘U
*ﬁ“ @ *s

~[1,3]H-shift l
HN

DMSO-dy): 6 27.12 (CH3), 27.59 (CH,), 30.95 (C'?),
44.66 (CH,), 50.94 (CH,), 56.73 (CH'*), 62.40 (C%),
110.81 (C'#%), 116.43 (CH of Ar), 116.78 (C!), 118.70 (CH
of Ar), 120.39 (CN), 121.54 (CH®), 123.19 (CH®), 124.89
(C;s—C=0), 126.71 (CH’), 128.61 (CH®), 129.99 (CH of
Ar), 131.12 (CH of Ar), 131.30 (CH?), 137.50 (C°%), 139.41
(C3), 155.63 (C'%), 157.52 (C*-NH,), 157.52 (C-OH),
190.39 (C=0), 193.56 (C=0).

4-Amino-1-(2-hydroxybenzoyl)-8,12,12-trimethyl-14-oxo-1
0,11,12,13,14,14b-hexahydrodibenzo[b,flpyrido[1,2-d][1,4]
diazepine-3-carbonitrile (3b, C,5H,¢N,05)

Yellow powder, mp=252-254 °C, 0.5 g, yield: 75%. IR
(KBr) (v,,,,» cm™): 3353 (NH,), 3000, 2931, and 2851
(CH), 2187 (CN), 1752 and 1650 (C=0), 1580 and 1488
(Ar). Anal. Calcd. for C,gH,,N,O5 (466.54): C, 72.09; H,
5.62; N, 12.01%. Found: C, 71.99; H, 5.59; N, 11.99%. MS
(EL 70 eV): m/z (%) =465 (66), 450 (71), 399 (66), 315
(100), 243 (35), 221 (66), 186 (68), 145 (91), 121 (67), 57
(67). "H NMR (400.13 MHz, DMSO-d): &, 0.96 (3H, s,
CH;), 1.01 (3H, s, CH3), 1.95 (1H, d, 2Jiy;= 16.0 Hz, CH,),
2.17 (1H, d, %Jyy;= 16.5 Hz, CH,), 2.24 (3H, s, CH;), 2.26
(1H, d, 2Jy3=16.0 Hz, CH,), 2.49 (1H, d, %J;y;=16.0 Hz,
CH,), 5.55 (1H, s, CH'*), 6.57 (1H, s, CH), 6.85 (1H, d,
3Jyn=38.2 Hz, CH®), 6.87 (1H, t, *J;y;;=7.9 Hz, CH of Ar),
6.88 (1H, d, *J;;;=7.9 Hz, CH’), 6.95 (2H, bs, NH,), 7.13
(1H, s, CH?), 7.23 (1H, d, *J;;;=8.2 Hz, CH of Ar), 7.30
(1H, t, *Jyy;;="7.7 Hz, CH of Ar), 7.38 (1H, d, *J;;;=7.5 Hz,
CH of Ar), 9.27 (1H, s, NH), 9.90 (1H, s, OH). 13C NMR

imine-enamine
tautomerization

OO % F
3
Me HO

Me

Scheme 2 The probable mechanism for the generation of 3a
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(100.00 MHz, DMSO-dy): 6. 19.99 (CH3), 27.07 (CH;),
27.62 (CH;), 30.91 (C'?), 44.66 (CH,), 50.95 (CH,), 56.72
(CH'), 62.30 (C?), 110.20 (C'**), 116.43 (CH of Ar),
116.78 (Ch), 118.69 (CH of Ar), 120.39 (CN), 121.40 (CH®),
124.90 (C,,,,~C=0), 126.75 (CH?), 129.34 (CH®), 129.91
(CH of Ar), 130.98 (C,,,,~CHj), 131.24 (CH of Ar), 132.66
(CH?), 136.82 (C°%), 137.40 (C>%), 155.51 (C'%%), 157.37
(C*-NH,), 157.51 (C-OH), 190.29 (C=0), 193.39 (C=0).

4-Amino-8-chloro-1-(2-hydroxybenzoyl)-12,12-di-
methyl-14-0x0-10,11,12,13,14,14b-hexahydrodiben
zo[b,f]pyrido[1,2-d][1,4]diazepine-3-carbonitrile (3¢,
C37H,3CIN,O5)

Yellow powder, mp=265-267 °C, 0.5 g, yield: 67%. IR
(KBr) (v, cm™1): 3339 (NH,), 3116, 2958, and 2869 (CH),
2179 (CN), 1604 (C=0), 1577 and 1487 (Ar). Anal. Calcd.
for Cp;H,;CIN,O; (486.15): C, 66.60; H, 4.76; N, 11.51%.
Found: C, 66.57; H, 4.73; N, 11.49%. MS (EL 70 eV): m/z
(%) =486 (91), 471 (100), 429 (29), 389 (58), 336 (19), 313
(26), 249 (29), 222 (26), 193 (45), 166 (58), 121 (68), 92
(39), 65 (35). "H NMR (400.13 MHz, DMSO-dy): 6,; 0.96
(3H, s, CH3), 1.01 (3H, s, CH3), 1.96 (1H, d, 2/, =16.0 Hz,
CH,), 2.19 (1H, d, *Jyy=16.2 Hz, CH,), 2.49 (2H, AB,,
2Jyy = 16.5 Hz, CH,), 5.54 (1H, s, CH!*), 6.58 (1H, s,
CH?), 6.86 (1H, d, *J;;;;=8.0 Hz, CH of Ar), 6.87 (1H, t,
3Jy=8.7 Hz, CH of Ar), 7.08 (2H, bs, NH,), 7.15 (1H, s,
CH?), 7.26 (1H, d, 3J;;;;=9.0 Hz, CH of Ar), 7.30 (1H, t,
3Jyn="7.8 Hz, CH of Ar), 7.31 (1H, d, *J;;;;=8.5 Hz, CH’),
7.35 (1H, d, *Jyy; =8.5 Hz, CHS), 9.36 (1H, s, NH), 9.86
(1H, s, OH). '*C NMR (100.00 MHz, DMSO-dy): 6 27.21
(CH3), 27.45 (CH;), 30.98 (C'?), 44.54 (CH,), 50.91 (CH,),
56.61 (CH'Y), 62.57 (C3), 111.18 (C'*%), 116.42 (CH of
Ar), 116.96 (C"), 118.66 (CH of Ar), 120.24 (CN), 122.80
(CH®), 124.84 (C,,,,~C=0), 126.27 (C,,,~Cl), 126.43
(CH®), 128.56 (CH"), 129.91 (CH of Ar), 131.27 (CH of
Ar), 132.42 (CH?), 137.52 (C*), 138.57 (C®), 155.56 (C'%%),
157.19 (C*-NH,), 157.39 (C-OH), 190.32 (C=0), 193.59
(C=0).

4-Amino-1-(5-chloro-2-hydroxybenzoyl)-12,12-dime-
thyl-14-0x0-10,11,12,13,14,14b-hexahydrodibenzo-
[b,flpyrido[1,2-d][1,4]diazepine-3-carboxamide (3d,
C,;H,5CIN,O,)

Yellow powder, mp=261-263 °C, 0.5 g, yield: 75%. IR
(KBT) (U cm™1): 3378, 3310 (NH,), 3125, 2955, and
2869 (CH), 1722, 1668, and 1601 (C=0), 1561 and 1499
(Ar). Anal. Calcd. for C,;H,5;CIN,O, (504.16): C, 64.22;
H, 4.99; N, 11.10%. Found: C, 64.19; H, 4.79; N, 11.01%.
MS (EL 70 eV): m/z (%)=504 (1), 487 (10), 444 (10),
403 (11), 274 (11), 230 (13), 197 (100), 173 (40), 154
(52), 132 (53), 83 (60), 55 (78). 'H NMR (400.13 MHz,

DMSO-dy): 6 0.96 (3H, s, CH3), 0.99 (3H, s, CH;), 1.94
(1H, d, 2Jy;=16.0 Hz, CH,), 2.14 (1H, d, %Jyy;=16.1 Hz,
CH,), 2.49 (2H, AB,, *Jyy=16.4 Hz, CH,), 5.52 (1H, s,
CH!*), 6.46 (4H, bs, 2 NH,), 6.85 (1H, d, *J;;;=8.8 Hz,
CH of Ar), 7.04 (1H, t, *Jy;=7.6 Hz, CH®), 7.09 (1H, s,
CH?), 7.14 (1H, dd, 3/ =8.5 Hz, *Jyy=1.5 Hz, CHS),
7.26 (1H, dd, *Jy, =8.8 Hz, *Jyy=2.7 Hz, CH of Ar),
7.31 (1H, td, *Jyu =7.0 Hz, *Jyy=1.6 Hz, CH’), 7.38
(1H, d, 3Jyy=8.3 Hz, CH®), 7.40 (1H, d, *Jy,;=2.7 Hz,
CH of Ar), 9.23 (1H, s, NH), 9.97 (1H, s, OH). '3C NMR
(100.00 MHz, DMSO-d): 6. 27.74 (CH;), 28.06 (CH;),
31.42 (C'%), 45.10 (CH,), 51.57 (CH,), 60.70 (CH!*"),
85.56 (C3), 112.10 (C'**), 115.12 (CY), 118.38 (CH of Ar),
121.86 (CH®), 122.67 (CH%), 123.54 (C, ,,~C=0), 127.54
(CH'), 128.42 (C,,,,—Cl), 128.89 (CH®), 129.55 (CH of
Ar), 130.36 (CH of Ar), 131.34 (CH?), 135.89 (C%%), 140.06
(C3), 154.73 (C*-NH,), 157.25 (C'*%), 158.22 (C-OH),
171.12 (CO,NH,), 189.37 (C=0), 193.82 (C=0). Crystal
data for 3d C,,H,,CIN,O5 (CCDC 1970238): My, =575.55,
orthorhombic, P 21 21 21, a=9.7052(19) A, b=13.015(3)
A, ¢=19.712(4) A, «=90,00, #=90,00, y=190,00,
V=2489.9(9) A®, Z=4, Dc =1.395 mg/m?, F(000)= 1096,
crystal dimension 0.25x%0.20x0.15 mm, radiation, Mo
Ka (A=0.71073 A), 2.1 <20<25.0, intensity data were
collected at 293.15 K with a Bruker APEX area-detector
diffractometer, and employing w/26 scanning technique,
in the range of — 11 <h<11, — 15<k<15, - 23<1<21;
the structure was solved by a direct method, all non-
hydrogen atoms were positioned, and anisotropic thermal
parameters refined from 4325 observed reflections with R
(into) =0.0750 by a full-matrix least-squares technique con-
verged to R1=0.0490, and wR2=0.1234 [/ > 2sigma(/)].

4-Amino-1-(5-chloro-2-hydroxybenzoyl)-8,12,12
-trimethyl-14-o0x0-10,11,12,13,14,14b-hexahydrodiben
zo[b,f]pyrido[1,2-d][1,4]diazepine-3-carboxamide (3e,
CgHa7CIN,O,)

Yellow powder, mp=266-267 °C, 0.5 g, yield: 75%. IR
(KB1) (Upaxs cm™Y): 3477, 3438, 3347, and 3313 (NH,),
3123, 2956, and 2867 (CH), 1648 and 1602 (C=0), 1559
and 1481 (Ar). Anal. Calcd. for C,gH,,CIN,O, (519.00):
C, 64.80; H, 5.24; N, 10.80%. Found: C, 64.73; H, 5.11; N,
10.69%. MS (EI, 70 eV): m/z (%)=518 (1), 485 (4), 293
(10), 274 (8), 244 (26), 230 (50), 211 (49), 187 (80), 173
(30), 146 (100), 126 (16), 83 (24). '"H NMR (400.13 MHz,
DMSO-dq): 6 0.96 (3H, s, CH3), 0.99 (3H, s, CH;), 1.94
(1H, d, *Jyy=16.2 Hz, CH,), 2.14 (1H, d, 2/ =16.0 Hz,
CH,), 2.26 (3H, s, CH,), 2.48 (2H, AB,, *Jyy=16.4 Hz,
CH,), 5.53 (1H, s, CH'*), 6.46 (4H, bs, 2 NH,), 6.86 (1H,
d, 3J,;;=9.3 Hz, CH of Ar), 6.98 (1H, s, CH®), 7.09 (1H,
s, CH?), 7.13 (1H, d, *J,;=8.1 Hz, CH®), 7.25 (1H, d,
3Jyn=38.9 Hz, CH of Ar), 7.29 (1H, d, *J;;;;=8.9 Hz, CH?®),
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7.41 (1H, s, CH of Ar), 9.14 (1H, s, NH), 10.0 (1H, s, OH).
13C NMR (100.00 MHz, DMSO-dy): 6. 20.51 (CH3), 27.69
(CH;), 28.12 (CH3;), 31.38 (C'?), 45.16 (CH,), 51.58 (CH,),
56.35 (CH'), 85.57 (C?), 111.55 (C'**), 115.16 (C),
118.43 (CH of Ar), 122.71 (CH®), 124.54 (C,,,,—C=0),
127.36 (C;,,-C), 127.63 (CH?), 128.38 (C,,,,~CHj), 129.53
(CH of Ar), 129.65 (CH®), 130.40 (CH of Ar), 131.25 (C*),
133.04 (CH?), 137.46 (C3%), 154.73 (C*-NH,), 158.14
(C'%), 158.32 (C-OH), 171.14 (CO,NH,), 189.39 (C=0),
193.72 (C=0).

4-Amino-8-chloro-1-(5-chloro-2-hydroxybenzoyl)-12,1
2-dimethyl-14-0x0-10,11,12,13,14,14b-hexahydrodibe
nzo[b,flpyrido[1,2-d][1,4]diazepine-3-carboxamide (3f,
Cy7H24C1LN,0,)

Yellow powder, mp=271-273 °C, 0.5 g, yield: 77%. IR
(KBr) (U cm™1): 3481, 3437, 3344, and 3313 (NH,),
3123, 2956, and 2867 (CH), 1719, 1639, and 1603 (C=0),
1561 and 1492 (Ar). Anal. Calcd. for C,,H,,C1,N,O,
(538.12): C, 60.12; H, 4.48; N, 10.39%. Found: C, 59.93;
H, 4.39; N, 10.21%. MS (EI, 70 eV): m/z (%) =538 (4), 480
(4), 438 (7), 370 (9), 264 (20), 230 (53), 209 (37), 193 (37),
166 (100), 147 (13), 126 (27), 99 (20), 83 (43), 55 (37). 'H
NMR (400.13 MHz, DMSO-dy): 6;; 0.95 (3H, s, CH3), 0.99
(3H, s, CH,), 1.94 (1H, d, %/ = 16.0 Hz, CH,), 2.15 (1H,
d, 2Jyy=16.1 Hz, CH,), 2.48 (2H, AB, *J,;y=16.8 Hz,
CH,), 5.49 (1H, s, CH'*), 6.50 (4H, bs, 2 NH,), 6.84 (1H,
d, *Jy;;=8.7 Hz, CH of Ar), 7.09 (1H, s, CH?), 7.21 (1H, s,
CH’), 7.26 (1H, dd, *J;;3=8.6 Hz, *Jy;=3.0 Hz, CH of Ar),
7.33 (1H, d, *Jyyy=8.6 Hz, CH), 7.36 (1H, d, *Jjy;;=8.7 Hz,
CH®), 7.41 (1H, s, CH of Ar), 9.24 (1H, s, NH), 9.93 (1H, s,
OH). 13C NMR (100.00 MHz, DMSO-d,): 6. 27.83 (CH,),
27.93 (CH,), 31.45 (C'?), 45.01 (CH,), 51.53 (CH,), 56.29
(CH'#), 85.66 (C?), 112.53 (C'**), 115.29 (Ch), 118.37
(CH of Ar), 122.67 (CH®), 123.14 (C, ,,~C=0), 126.61

ipso
(Cips=CD), 127.18 (CH?), 128.36 (C,,,,~C), 128.83 (CH'),
129.56 (CH of Ar), 130.40 (CH of Ar), 132.30 (CH?), 137.81
(C*), 139.24 (C?%), 154.74 (C*-NH,), 156.96 (C'%%), 158.07

(C-OH), 171.08 (CO,NH,), 189.40 (C=0), 193.87 (C=0).

1-(2-Hydroxybenzoyl)-4-imino-12,12-dimethyl-14-oxo-4
,5a,6,7,8,9,9a,10,11,12,13,14-dodecahydrodibenzol[b,f]
pyrido[1,2-d][1,4]diazepine-3-carbonitrile (3g, C,;H,4N,0;)

Yellow powder, mp =255-257 °C, 0.5 g, yield: 70%. IR
(KBT) (U cm™1): 3361, 3340 (NH,), 3158, 2949, and
2851 (CH), 2180 (CN), 1661 and 1614 (C=0), 1588 and
1499 (Ar). Anal. Calcd. for C,;H,4N,O5 (458.56): C,
71.03; H, 6.18; N, 12.27%. Found: C, 70.60; H, 6.16; N,
12.19%. MS (EI, 70 eV): m/z (%) =452 (12), 437 (26),
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384 (18), 355 (21), 302 (21), 282 (100), 254 (32), 191
(29), 132 (29). '"H NMR (400.13 MHz, DMSO-dy): 6y
0.92 (6H, s, 2 CH;), 1.35-1.40 (4H, m, CH,), 1.44-1.48
(2H, m, CH,), 1.64-1.72 (2H, m, CH,), 1.92 (2H, AB,,
*Jyu=16.1 Hz, CH,), 2.20 (2H, AB, *Jy;=16.9 Hz,
CH,), 3.75 (1H, t, 3Jyy=11.3 Hz, CH), 4.08 (1H, t,
3Jyp=10.0 Hz, CH), 6.36 (1H, s, CH!*), 6.40 (1H, s,
CH?), 6.80 (1H, d, 3J;;;;=8.1 Hz, CH of Ar), 6.84 (1H, t,
3Jgy="7.5 Hz, CH of Ar), 7.11 (2H, bs, NH,), 7.23 (1H,
d, 3Jyy=8.2 Hz, CH of Ar), 7.25 (1H, s, NH), 7.26 (1H,
t, *Jyy=7.8 Hz, CH of Ar), 9.80 (1H, s, OH). '*C NMR
(100.00 MHz, DMSO-dy): 6. 23.99 (CH,), 24.23 (CH,),
25.58 (CH;), 29.85 (CH;), 30.24 (C'?), 30.54 (CH,), 30.74
(CH,), 43.94 (CH,), 47.69 (CH), 51.67 (CH,), 56.75
(CH'), 62.50 (CH®®), 63.27 (C?), 106.32 (C'*?), 116.43
(C"), 116.91 (CH of Ar), 119.13 (CH of Ar), 121.64 (CN),
125.77 (C;,,,~C=0), 130.35 (CH of Ar), 131.45 (CH of
Ar), 137.79 (CH?), 155.50 (C'%%), 158.01 (C*~NH), 164.82
(C-OH), 190.23 (C=0), 193.79 (C=0).

4-Amino-1-(5-chloro-2-hydroxybenzoyl)-12,12-dime-
thyl-14-oxo0-5a,6,7,8,9,9a,10,11,12,13,14,14b-dodecahydr
odibenzol[b,f]pyrido[1,2-d][1,4]diazepine-3-carboxamide
(3h, C,;H;,CIN,O,)

Yellow powder, mp=198-199 °C, 0.5 g, yield: 79%. IR
(KBr1) (1,5, cm~1): 3401 and 3333 (NH,), 3099, 2953,
and 2866 (CH), 1676 and 1619 (C=0), 1577 and 1492
(Ar). Anal. Calcd. for C,;H;,CIN,O, (511.02): C, 63.46;
H, 6.11; N, 10.39%. Found: C, 61.93; H, 6.09; N, 10.31%.
MS (EI 70 eV): m/z (%) =510 (33), 371 (67), 328 (28),
236 (28), 219 (100), 204 (56), 166 (56), 140 (94), 121
(28), 83 (83), 57 (72). '"H NMR (400.13 MHz, DMSO-d;):
8y 0.82 (3H, s, CH;), 0.86 (3H, s, CH,), 1.48—1.84 (8H,
m, CH,), 1.93 (2H, AB, %/ =16.1 Hz, CH,), 2.10 (2H,
AB,, *Jyy=16.9 Hz, CH,), 4.06 (1H, t, *Jyy=11.3 Hz,
CH,), 4.53 (1H, t, 3Jy; = 10.0 Hz, CH,), 5.03 (1H, s,
CH!*), 6.64 (1H, s, CH?), 7.00 (1H, d, *Jy;;=8.1 Hz, CH
of Ar), 7.17 (1H, d, *Jy;=7.8 Hz, CH of Ar), 7.43 (2H,
bs, NH,), 7.74 (2H, bs, NH,), 7.94 (1H, s, CH of Ar), 9.26
(1H, s, NH), 10.41 (1H, s, OH). '*C NMR (100.00 MHz,
DMSO-d): 6c 19.21 (CH,), 25.58 (CH,), 28.19 (CH,),
28.47 (CH;), 30.06 (C'?), 32.14 (CH,), 32.14 (CH,), 42.50
(CH,), 47.16 (CH?), 50.43 (CH,), 56.49 (CH'*"), 57.29
(CH®), 93.98 (C?), 112.01 (C"®), 118.17 (C"), 118.90
(CH of Ar), 123.14 (C,,,~C=0), 127.67 (C,,,,~CD),
129.40 (CH of Ar), 132.15 (CH of Ar), 133.21 (CH?),
146.35 (C'%), 154.39 (C*-NH), 163.55 (C—-OH), 164.84
(CONH,), 188.81 (C=0), 194.79 (C=0).
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