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Abstract 
2-Naphthol or β-naphthol is an important starting material that has drawn great attention in various organic transforma-
tions because of its attributes, such as low cost, easy to handle and eco-friendliness. The electron-rich aromatic framework 
of 2-naphthol with multiple reactive sites allows it to be utilized in several kinds of organic reactions eventuated to several 
organic molecules with potent biological properties. Multicomponent reaction approach has been tremendously utilized to 
explore the synthetic utility of 2-naphthol for the construction of diverse N/O-containing heterocyclic framework. In this 
review, we summarize recent data pertaining to multicomponent reactions, wherein heterocyclic compounds are synthesized 
utilizing 2-naphthol as one of the starting materials. It is anticipated that this review will stimulate the researchers to design 
new multicomponent strategies complying with the Green Chemistry principles for the further exploitation of 2-naphthol 
for the rapid synthesis of versatile biologically relevant heterocycles.

Graphic abstract
This review provides a concise overview of the different 2-naphthol based multicomponent reactions utilized for the con-
struction of diverse bioactive heterocyclic scaffold. 
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Introduction

2-Naphthol also known as β-naphthol, 2-hydroxynaphtha-
lene with molecular formula  C10H8O and melting point 
122 °C, is a naphthalene homologue of phenol, bearing 
hydroxyl group at 2-position. 2-Naphthol has attracted 
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considerable attention as valuable precursors for the synthe-
sis of diverse heterocyclic compounds in organic synthesis 
owing to the presence of three available nucleophilic site, 
i.e., C-1 position, phenolic oxygen and C-3 position (to a 
lesser extent). This unique reactivity of 2-naphthol along 
with its easy accessibility and handling, moisture stabil-
ity and low cost makes it fascinating candidate for organic 
chemists. 2-Naphthol has been used in the design and syn-
thesis of privileged scaffolds like xanthenes, chromenes, 
oxazines, furans, naphthopyrans, etc. Heterocyclic com-
pounds hold a prominent position in medicinal chemistry 
owing to their wide spectrum of biological activities such 
as antimalarial [1], antimicrobial [2], antitumor [3], anti-
cancer [4], antidepressant [5], antiviral [6], antidiabetic [7], 
anti-inflammatory [8] and anti-HIV [9]. Moreover, they also 
contribute in the field of material science [10], dyes and pig-
ment science [11] as well as agrochemistry [12]. Therefore, 
there is considerable thrust for the development of efficient 
synthetic strategies for producing these compounds. MCRs 
open diverse avenues to create novel concatenations in one-
pot fashion leading to diverse biologically potent heterocy-
clic scaffolds [13, 14]. Having a cascade of reactions occur-
ring in one pot is highly beneficial in the context of modern 
trends for organic synthesis, where sustainability is as rel-
evant as efficiency and selectivity. Multicomponent reactions 
being atom economic, efficient and extremely convergent in 
nature offer a number of advantages over stepwise sequen-
tial approaches [15–17]. Ring-forming multicomponent 
reactions involving 2-naphthol promise an enhancement of 
structural complexity and functional diversity. This review 
provides an account of synthesis of a variety of heterocy-
clic compounds via one-pot multicomponent reactions of 
2-naphthol.

Synthesis of heterocyclic compounds 
via multicomponent reactions of 2‑naphthol

Xanthene

Xanthenes and benzoxanthenes are important oxygen-
containing heterocyclic scaffolds that are found in natural 
products as well as in pharmaceutically active agents. The 
xanthene nucleus also referred as 9H-xanthene corresponds 
to dibenzo[b,e]pyran (Fig. 1). Furthermore, based on their 
orientation of annulation, benzoxanthenes and their deriva-
tives essentially exist as three plausible isomers, benzo[a]
xanthene 2, benzo[b]xanthene 3 and benzo[c]xanthene 4 
(Fig. 1). They exhibit an array of biological activities like 
anti-inflammatory [18], antibacterial [19], antiviral [20], 
antioxidant [21] and antiplasmodial [22]. Moreover, they 
also find applications as dyes [23], fluorescent materi-
als for the visualization of biomolecules [24] and in laser 

technology [25]. A large number of methods have been 
reported in the literature for the preparation and scaffold 
manipulation of these compounds.

The synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes 3 
by condensation of 2-naphthol 1 with aldehydes 2 has been 
reported utilizing various Brønsted acid catalysts (Scheme 1, 
Table 1).

Development of efficient synthetic methodologies has 
become imperative in the field of organic synthesis. In this 
context, the principles of ‘Green Chemistry’ such as atom 
economy, waste reduction and efficiency are given utmost 
importance. Compared with homogeneous catalysts, het-
erogeneous catalysts have received much attention owing 
to their merits like high activity, ease of separation and 
recycling. Several methodologies involving use of hetero-
geneous Brønsted acid catalysts under solvent-free condi-
tions have been reported for the synthesis of 14-aryl-14H-
dibenzo[a,j]xanthenes 3 like silica-supported perchloric 
acid  (HClO4–SiO2) [26], silica sulfuric acid [27], cellulose 
sulfuric acid [28], aluminum hydrogen sulfate (Al(HSO4)3) 
[29], preyssler-type heteropolyacid,  H14[NaP5W30O110] [30], 
poly(4-vinylpyridinium) hydrogen sulfate (P(4-VPH)HSO4) 
[31], silica-supported fluoroboric acid  (HBF4–SiO2) [32], 
 Fe3O4@SiO2-imid-H-3PMo12O40 nanoparticles [33], PEG-
SO3H [34], sulfonated diatomite (diatomite-SO3H) [35], 
cucurbit[6]uril-OSO3H (CB[6]-OSO3H) [36], amberlyst-15 
[37], phosphosulfonic acid (PSA) [38], silicotungstic acid 
 (H4[SiW12O40]) [39], silica-supported ammonium dihydro-
gen phosphate  (NH4·H2PO4·SiO2) [40], tungstophosphoric 
acid/zirconia composites  (ZrTPA60BT100) [41], magnet-
ite–sulfuric acid  (Fe3O4·SO3H) magnetic nanoparticles 
[42], sulfonated single walled carbon nanotube (SWCNT-
SO3H) [43], sulfonic acid-functionalized mesoporous 
SBA-15 (SBA-15/SO3H) [44], sodium hydrogen sulfate 
 (NaHSO4·H2O) [45], p-sulfonic acid calix[4]arenes [46], 
sulfamic acid [47], DOWEX -50 W [48], D-camphorsulfonic 
acid (CSA) [49], Indion-130 [50] and  NaHSO4–SiO2 [51]. 
These solvent-free protocols have emerged as a powerful 

Fig. 1  Xanthenes
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Scheme 1  Synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes 3 

Table 1  Synthesis of 14-aryl-
14H-dibenzo[a,j]xanthenes 3 by 
Brønsted acid catalysts

Catalyst, reaction conditions Examples Yield (%) References

HClO4–SiO2, 125 °C 14 88–98 [26]
SiO2–SO3H, 125 °C 9 81–93 [27]
Cellulose sulfuric acid, 110 °C 14 81–97 [28]
Al(HSO4)3, 125 °C 10 85–91 [29]
H14[NaP5W30O110], 90 °C 10 50–99 [30]
P(4-VPH)HSO4, 100 °C 13 90–96 [31]
HBF4–SiO2, 120 °C 23 87–95 [32]
Fe3O4@SiO2-imid-H-3PMo12O40 Nps, 110 °C 15 79–95 [33]
PEG–SO3H, 125 °C 14 82–97 [34]
Diatomite-  SO3H, 90 °C 16 82–96 [35]
CB [6] -  OSO3H, 110 °C 8 82–96 [36]
Amberlyst-15, 125 °C 11 80–94 [37]
PSA, 80 °C 11 74–86 [38]
H4[SiW12O40], 110 °C 10 90–97 [39]
NH4H2PO4/SiO2,125 °C 14 73–98 [40]
ZrTPA60BT100, 130 °C 10 60–99 [41]
Fe3O4·SO3H magnetic Nps, 100 °C 7 88–95 [42]
SWCNTs-SO3H, 70 °C 15 55–98 [43]
SBA-15/SO3H, 90–95 °C 10 79–85 [44]
NaHSO4·H2O, 125 °C 12 87–97 [45]
NaHSO4·H2O, MW 12 83–94 [45]
p-Sulfonic acid calix [4] arenes, 80 °C 10 88–98 [46]
Sulfamic acid, 125 °C 13 90–95 [47]
Sulfamic acid/MW 13 92–96 [47]
DOWEX-50 W,70 °C 8 78–91 [48]
(±)-CSA, MW 10 54–98 [49]
Indion-130, 110 °C 13 76–92 [50]
NaHSO4.SiO2,125 °C 14 82–94 [51]
AFS-1,  H2O, r.t. 5 75–82 [52]
PVSA,  H2O, 90 °C 17 78–93 [53]
NH4H2PO4/SiO2,  H2O, US 16 85–94 [54]
Mg(HSO4)2, 60 °C 16 85–97 [55]
Mg(HSO4)2, US 16 85–98 [55]
pTSA, 125 °C 7 81–96 [57]
pTSA, DCE, reflux 7 80–93 [57]
TCT, 110 °C 12 85–96 [58]
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tool in the light of current paradigm shift to “Green Chem-
istry” due to avoidance of harmful organic solvents, decrease 
energy consumption, short reaction time, simple work-up, 
ease of isolation, environmental benign nature. Furthermore, 
the synergy of solvent-free reactions with non-conventional 
energy source like microwave irradiation used by authors 
[45, 47, 49] illustrates another facet of sustainable chemistry.

Furthermore, replacement of hazardous solvents with 
environmentally benign reaction media like water, poly-
ethylene glycol and ionic liquids is also one of the major 
focus areas of green chemistry. The above condensation 
has also been reported utilizing acid-functionalized hybrid 
mesoporous organosilica, AFS-1 [52] and polyvinylsul-
fonic acid (PVSA) [53] in aqueous media. The high polar-
ity, hydrogen bonding capability and hydrophobic effect of 
water are also known to enhance the rate of reaction. Mah-
davinia and co-workers [54] have developed an ultrasound-
assisted protocol for the synthesis of 3 in aqueous media 
using silica-supported ammonium dihydrogen phosphate 
 (NH4·H2PO4·SiO2) as catalyst. Significant reduction in 
reaction time and improvement in yield of the product were 
observed by authors under ultrasonic irradiation as com-
pared to conventional heating method.

Solid Brønsted acid catalysts like magnesium hydrogen 
sulfate (Mg(HSO4)2) [55], boric acid  (H3BO3) [56], p-tolu-
ene sulfonic acid (pTSA) [57], wet-2,4,6-trichloro[1,3,5]tria-
zine (TCT) [58] were also employed for the synthesis of 3.

The probable mechanism for the synthesis of 14-aryl-
14H-dibenzo[a,j]xanthenes is shown in Scheme 2.

Several Lewis acidic catalysts have been reported to cata-
lyze the condensation of 2-naphthol and aldehydes for the 

synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes 3 such as 
LiBr [59], ferric chloride  (FeCl3) [60], ytterbium triflate 
(Yb(OTf)3) [61], ceric ammonium nitrate (CAN) [62], iron 
triflate (Fe(OTf)3) [63], bismuth chloride [64], tungsten(VI) 
chloride  (WCl6) [65], tantalum chloride  (TaCl5) [66], 
zirconium(IV) oxide chloride  (ZrOCl2.8H2O) [67], ceric 
sulfate (Ce(SO4)2) [68], tetra-n-butylammonium bromide 
(TBAB) [69],  P2O5/Al2O3 [70], dipyridine copper chloride 
 (CuPy2Cl2) [71], dipyridine cobalt chloride  (CoPy2Cl2) 
[72], iodine [73, 74], silica-supported boron trifluoride 
 (BF3·SiO2) [75] and SelectfluorTM [76]. Nanocatalysts like 
CuS quantum dots (CuS QDs) [77], nano-CuO [78], nano-
ZnO [79],  Fe2+ supported on hydroxyapatite-core–shell-
γ-Fe2O3 nanoparticles (γ-Fe2O3-HAp-Fe2+ Nps) [80], 
poly(4-vinylpyridine)-supported copper iodide nanoparticles 
(P4VPy-CuI Nps) [81] and ruthenium anchored on multi-
walled carbon nanotubes (Ru@SH-MWCNT) [82] have 
also been utilized for the above condensation (Scheme 1) 
(Table 2). The use of nanocatalysts offers unique properties 
such as high surface area, enhanced catalytic sites, chemi-
cal inertness, durability and insolubility in most solvents. 
Moreover, their high surface allows higher loads of the cata-
lytic sites.

Catalyst-free condensation of 2-naphthol 1 with alde-
hydes 2 has been reported in various acidic ionic liquids 
like 1,10-disulfo-[2,20-bipyridine]-1,10-diium chloride, 
[BiPy](SO3H)2Cl [83], DSIMHS [84], 1-methyl-3-propane 
sulfonic-imidazolium hydrosulfate  ([MIMPS]HSO4) [85], 
di-n-propylammonium hydrogen sulfate ([(n-propyl)2NH2]
HSO4) [86], 1,3-disulfonic acid imidazolium carboxylate 
ionic liquids (i.e.,  [DISM]CCl3COO &  [DISM]CF3COO) 

Scheme 2  Mechanism for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes
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[87]) as well as basic ionic liquid like bis-2,3,4,6,7,8,9,10-
octahydropyrimido[1,2-a]azepinnium-ethyl disulfate 
 [DBU]2EDS [88]. The task-specific ionic liquids serve the 
dual role of catalyst as well as solvent and bears interesting 
properties like excellent chemical and thermal stability, non-
volatility, good solvating ability, wide liquid range as well as 
ease of recyclability. Several catalysts were also employed in 
ionic liquid as reaction medium such as trifluoroacetic acid 
in TMGT [89], Mg(BF4)2 doped in  [Bmim]BF4 [90] and 
2-1′-methylimidazolium-3-yl-1-ethyl sulfate in  [Bmim]BF4 
[91] (Scheme 1, Table 3). The integrity of the TMGT [89] 
and  [Bmim]BF4 [90] remains reasonably unchanged after 
separation from the reaction mixture and was reportedly 
recycled several times without any loss of activity.

The synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]
xanthen-11-one derivatives 6 via one-pot condensation 
reaction of 2-naphthol 1 with aldehydes 2 and dimedone 4/

cyclohexa-1,3-dione 5 has been reported by Brønsted acids 
both liquids like  H2SO4 [92], methanesulfonic acid [93] and 
solid such as dodecatungstophosphoric acid [94], p-dode-
cylbenzenesulfonic acid (DBSA) [95], pTSA [92, 96], HY 
zeolite [97], 1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-
hexachloride supported on boehmite nanoparticles (BNPs-
TAPC) [98], nanoparticle silica-supported sulfuric acid 
(NPs  SiO2–H2SO4) [99], polymeric catalyst [poly(AMPS-
co-AA)] [100], boronsulfonic acid (B(HSO4)3) [101], caro’s 
acid–silica [102], N-sulfonic acid modified poly(styrene-
maleic anhydride) (SMI-SO3H) [103], polyvinylpolypyrro-
lidone-supported triflic acid (PVPP.OTf) [104], nanocrys-
talline  TiO2–HClO4 [105] and silica-supported catalysts 
 (HBF4/SiO2) [106] (Scheme 3, Table 4). The use of homo-
geneous catalysts like sulfuric acid and methanesulfonic acid 
has some disadvantages like corrosive nature of catalyst and 
more laborious work-up. The application of natural catalysts 
like lignosulfonic acid [107], citric acid [108], cellulose-
SO3H [109], glucose sulfonic acid [110], D-xylonic acid 
[111], being efficient, cost-effective and biodegradable con-
tributes to the green credentials of these protocols.

The mechanism for the formation of 12-aryl-8,9,10,12-
tetrahydrobenzo[a]xanthen-11-one derivatives 6 in the pres-
ence of Brønsted acid (pTSA) is depicted in Scheme 4.

Solid catalysts showing Lewis acidic nature were report-
edly used to bring the condensation of 2-naphthol 1 with 
cyclohexane-1,3-dione derivatives (4/5) and aldehydes 2 
like CAN [62], ruthenium anchored on multi-walled car-
bon nanotubes [82], iodine [112, 113], ammonium chloride 
 (NH4Cl) [114], cerium(III) chloride  (CeCl3) [115],  InCl3,/
P2O5 [116], strontium triflate (Sr(OTf)2) [117], alum [118], 
ruthenium chloride hydrate [119], nano-TiCl4/SiO2 [120], 
rice husk [121], Ce(SO4)2·4H2O [122], Cu/SiO2 [123], 
manganese perchlorate [124], tetrabutylammonium fluo-
ride (TBAF) [125], cerium-impregnated-MCM-41 [126], 
chitosan synergistically enhanced by successive  Fe3O4 

Table 2  Synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes 3 by Lewis 
acidic catalysts

Catalyst, reaction conditions Examples Yield (%) References

LiBr, 90 °C 11 77–84 [59]
LiBr, MW 11 78–86 [59]
FeCl3, 100 °C 13 81–97 [60]
Yb(OTf)3,  [BPy]BF4, 110 °C 14 80–95 [61]
CAN, 120 °C 13 90–97 [62]
Fe(OTf)3, 60 °C 13 84–94 [63]
BiCl3, 110 °C 13 74–98 [64]
WCl6, 110 °C 13 78–98 [65]
TaCl5, 100 °C 15 59–96 [66]
ZrOCl2.8H2O, 125 °C 12 90–96 [67]
Ce(SO4)2, 100 °C 14 65–96 [68]
Ce(SO4)2, MW 14 70–95 [68]
TBAB, 125 °C 13 65–90 [69]
TBAB, MW 13 78–95 [69]
P2O5/Al2O3, MW 20 60–95 [70]
CuPy2Cl2, 80 °C 13 92–96 [71]
CoPy2Cl2, 85 °C 16 65–97 [72]
Iodine, MW 10 75–93 [73]
Iodine,  CHCl3, 60–70 °C 10 65–91 [73]
Iodine, 90 °C 13 84–95 [74]
BF3·SiO2, 60 °C 16 82–97 [75]
BF3·SiO2, US 16 85–98 [75]
Selectflour™, 125 °C 15 90–95 [76]
CuS QDs, 80 °C 8 87–95 [77]
CuO Nps, 100 °C 8 82–95 [78]
ZnO Nps, 80 °C 16 78–95 [79]
γ-Fe2O3-HAp-Fe2+ Nps, 90 °C 20 85–95 [80]
P4VPy-CuI Nps, 80 °C 15 88–92 [81]
Ru@SH-MWCNT, EtOH, reflux 10 82–94 [82]
Ru@SH-MWCNT, EtOH, US 10 88–96 [82]

Table 3  Synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes 3 in ionic 
liquids

Catalyst, reaction conditions Examples Yield (%) Reference

[BiPy](SO3H)2Cl2, 90 °C 9 80–98 [83]
DSIMHS, 90 °C 13 88–95 [84]
[MIMPS]HSO4, 100 °C 14 75–96 [85]
[n-Pr2NH2]HSO4, 80 °C 7 65–70 [86]
[DISM]CCl3COO, 100 °C 8 78–92 [87]
[DSIM]CF3COO, 90 °C 8 85–97 [87]
[DBU]2EDS, 120 °C 5 88–95 [88]
TFA, TMGT, 75 °C 13 86–97 [89]
[Bmim]BF4- Mg(BF4)2, 80 °C 11 82–97 [90]
2-1′-Methylimidazolium-3-yl-

1-ethyl sulfate,  [Bmim]BF4, 
80 °C

16 88–95 [91]
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and silver nanoparticles [127] and trityl chloride [128] 
(Scheme 3, Table 5). Use of microwave or ultrasonication 
techniques by authors [82, 113, 124] has shown to signifi-
cantly enhance the rate of the reactions, improve the yields 
as well as decrease the reaction time.

Tetrahydrobenzo[a]xanthene-11-ones 6 were also 
reported to be synthesized via one-pot three-component 
condensation of 2-naphthol 1 with cyclohexane-1,3-dione 
derivatives 4/5 and aldehydes 2 (Scheme 4, Table 6) using 
task-specific acidic ionic liquids like [BiPy](SO3H)2Cl2 [83], 

DSIMHS [84],  [DBU]2EDS [88],  [bmim]PF6 [129],  [DDPA]
HSO4 [130], 1-butane sulfonic acid-3-methylimidazolium 
tosylate ([BSMIM]Ts [131], [Dsim]Cl/[Msim]PF6/[Msim]
BF4) [132] and  [NMP]H2PO4 [133] under solvent-free 
conditions.

Basic organocatalysts like imidazole and isoquinoline are 
also employed as catalyst for carrying out the above con-
densation [134] (Scheme 5, Table 7). Herein, initially imi-
dazole or isoquinoline catalyzed Knoevenagel condensation 
between aldehyde and dimedone takes place, followed by 
reaction of 2-naphthol with above formed intermediate to 
give desired xanthene 6. This three-component condensation 
reaction went well with a variety of aldehydes bearing both 
electron-withdrawing and electron-releasing substituents.

The condensation of dimedone 4/cyclohexane-1,3-dione 
5 and aromatic aldehydes 2 with 2,6-naphthalenediol 1a for 
the synthesis of 3-hydroxy-12-arylbenzo[a]xanthen-11-ones 
6a has been described in the presence of ionic liquids, viz. 
 [NMP]H2PO4 [133] and  [Bmim]BF4 [135] (Scheme 6). 
Moreover, the synthesis of 2-hydroxy-12-aryl-8,9,10,12-
tetrahydrobenzo[a]xanthene-11-one derivatives 6b by 
condensation of 2,7-naphthalenediol 1b with dimedone 
4/cyclohexane-1,3-dione 5 and aldehydes 2 has also been 
accomplished in ammonium chloride [114],  [NMP]H2PO4 
[133], pTSA in ethanol under reflux as well as in  [Bmim]
BF4 [136] (Scheme 6, Table 8).

3-Bromo-12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-
11-ones 6c were reportedly synthesized via reactions of 
dimedone 4 and aldehydes 2 with 6-bromo-2-naphthol 1d 
in the presence of ammonium chloride by Foroughifar et al. 
[114] (Scheme 7).

B i s - t e t r a hy d ro b e n z o [ a ] xa n t h e n - 1 1 - o n e s  o r 
5,12-diarylxantheno[2,1-a]xanthene-4,12-diones 7 were 
synthesized by reaction of 2,6-naphthalenediol 1b with 
5,5-dimethylcyclohexane-1,3-dione 4 and aromatic alde-
hydes 2 in  [Bmim]BF4 [135] (Scheme 8). It was noticed 
that the reactions with aldehydes bearing electron-deficient 

Scheme 3  Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones 6 

Table 4  Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-
11-one derivatives 6 catalyzed by Brønsted acids

Catalyst, reaction conditions Examples Yield (%) Reference

H2SO4,  H2O, reflux 17 84–91 [92]
Methanesulfonic acid, 60 °C 21 71–94 [93]
H3  PW12O40, 60 °C 21 81–94 [94]
DBSA,  H2O, US 15 63–93 [95]
pTSA, US 17 80–85 [96]
pTSA, 80 °C 17 82–92 [92]
HY Zeolite, 80 °C 28 70–95 [97]
BNPs-TAPC, 80 °C 12 93–99 [98]
SiO2-H2SO4 Nps, DCM, r.t. 14 82–96 [99]
Poly (AMPS-Co-AA), 110 °C 18 74–88 [100]
B(HSO4)3, 120 °C 8 78–93 [101]
CA-SiO2, 60 °C 10 75–90 [102]
SMI-SO3H, 80 °C 7 66–80 [103]
PVPP.OTf, toluene, 100 °C 14 80–95 [104]
Nano-TiO2–HClO4, 90 °C 12 87–93 [105]
HBF4-SiO2, 80 °C 21 83–94 [106]
Lignosulfonic acid, 90 °C 8 82–93 [107]
Citric acid, 120 °C 10 88–92 [108]
Cellulose-SO3H, 80 °C 10 79–95 [109]
Glucose sulfonic acid,  H2O 6 78–96 [110]
D-xylonic acid, 90 °C 1 89 [111]
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substituent gave the corresponding bis-products when the 
molar concentrations of aldehyde and dimedone were dou-
bled, whereas electron-rich aldehydes required higher con-
centrations (1:3:3) to afford the desired products 7.

The synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-
8,13-diones 9 by condensation of 2-hydroxy-1,4-naphtho-
quinone 8, aromatic aldehydes 2 and substituted 2-naph-
thols 1/1a/1b (Scheme 9, Table 9) has been reported in the 
presence of sulfuric acid [137],  [bmim]HSO4 [137], under 

Scheme 4  Mechanism for the formation of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones 6 

Table 5  Synthesis of 12-aryl-
8,9,10,12-tetrahydrobenzo[a]
xanthen-11-one derivatives 6 
catalyzed by Lewis acids

Catalyst, reaction conditions Examples Yield (%) Reference

CAN, 120 °C 14 85–94 [62]
Ru@SH-MWCNT, EtOH, reflux 8 82–90 [82]
Ru@SH-MWCNT, EtOH, US 8 88–96 [82]
Iodine, 60 °C 13 82–94 [112]
Iodine, AcOH, MW 9 70–89 [113]
NH4Cl, 120 °C 6 72–88 [114]
CeCl3, MeOH, 50 °C 13 76–95 [115]
InCl3, 120 °C 18 70–88 [116]
P2O5, 120 °C 18 62–80 [116]
Sr(OTf)2, DCM, 80 °C 11 70–88 [117]
Alum, 120 °C 18 85–96 [118]
RuCl3·nH2O, EtOH, reflux 13 75–92 [119]
Nano-TiCl4/SiO2, 90 °C 12 70–96 [120]
Rice Husk, 90 °C 12 93–98 [121]
Ce(SO4)2·4H2O, 120 °C 13 85–97 [122]
Cu–SiO2, 60 °C 8 80–92 [123]
Manganese perchlorate hydrate, EtOH, US 20 75–88 [124]
TBAF,  H2O, reflux 12 60–99 [125]
Ce-MCM-41, 80 °C 24 82–96 [126]
Fe3O4/CS-Ag Nps,  H2O, 80 °C 21 80–95 [127]
Trityl chloride, 110 °C 15 82–94 [128]
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solvent-free condition by using Lewis acid like silica chlo-
ride [138], polystyrene-supported  GaCl3  [139], as well as 
Brønsted acids such as acetic acid [140], pTSA [141], het-
erogeneous nanocatalysts like  Fe3O4@SiO2–SO3H nanopar-
ticles [142] and nano-Fe3O4/PEG/succinic anhydride [143].

One-pot three-component reaction of 2-naphthol 1, 
2-hydroxy-1,4-naphthoquinone 8 and isatins 10 in the pres-
ence of silicotungstic acid  (H4SiW12O40) [144] as well as 
 [hmim]HSO4 [145] afforded spiro[dibenzo[a,i]-xanthene-
14,30-indoline]-20,8,13-triones 11 (Scheme 10). In both 
cases, electronic effect of the substituents on indole ring had 
no significant effect on the product yield as well as reaction 
time. Moreover, the reusability of the recycled catalyst has 
also been demonstrated in the above protocols.

A possible mechanism for the above three-component 
reaction is outlined in Scheme 11. 2-Naphthol is believed 
to initially react with isatin to afford condensation product, 
followed by addition of 2-hydroxy-1,4- naphthoquinone. 
Subsequently, cyclization takes place to afford the desired 
product.

The one-pot three-component condensation of 2-naphthol 
1, isatins 10 and cyclic 1,3-dicarbonyl compounds like dime-
done 4/cyclohexa-1,3-dione 5 in the presence of mesoporous 
magnetite nanoparticles  (Fe3O4@MCM-41-SO3H@[HMIm]
HSO4) as catalyst was successfully established for the syn-
thesis of spiro[benzoxanthene-indoline]diones 12 [146] 
(Scheme 12). The above protocol offers several advantages 
like reusability of magnetite nanoparticle, high yield, short 
reaction time, solvent-free conditions and ease of isolation 
of product.

Pyrans

Polyfunctionalized pyrans and chromenes belong to inter-
esting class of heterocycles due to their vast biological and 
pharmacological importance. Pyrans commonly classified 

Table 6  Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-
11-one derivatives 6 in the presence of ionic liquids

Catalyst, reaction conditions Examples Yield (%) References

[BiPy](SO3H)2Cl2, 90 °C 11 80–98 [83]
DSIMHS, 90 °C 13 87–93 [84]
[DBU]2EDS, 120 °C 5 90–94 [88]
[Bmim]PF6, MW 11 82–92 [129]
[DDPA]HSO4, 90 °C 16 85–93 [130]
[BSMIM]Ts, MW 18 70–89 [131]
[Dsim]Cl, 110 °C 12 86–99 [132]
[Msim]PF6, 110 °C 12 85–98 [132]
[Msim]BF4, 110 °C 12 88–99 [132]
[NMP]H2PO4, 80 °C 5 83–88 [133]

Scheme 5  Mechanism for the base catalyzed formation of xanthenes 6

Table 7  Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-
11-one derivatives 6 in the presence of basic catalyst

Catalyst Examples Yield References

Imidazole, 80 °C 16 83–97 [134]
Isoquinoline, 80 °C 16 83–98 [134]
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on the basis in the presence of the 2H- or 4H-pyran scaffold 
(Fig. 2) have been reported to possess biological properties 
such as antitumor [147], anti-proliferative [148], antiviral 
[149], antibacterial [150] and antifungal [151]. They also 

find application as insect pheromones [152, 153] and pho-
toactive materials [154, 155]. Moreover, benzopyrans or 
chromenes being crucial components of a variety of natu-
ral compounds like alkaloids, flavonoids and tocopherols 

Scheme 6  Synthesis of 2-/3-hydroxy-12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones 6a/b 

Table 8  Synthesis of 
2-/3-hydroxy-12-aryl-8,9,10,12-
tetrahydrobenzo[a]xanthen-11-
ones 6a/b 

Catalyst R1 R2 R3 Examples Yield References

[NMP]H2PO4, 80 °C H OH CH3 3 83–87 [133]
pTSA,  [bmim]BF4,60 °C H OH CH3 10 87–90 [135]
[NMP]H2PO4, 80 °C OH H CH3, H 15 83–93 [133]
pTSA, EtOH, reflux OH H CH3, H 23 82–96 [136]
pTSA,  [bmim]BF4, 50 °C OH H CH3, H 22 97–94 [136]
NH4Cl, 120 °C OH H CH3 6 86–94 [114]

Scheme 7  Synthesis of 
3-bromo-12-aryl-8,9,10,12-
tetrahydrobenzo[a]xanthene-
11-ones 6c 

Scheme 8  Synthesis of Bis-tetrahydrobenzo[a]xanthen-11-ones 7
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hold a position of prominence attributed to their biologi-
cal activities which include antibacterial [156], antimi-
crobial [157], antioxidant [158], anti-hyperglycemic and 
anti-dyslipidemic [159]. Benzopyrans, a bicyclic organic 
compound that results from the fusion of a benzene ring 
to a pyran ring, include commonly structural skeletons 
such as 4H-chromene (4H-1benzopyran) and 2H-chromene 
(2H-1-benzopyran). Based on fusion of benzene or naph-
thalene ring with 2H-chromene, they are called as benzo[c]
chromene, benzo[f]chromene, benzo[g]chromene and 
benzo[h]chromene (Fig. 2).

The synthesis of 3-amino-1H-benzo[f]chromenes 16, via 
MCRs of 2-naphthol 1, aldehydes 2 and malononitrile 13/
ethyl cyanoacetate 14/cyanoacetamide 15 has been described 
under various conditions (Scheme 13).

Acid catalysts like CAN [62], TBAC [160], ferric hydro-
gen sulfate [161], disodium hydrogen phosphate  (Na2HPO4) 
[162], molecular sieves  5Ao [163], SBA-15@methenamine-
HPA [164], nano-sawdust–BF3 [165] and titanium tetrachlo-
ride  (TiCl4) [166] were used for the synthesis of 16.

Various basic catalysts [167–182] were employed 
for the condensation of 2-naphthol with aldehydes and 
active methylene compounds. (Scheme 13, Table 10). The 

Scheme 9  Synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-diones 9 

Table 9  Synthesis of 14-aryl-
14H-dibenzo[i]xanthene-8,13-
diones 9 

Catalyst R1 R2 Examples Yield (%) References

H2SO4,  H2O, reflux H, OH H, OH 24 88–92 [137]
Bmim[HSO4], 60 °C H, OH H, OH 24 87–91 [137]
Silica chloride, 110 °C H H 9 85–90 [138]
PS/GaCl3, EtOH, reflux H, OH H 13 85–93 [139]
AcOH, 60–80 °C H H 9 90–96 [140]
pTSA, 120 °C H H 6 60–70 [141]
Fe3O4@SiO2–SO3H Mnps, EtOH-H2O, reflux H H 13 88–97 [142]
Fe3O4/PEG/succinic anhydride Nps, EtOH, US H H 6 74–90 [143]

Scheme 10  Synthesis of spiro[dibenzo[a,i]-xanthene-14,30-indoline]-20,8,13-triones 11 
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Scheme 11  Mecha-
nism for the synthesis of 
spiro[dibenzo[a,i]-xanthene-
14,30-indoline]-20,8,13-triones 
11 

Scheme 12  Synthesis of spiro[benzoxanthene-indoline]diones 12 

Fig. 2  Pyrans
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clean, transition-metal-free and environmentally friendly 
approaches for the synthesis of 16 have been realized using 
organocatalysts like diazabicyclo[2.2.2]octane (DABCO) 
[167], morpholine [168], piperazine [169], potassium 
phthalimide (POPI) [170], tetraethylammonium 2-(carba-
moyl)benzoate (TEACB) [171] and triazine-based porous 
organic polymer TPOP-2 [172]. These procedures offer 

many advantages including short reaction times, low cost 
and straightforward work-up.

Nanocatalysts like tetragonal  ZrO2 nanoparticles (t-ZrO2 
NPs) [173], nano-mixed CuO–ZnO [174], nano-silica-
bonded aminoethylpiperazine (SB-APP) [175], 1,5,7-triaz-
abicyclo-[4,4,0]-dec-1-ene (TBD) a cyclic guanidine base 
anchored by mesoporous silica nanoparticles (MSN) [176] 
and nano-polypropylenimine dendrimer (DAB-PPI-G1) 

Scheme 13  Synthesis of 3-amino-1H-benzo[f]chromenes 16 

Table 10  Multicomponent 
synthesis of 3-amino-1H-
benzo[f]chromenes 16 

Reaction conditions R1 Examples Yield (%) References

CAN, 120 °C CN, COOEt 11 68–91 [62]
TBAC, 100 °C CN 13 88–95 [160]
Fe(HSO4)3,  CH3CN reflux CN 4 80–88 [161]
Na2HPO4, 120 °C CN 9 83–95 [162]
MS  5A0, MW CN, COOEt,  CONH2 14 60–95 [163]
SBA-15@methenamine-HPA,  H2O, 100 °C CN 5 91–97 [164]
nano-sawdust–BF3, EtOH, reflux CN 11 83–93 [165]
TiCl4, r.t. CN, COOEt 11 75–95 [166]
DABCO, EtOH, r.t. CN 18 71–99 [167]
Morpholine,  H2O, r.t. CN 5 88–93 [168]
Piperazine, MW CN 5 82–95 [169]
POPI, Ballmilling CN 11 96–99 [170]
TEACB, Ballmilling CN 8 95–98 [171]
TPOP-2,H2O, 80 °C CN 5 82–88 [172]
t-ZrO2 Nps, water, 80 °C CN 3 89–94 [173]
Nano-CuO–ZnO,  H2O, reflux CN 12 12–93 [174]
SB-APP, 80 °C CN 13 80–95 [175]
TBD-MSN,  H2O, r.t. CN 1 85 [176]
DAB-PPI-G1, 110 °C CN, COOEt 6 88–92 [177]
Amano” lipase AS,  CH3CN, 40 °C CN 8 34–84 [178]
Bael fruit extract (BFE), EtOH r.t. CN 6 89–94 [179]
Na2CO3, 150 °C CN 8 90–100 [180]
Na2CO3, ball milling CN 2 > 99 [181]
MgO, DMF, reflux CN 3 83–91 [182]
KF-Al2O3, EtOH, 80 °C CN, COOEt 9 66–83 [183]
PVPy,80 °C CN 15 86–93 [184]
3-HPAF, 70 °C CN 11 83–93 [185]
Et2NH(CH2)2CO2H[AcO], 60 °C CN 7 81–90 [186]
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[177], were utilized for the above condensation. Biocata-
lysts like “Amano” lipase AS [178] and bael fruit extract 
(BFE) [179] were also used as catalyst for the synthesis of 
16 by Jiang et al. and Shinde and co-workers, respectively. 
The exploitation of low cost, biodegradable and highly effi-
cient catalyst, i.e., BFE, obtained from the rind of Aegle 
marmelos (bael) fruit offers benefits like elimination of toxic 
catalysts/reagents, reuse of catalyst and excellent yield of 
product in a very short reaction time.

Catalytic activity of other basic catalysts such as sodium 
carbonate [180, 181], high surface MgO [182], KF-Al2O3 
[183] and poly(4-vinyl pyridine) [184] was also demon-
strated by various researchers. Recyclable basic ionic liq-
uids such as 3-hydroxypropanaminium acetate [185] and 
 [Et2NH(CH2)2CO2H]AcO [186] were also employed as 
catalyst for above condensation.

The possible reaction pathway for this three-component 
reaction catalyzed by base proceeds via the Knoevenagel 
condensation of aldehyde and active methylene compound 
to afford Knoevenagel adduct. Thereafter, nucleophilic 

addition of the OH group of 2-naphthol to the CN moiety 
of adduct occurs through Michael addition. This is followed 
by intramolecular cyclization to form 3-amino-1H-benzo[f]
chromenes 16 (Scheme 14).

The synthesis of 1,2-bis(4-nitrophenyl)-1-benzo[f]
chromen-3-amine derivative 18 has been described by one-
pot three-component reaction of 2-naphthol 1, aromatic 
aldehydes 2, 4-nitrophenyl acetonitrile 17 by using pTSA 
as the catalyst in ethanol reflux (Scheme 15) [187].

The synthesis of benzo[f]chromenes 19–20 via conden-
sation of aromatic aldehydes 2 and malononitrile 13 with 
2,3-dihydroxynaphthalene 1c or 2,7-dihydroxynaphthalene 
1b using guanidine hydrochloride as the catalyst under sol-
vent-free conditions [188] (Scheme 16) and CuO–ZnO nano-
catalyst in water under reflux conditions [177] (Scheme 17), 
respectively, has been reported. CuO–ZnO nanocatalyst 
used by Albadi and co-workers was reportedly recycled up 
6 times without any significant loss of its catalytic activity.

Fused 1H-benzo[f]chromen-indoles 22 were synthesized 
regioselectively by triethylamine-catalyzed condensation of 

Scheme 14  Mechanism for 
the formation of 3-amino-1H-
benzo[f]chromenes 16 

Scheme 15  Synthesis of 1,2-bis(4-nitrophenyl)-1-benzo[f]chromen-3-amines 18 
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2-naphthol 1 with aromatic aldehydes 2 and 3-cyanoacetyl-
indoles 21 in methanol under both ultrasonic irradiations 
and conventional conditions (Scheme 18) [189]. The reac-
tion promoted by ultrasound offered better yields and much 
lower reaction times than the conventional heating. Notably, 
aldehydes with electron-donating substituents on phenyl ring 
furnished lower yields of furans than those with electron-
withdrawing substituents.

Condensation of 2-naphthol 1 and aldehydes 2 was 
carried out with a variety of substrates under different 

conditions to afford chromenes. One-pot three-component 
condensation reactions of 2-naphthol 1 and aldehydes 2 with 
cyclopentane-1,3-dione 23 with strontium triflate afforded 
8,9-dihydrobenzo-[f]cyclopenta[b]chromen-10(11H)-
ones 26 [117], with Meldrum’s acid 24 in the presence of 
cerium(III) chloride [115] as well as TBAF yielded benzo[f]
chromen-3-ones 27 [125], with indane-1,3-dione 25 gave 
benzo[f]indeno[1,2-b]chromen-12(13H)-one 28 in the pres-
ence of cerium-impregnated-MCM-41 [126], respectively 
(Scheme 19).

Scheme 16  Synthesis of benzo[f]chromenes 19 

Scheme 17  Synthesis of benzo[f]chromenes 20 

Scheme 18  Synthesis of Fused 1H-benzo[f]chromen-indoles 22 
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The synthesis of naphtho[10,20:5,6]pyrano-[3,2-c]
chromen-6-ones 30 was accomplished by three-component 
condensation reaction of 2-naphthol 1, aromatic aldehydes 
2 and 4-hydroxycoumarin 29 catalyzed by reusable cata-
lysts like 1-methyl-3-(2-(sulfoxy)ethyl)-1H-imidazol-3-ium 
chloride [190], melamine trisulfonic acid (MTSA) [191], 
potassium 2-oxoimidazolidine-1,3-diide (POImD) [192], 
respectively (Scheme 20). The electronic and steric effects of 
substituents in aromatic aldehydes had no significant effect 
on the yields of the product in all three above-mentioned 
protocols [190–192].

Triethylamine-catalyzed one-pot three-component 
condensation reaction between naphthols like 2-naph-
thol 1/6-bromonaphthol 1e, formaldehyde 31 and trans-β-
nitrostyrene 32 for the formation of benzo[f]chromene deriv-
atives 33 was carried out by Bhattacharjee and co-workers 
[193] (Scheme 21). Reactions attempted using aliphatic 
nitroalkene in place of trans-β-nitrostyrene in the above 
condensation were unfruitful.

Boron trifluoride etherate has been successfully employed 
as catalyst for the synthesis of chromenes 36a–c via con-
densation of aldehydes 2 and acetonylacetone 34/ethylace-
toacetate 35 with 2-naphthol 1 as well as its derivatives like 
2,3-dihydroxynaphthalene 1c and 2,7-dihydroxynaphthalene 
1b and by Mashraqui and co-workers [194] (Scheme 22).

One-pot multicomponent condensation of 2-naphthol 
1 with aromatic aldehydes 2 and β-oxobenzenepropane 
(dithioates) 37 has been described using catalytic amount 
of  BF3·OEt2 for the regioselective synthesis of several 
1H-naphtho[2,1-b]pyrans 38 under solvent-free conditions 
(Scheme 23) [195]. The reactions attempted using phenol or 
1-naphthol instead of 2-naphthol were not successful due to 
their lower reactivity.

Benzo[5,6]chromeno[2,3-d]pyrimidine-9,11(10H)-
dione derivatives 40a–c were reportedly synthesized by 
one-pot multicomponent condensation reaction of 2-naph-
thols 1/1a/1b with aromatic aldehyde 2 and 1,3-dimethyl 
barbituric acid 39 in the presence of indium trichloride 
[116], phosphorus pentoxide [116], iodine [196], iodine 
in acetic acid [113],  ZrOCl2/nano-TiO2 [197] and alum 
(KAl(SO4)2.12H2O) [198] (Scheme 24) (Table 11).

Moreover, Nandi and co-workers have reported the syn-
thesis of benzo[5,6]chromeno[2,3-d]pyrimidine-9,11(10H)-
diones 40 by reacting 2-naphthol 1 with 6-amino-1,3-di-
methyl uracil 41 and aromatic aldehydes 2 using indium 
trichloride under solvent-free conditions [199] (Scheme 25). 
The reaction attempted using aliphatic aldehydes did not 
give desired product.

Cimarelli and co-workers [200] have reported the 
stereoselective synthesis of 2,3-dihydro-1H-benzo[f]

Scheme  19  Synthesis of 8,9-dihydrobenzo[f]cyclopenta[b]chromen-10(11H)-ones 26, benzo[f]chromen-3-ones 27, benzo[f]indeno[1,2-b]
chromen-12(13H)-one 28 
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Scheme 20  Synthesis of naphtho[10,20:5,6]pyrano-[3,2-c]chromen-6-ones 30 

Scheme 21  Synthesis of 
benzo[f]chromenes 33 

Scheme 22  Synthesis of chromenes 36a–c 
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Scheme 23  Synthesis of 1H-naphtho[2,1-b]pyrans 38 

Scheme 24  Synthesis of Benzo[5,6]chromeno[2,3-d]pyrimidine-9,11(10H)-diones 40a–c 

Table 11  Synthesis of 
Benzo[5,6]chromeno[2,3-d]
pyrimidine-9,11(10H)-dione 
derivatives 40a–c 

Reaction conditions R1 R2 Examples Yield (%) References

InCl3, 120 °C H H 9 63–72 [116]
P2O5, 120 °C H H 9 58–67 [116]
I2, 120 °C H H 12 59–84 [196]
I2, AcOH, 120 °C H H 6 66–74 [113]
ZrOCl2/nano-TiO2, 100 °C H H 9 80–85 [197]
Alum, PEG-400, 60 °C H, OH H, OH 21 76–92 [198]
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chromen-3-amine derivatives 44 under catalyst and solvent-
free conditions (Scheme 26) via three-component one-pot 
reaction between 2-naphthol 1, α, β-unsaturated aldehydes 
42 and chiral phenylethylamine 43.

3H-Benzo[f]chromene-2-carboxamides 47 were syn-
thesized from three-component cyclocondensation reac-
tion of 2-naphthol 1, propargyl alcohols 45 and cyclohex-
ylisocyanide 46 in the presence of  ZnI2 and  FeCl3 
(Scheme 27) [201]. The mechanism for the formation of 
47 is depicted in Scheme 28. Reactions attempted using 

either 2-methyl-3-butyn-2-ol or other isocyanides such as 
t-butylisocyanide and isopropylisocyanide gave a mixture 
of unidentified product.

Yadav et al. [202] have described the synthesis of 1,3-dia-
ryl-3H-benzo[f]chromenes 49 by reaction of 2-naphthol 1, 
aldehydes 2 and phenyl acetylene 48 using catalytic amount 
of gallium chloride in toluene as solvent under reflux condi-
tions (Scheme 29). The reaction is believed to proceed via 
arylation of alkyne to afford vinylnaphthalene-2-ol which 
subsequently undergoes cyclization with aldehyde to give 
the desired chromenes 49 (Scheme 30).

Scheme 25  Synthesis of benzo[5,6]chromeno[2,3-d]pyrimidine-9,11(10H)-diones 40a 

Scheme 26  Synthesis of 
2,3-dihydro-1H-benzo[f]
chromen-3-amines 44 

Scheme 27  Synthesis of 3H-Benzo[f]chromene-2-carboxamides 47 
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Spironaphthopyrano[2,3-d]pyrimidine-5,3′-indolines 51 
were reportedly synthesized by one-pot condensation of 
2-naphthol 1, barbituric acids 39/thiobarbituric acid 50 with 

isatins 10 and under solvent-free and catalyst-free conditions 
[203] and also in the presence of  [Hmim]HSO4 under sol-
vent-free conditions [145], sodium dodecyl sulfate (SDS) in 

Scheme 28  Mechanism for the synthesis of 3H-Benzo[f]chromene-2-carboxamides 47 

Scheme 29  Synthesis of 
1,3-diaryl-3H-benzo[f]
chromenes 49 

Scheme 30  Mechanism for the synthesis of 1,3-diaryl-3H-benzo[f]chromenes 49 
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water [204] and sulfonic acid-functionalized SBA-15 (SBA-
Pr-SO3H) [205] (Scheme 31, Table 12).

The mechanistic pathway for the formation of 
spironaphthopyrano[2,3-d]pyrimidine-5,3′-indolines 51 
catalyzed by SBA-Pr-SO3H is depicted in Scheme 32. Ini-
tially, acid-catalyzed condensation of 2-naphthol with isatin 
takes place to furnish intermediate A. Then, a subsequent 
addition of barbituric acid to the intermediate A, followed by 
a cyclization and dehydration provides the desired product 
51 (Scheme 32).

Asadi and co-workers [203] have efficiently synthesized 
a series of spironaphthopyrano[1,2-b]indeno-7,3-indolines 
52 by multicomponent reactions of 2-naphthol 1, indane-
1,3-dione 25 and isatins 10 under solvent-free conditions 
without any catalyst (Scheme 33). Electron-withdrawing 
substituents on isatin were found to reduce the reaction time.

The synthesis of spiro-oxindoles with fused chromenes 53 
(Scheme 34), through the three-component reaction of isatin 
derivatives 10, malononitrile 13 or cyanoacetic ester 14 and 
2-naphthol 1 compounds using l-proline [206], indium 
trichloride [207] and cellulose-SO3H [138] (Table 13).

2-Aminospiro[benzo[g]chromene-4,11′-indeno[1,2-b]
quinoxaline]-3-carbonitriles 56 were reportedly synthesized 
by condensation of malononitrile 13 or ethyl 2-cyanoacetate 
14, ninhydrin 54, 1,2-phenylenediamine 55, 2-naphthol 1 
under refluxing or ultrasound irradiation at room tempera-
ture in good yields (Scheme 35) [208] using green and recy-
clable trifluoroethanol as catalyst. The reaction time under 
ultrasonic irradiation was significantly reduced as compared 
to conventional heating.

The synthesis of 10-methyl-8H-spiro[benzo[5,6]
chromeno[2,3-c]pyrazole-11,3′-indol]-2′(1′H)-ones 58 by 
four-component reactions of phenylhydrazine/hydrazine 
hydrate 57, isatins 10, ethylacetoacetate 35 and 2-naphthol 1 
using nano-Co3S4 under microwave irradiation (Scheme 36) 
[209]. The method offers several advantages including uti-
lization of microwave irradiation as clean procedure, high 
atom economy, high yields, shorter reaction times, low cata-
lyst loading and reusability of the catalyst.

1,3‑Oxazines

Oxazines are six-membered heterocyclic compounds which 
contain one nitrogen and one oxygen atom. Depending on 
the relative position of the heteroatoms, i.e., oxygen and 
nitrogen atom, they are known to exist in 3 isomeric forms, 
viz. 1,2-oxazine, 1,3-oxazine and 1,4-oxazine. 1,3-Oxazines 
are privileged heterocyclic scaffolds with interesting bio-
logical activities such as antimicrobial [210], non-nucleoside 
reverse transcriptase inhibitor [211], nonsteroidal progester-
one receptor agonists [212], and antitumor [213].

Azizian and co-workers [214] investigated the micro-
wave-assisted one-pot condensation reaction of N,N,N’,N’-
tetramethylguanidine (TMG) 59, aryl-/heteroaryl-aldehydes 
2 and 2-naphthol 1 using acetic acid as catalyst for the syn-
thesis of 1-aryl-N,N-dimethyl-1H-naphtho[1,2-e] [1, 3] 
-oxazine-3-amine derivatives 60 (Scheme 37). Scheme 38 
represents the mechanism for the formation of 60. The first 
step involves the formation of intermediate by reaction of the 

Scheme 31  Synthesis of spironaphthopyrano[2,3-d]pyrimidine-5,3′-indolines 51 

Table 12  Synthesis of spironaphthopyrano[2,3-d]pyrimidine-5,3′-
indolines 51 

Catalyst, reaction condi-
tions

X Examples Yield References

130 °C O H 70–87 [203]
[Hmim]HSO4, 100 °C O H, 5-Br 82–90 [145]
SDS,  H2O, 50 °C O H, 5-R (Cl/

Br/F, Me, 
OMe, Et),7-F, 
6-Cl, 7-Me

82–92 [204]

SDS,  H2O, 50 °C S H, 5-R (Cl/
Br/F, Me, Et), 
6-Br, 7-F, 
6-Cl, 7-Me

80–92 [204]

SBA-Pr-SO3H, 140 °C O H, 5-Br/NO2/Cl 63–88 [205]
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Scheme 32  Mechanism for formation of spironaphthopyrano[2,3-d]pyrimidine-5,3′-indolines 51 

Scheme 33  Synthesis of spironaphthopyrano[1,2-b]indeno-7,3-indolines 52 

Scheme 34  Synthesis of spiro-
oxindoles with fused chromenes 
53 
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aldehyde with TMG. Subsequently, addition of 2-naphthol 
to the intermediate occurs, followed by cyclization to affords 
the corresponding products 60.

Several 1,2-dihydro-1-arylnaphtho[1,2-e] [1, 3] oxazine-
3-ones 62 were synthesized by three-component condensa-
tion of 2-naphthol 1, aldehydes 2 and urea 61 in the presence 
of nano-silica-supported ferric chloride [215], potassium 
carbonate and copper nanoparticles [216], ZnO nanoparti-
cles [217], AgI nanoparticles [218], sulfuric acid-function-
alized silica-coated magnetic nanoparticles  (MgFe2O4@
SiO2–SO3H) [219], magnetite  (Fe3O4) nanoparticles [220] 
as nanocatalysts (Table 14) (Scheme 39).

Several other catalysts such as pTSA [221], iodine 
[222], montmorillonite K10 clay [223], zinc triflate [224], 

Table 13  Synthesis of spiro-
oxindoles with fused chromenes 
53 

Catalyst, reaction conditions R R2 Examples Yield References

L-Proline,  CH3CN, reflux CN, COOEt H, 5-Cl/Br 6 75–90 [206]
InCl3/SiO2/MW CN, COOEt H 3 84–89 [207]
InCl3/CH3CN, reflux CN, COOEt H 3 65–75 [207]
Cellulose-SO3H, 55 °C CN H 1 85 [98]

Scheme 35  Synthesis of 2-aminospiro[benzo[g]chromene-4,11′-indeno[1,2-b]quinoxaline]-3-carbonitriles 56 

Scheme 36  Synthesis of 10-methyl-8H-spiro[benzo[5,6]chromeno[2,3-c]pyrazole-11,3′-indol]-2′(1′H)-ones 58 

Fig. 3  Oxazines
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phosphomolybdic acid [225], Amberlite IRA-400 Cl resin 
[226], graphene oxide [227], TMSCl/NaI [228], N-propane 
sulfonic acid pyridinium hydrogen sulfate  ([PSPy]HSO4) 
[229],  RuCl2(PPh3)3 [230], cellulose sulfuric acid/SDS [231] 
and thiamine hydrochloride  (VB1) [232] were also found 
to effect the above synthesis. The condensation of 2-naph-
thol 1 and aldehydes 2 with thiourea 63 instead of urea 61 
leads to the formation of 1,2-dihydro-3H-naphtho[1,2-e] [1, 
3] oxazine-3-thione 64 [219, 220, 230, 231] (Scheme 40, 
Table 15).

An efficient stereoselective synthesis of diverse trans-
naphtho[1,2-e] [1, 3] oxazines 66 via one-pot condensa-
tion reaction of 2-naphthol 1, 3-amino-5-methylisoxazole 
65 and arylaldehydes 2 catalyzed by bismuth(III) trifluo-
romethane sulfonate has been described by Shafiee et al. 
[233] (Scheme 41). Aldehydes with both electron-donating 
and electron-withdrawing substituents afforded the desired 
product in high stereoselectivity.

Catalyst-free synthesis of 1,3-disubstituted-2,3-dihydro-
1H-naphth[1,2-e] [1, 3] oxazines 68 was achieved by Turgut 
and co-workers [234] via condensation of 2-naphthol 1 with 
two equivalents of aryl-/heteroaryl-aldehydes 2 in the pres-
ence of ammonia 67 at room temperature (Scheme 42).

The synthesis of 2,3-dihydro-1,2,3-trisubstituted-
1H-naphth[1,2-e] [1, 3] oxazines 70 has been described by 
condensation reaction of 2-naphthol 1 with aldehydes 2 and 
primary amines 69 using Brønsted acids like pTSA [235], 
sulfamic acid [235], 1,3-disulfoimidazolium trifluoroacetate 
 ([DSIM]CF3COO) [235], as well as triphenyl sulfophospho-
nium chlorometallates [236] with both Brønsted acid and 
Lewis acid property (Scheme 43, Table 16).

Various catalysts like sodium hydrogen sulfate [237], 
 [Bmim]HSO4 [237], TBAB [237], iron(III) trifluroacetate 
([Fe(CF3CO2)3]) [238],  Fe3O4@nano-cellulose/TiCl [239], 
silica-supported boron trifluoride,  BF3–SiO2 [240], thia-
mine hydrochloride (VB1) [241], glycerol [242],  Fe3O4@

Scheme 37  Synthesis of 1-aryl-
N,N-dimethyl-1H-naphtho[1,2-
e] [1, 3] -oxazine-3-amine 
derivatives 60 

Scheme 38  Mechanism for formation of 1-aryl-N,N-dimethyl-1H-naphtho[1,2-e] [1, 3] -oxazine-3-amines 60 
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MAP Nps [243], alum [244] were explored for the one-pot 
multicomponent condensation reaction of 2-naphthol 1, 

formaldehyde 31 and primary amines 69 for the synthesis 
of 2,3-dihydro-1H-naphtho-[1,2-e] [1, 3] oxazine derivatives 
71 (Scheme 44, Table 17).

1,3-Oxazine-4-thione derivatives 74 were synthesized via 
one-pot two-step domino protocol from ammonium thiocy-
anate 72 and acid chlorides 73 and 2-naphthol 1 in the pres-
ence of an effective recyclable bifunctional organocatalyst, 
i.e., l-proline as in water [245] (Scheme 45). It was further 
noticed that benzoyl chlorides with electron-withdrawing 
substituents increased the rate of reaction and gave higher 
yields than those with electron-releasing groups.

Furan

Furans, an aromatic five-membered aromatic ring with oxy-
gen as heteroatom (Fig. 3), constitute core entities in many 
natural products are very imperative among heterocyclic 
structures owing to their remarkable biological properties 
like anticancer, antidepressant, antianxiolytic, anti-inflam-
matory, muscle relaxant, antihypertensive, antidiuretic, anti-
ulcer, antihistaminic, antiarrhythmic and analgesic. [246].

An efficient one-pot synthesis of benzamidobenzo[b]
furans 77 has been developed via reaction of arylglyoxals 
75, benzamide 76 and 2-naphthol 1 using yttrium nitrate 
hexahydrate or tungstate sulfuric acid (TSA) as a catalyst 
under solvent-free conditions [247, 248] (Scheme 46). TSA 
employed as catalyst by Vahabinia and co-workers can be 
recycled over three times without significant loss of activity.

Table 14  Synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-
3-ones 62 

Catalyst, reaction conditions Examples Yield References

FeCl3/SiO2 Nps, 150 °C 9 78–92 [215]
K2CO3, Cu Nps, PEG-400, r.t. 10 74–93 [216]
ZnO nps, 150 °C 10 76–94 [217]
AgI Nps, 140 °C 9 79–92 [218]
MgFe2O4@SiO2–SO3H, MW 13 81–97 [219]
Fe3O4 nps, toluene, reflux 4 88–94 [220]
pTSA, 160 °C 7 58–64 [221]
pTSA, MW 7 69–82 [221]
Iodine, 140–150 °C 22 50–93 [222]
Montmorillonite K10 clay, 160 °C 14 10–90 [223]
Zn(OTf)2, AcCN, reflux 9 70–84 [224]
H3PMo12O40 DMF, 100oC 10 84–92 [225]
Amberlite IRA-400 Cl resin, 20 °C 12 78–88 [226]
Graphene oxide, 120 °C 8 84–89 [227]
TMSCl/NaI in AcCN/DMF (4:1), 

140 °C
13 62–89 [228]

[PSPy]HSO4, 120 °C 10 90–95 [229]
RuCl2(PPh3)3, toluene, reflux 7 74–90 [230]
Cellulose sulfuric acid, SDS,  H2O, 

80 °C
9 80–90 [231]

VB1, 150 °C 4 85–92 [232]

Scheme 39  Synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e] [1, 3] oxazine-3-ones 62 

Scheme 40  Synthesis of 
1,2-dihydro-3H-naphtho[1,2-e] 
[1, 3] oxazine-3-thiones 64 
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Table 15  Synthesis of 1,2-dihydro-3H-naphtho[1,2-e][1,3]oxazine-
3-thiones 64 

Catalyst, reaction conditions Examples Yield References

(MgFe2O4@SiO2–SO3H), MW 3 88–92 [219]
Fe3O4 nps, toluene, reflux 2 80–85 [220]
RuCl2(PPh3)3, toluene, reflux 4 70–82 [230]
Cellulose sulfuric acid, SDS,  H2O, 

80 °C
3 80–84 [231]

Scheme 41  Synthesis of trans-naphtho[1,2-e] [1, 3] oxazines 66 

Scheme 42  Synthesis of 
1,3-disubstituted-2,3-dihydro-
1H-naphth[1,2-e] [1, 3] 
oxazines 68 

Scheme 43  Synthesis of 
2,3-dihydro-1,2,3-trisubstituted-
1H-naphth[1,2-e][1,3]oxazines 
70 

Table 16  Synthesis of 2,3-dihydro-1,2,3-trisubstituted-
1H-naphth[1,2-e][1,3]oxazines 70 

Catalyst, reaction conditions Examples Yield References

pTSA, 80 °C 12 88–95 [235]
pTSA, aq. EtOH, r.t. 12 82–87 [235]
Sulfamic acid, 80 °C 12 90–97 [235]
Sulfamic acid, aq. EtOH, r.t. 12 84–92 [235]
[DSIM]CF3COO, 80 °C 12 93–98 [235]
[DSIM]CF3COO, aq. EtOH, r.t. 12 88–94 [235]
[TPSP]FeCl4, aq. EtOH, r.t. 10 89–94 [236]
[TPSP]FeCl4, 80° C 10 94–98 [236]
[TPSP]2Zn2Cl6, aq. EtOH, r.t. 10 88–92 [236]
[TPSP]2Zn2Cl6, 80° C 10 92–97 [236]
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Several naphthofuran-2(3H)-one analogues 80 were 
efficiently synthesized by three-component condensation 
reaction using 2-naphthols 1/1d, acetaldehyde 78 and car-
bon monoxide 79 in the presence of a palladium catalyst 
(Scheme 47) [249].

Miscellaneous

The reaction of dimethyl acetylenedicarboxylate (DMAD) 
41 with 2-naphthols 1 in the presence of trimethyl or tri-
phenylphosphite 81 leads to stable dimethyl oxa-2λ5-
phosphaphenanthrene derivatives 82 [250] (Scheme 48).

One-pot, solvent-free microwave-assisted synthesis of 
1,3,2-aryldioxaborines 84 in the presence of acidic alu-
mina by reaction of 2-naphthol 1, phenylboronic acid 83 
and aldehydes 2 (Scheme 49) has been reported by Reza 
Naimi-Jamal and co-workers [251]. The above method is 
tolerant to different aromatic and aliphatic aldehydes as well 
as naphthols.

Conclusion

A plethora of heterocyclic compounds like xanthenes, 
furans, pyrans and oxazines have been reportedly synthe-
sized from 2-naphthol analogues. This review exemplifies 
the multicomponent reactions of 2-naphthol as building 
block for the synthesis of a variety of heterocyclic com-
pounds. The potential of 2-naphthol in multicomponent 
reactions is still being discovered; thus, this review might 

Scheme 44  Synthesis of 2,3-dihydro-1H-naphtho-[1,2-e] [1,3] oxazines 71 

Table 17  Synthesis of 2,3-dihydro-1H-naphtho-[1,2-e] [1,3] oxazine 
derivatives 71 

Catalyst, reaction conditions Examples Yield References

Bmim[HSO4], 60 °C 14 87–93 [237]
TBAB,  H2O, r.t. 14 85–93 [237]
NaHSO4, r.t. 14 85–96 [237]
Fe(CF3CO2)3, SDS,  H2O, r.t. 7 82–89 [238]
Fe3O4@nano-cellulose/TiCl, r.t. 14 80–98 [239]
BF3–SiO2, r.t., US 18 80–94 [240]
BF3–SiO2, 80 °C 18 56–85 [240]
VB1,  H2O, r.t 6 87–92 [241]
Glycerol 90 °C 2 68–76 [242]
Fe3O4@MAP Nps, Ultrasonication 6 88–93 [243]
Alum,H2O, r.t. 14 72–90 [244]

Scheme 45  Synthesis of 1,3-oxazine-4-thione derivatives 74 



1237Molecular Diversity (2021) 25:1211–1245 

1 3

Scheme 46  Synthesis of benzamidobenzo[b]furans 77 

Scheme 47  Synthesis of naphthofuran-2(3H)-one analogues 80 

Scheme 48  Synthesis of dimethyl oxa-2λ5-phosphaphenanthrenes 82 

Scheme 49  Synthesis of 1,3,2-aryldioxaborines 84 
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trigger new ideas to use 2-naphthol as a building block for 
future research in heterocyclic chemistry.
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