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Abstract
Recently, we have defined atomic polarizability, a Conceptual Density Functional Theory (CDFT)-based reactivity descriptor, 
through an empirical method. Though the method is empirical, it is competent enough to meet the criteria of periodic descrip-
tors and exhibit relativistic effect. Since the atomic data are very accurate, we have applied them to determine molecular 
polarizability. Molecular polarizability is an electronic parameter and has an impact on chemical–biological interactions. 
Thus, it plays a pivotal role in explaining such interactions through Structure Activity Relationships (SAR). In the present 
work, we have explored the application of polarizability in the real field through investigation of chemical–biological inter-
actions in terms of molecular polarizability. A Quantitative Structure–Activity Relationship (QSAR) model is constructed 
to account for electronic effects owing to polarizability in ligand–substrate interactions. The study involves the prediction 
of various biological activities in terms of minimum block concentration, relative biological response, inhibitory growth 
concentration or binding affinity. Superior results are presented for the predicted and observed activities which support 
the accuracy of the proposed polarizability-QSAR model. Further, the results are considered from a biological viewpoint 
in order to understand the mechanism of interactions. The study is performed to explore the efficacy of the computational 
model based on newly proposed polarizability and not to establish the finest QSAR. For future studies, it is suggested that 
the descriptor polarizability should be contrasted with the use of other drug-like descriptors.

Keywords  Polarizability · Conceptual density functional theory (CDFT) · Chemical reactivity descriptor · Quantitative 
structure–activity relationship (QSAR) · Chemical–biological interactions · Depolarization

Introduction

Polarizability (α) is described as the linear response of elec-
tronic charge distribution with respect to an external applied 
electric field [1, 2]. It is an electronic effect which can be 
explored further. It is considered as a conversion element 
between the induced dipole moment (μ) and an applied elec-
tric field (ɛ).

As majority of the molecules are asymmetric, polariz-
ability is primarily a three-dimensional tensor. Nevertheless, 
the average of the tensor’s diagonal elements is sufficient for 
nearly all purposes:

Recently, an effective model of atomic polarizabil-
ity, an important Conceptual Density Functional Theory 
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(CDFT)-based descriptor, was proposed by Tandon et al. in 
terms of absolute radius (r) and electronegativity (χ) [3]:

The model uses an empirical approach which is simple 
and integrates relativistic effects. All the sine qua non of 
a periodic descriptor is followed excellently. Additionally, 
molecular polarizability is computed through property of 
additivity in their study.

Since the atomic polarizabilities of Tandon et al. are 
accurate to maintain periodicity trend [3], in the present 
study we have applied them to determine molecular polariz-
abilities. Molecular polarizability is an important electronic 
parameter and has a strong impact on chemical–biological 
interactions. It plays a crucial role in elucidating such inter-
actions through Structure–Activity Relationships (SAR). In 
the present work, with the intention of exploring the efficacy 
of newly proposed polarizability by Tandon et al. in the real 
field, we have applied it to compute molecular polarizability 
to study chemical–biological interactions. The study sup-
ports validating the model as prescribed by Tandon et al. to 
compute polarizability in a molecular framework and not to 
develop the finest Quantitative Structure–Activity Relation-
ship (QSAR). For future prospects, it is suggested that the 
descriptor polarizability should be contrasted with the use 
of other drug-like descriptors.

In these contemporary times, computational workers 
have overlooked the research of twentieth century on the 
importance of electronic interactions between a receptor and 
a ligand with the employment of combinatorial chemistry 
and in silico approaches. Since electronic interactions are 
a consequence of specific structural features and chemi-
cal traits, SAR analyses are indisputably of huge value in 
the present chemistry and biochemistry. The idea is to use 
chemical knowledge and perception to alter exploration for 
compounds with requisite properties into a mathematically 
quantified and programmed form. When a relationship is 
accomplished linking structure and activity, a great deal of 
compounds, inclusive of hypothetical, can be effortlessly 
analysed by computer in order to select structures with the 
necessary characters. Thus, it makes the selection of poten-
tial compounds simplistic, which can then be developed and 
examined in the laboratory. Hence, SAR methodology pre-
serves resources and accelerates the route of development of 
new molecules to be utilized as drugs, anaesthetics, additives 
and other diverse materials.

Presently, our biodatabase contains a large number of 
QSAR equations with different parameters to describe dis-
tinct electronic effects. However, most of such equations 
do not encompass polarizability, which plays a crucial 
role in such relationships. A number of descriptors have 
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been proved to be helpful in relating and accounting for 
numerous radical reactions [4–6]. These kinds of reac-
tions are imperative in toxic conditions such as smoking 
or in the case of some environmental chemicals. Employ-
ing well-known parameters is the only means to perform 
comparative QSAR, which is the route towards a science 
of chemical–biological interactions through which one 
can approximate the biological activity of compounds 
that have not been investigated so far. The most essential 
facet of the theoretical methodology is to realize how liv-
ing organisms (or their components such as DNA, protein, 
enzymes, and so on, and organisms ranging from bacteria 
to human) are affected by chemicals, for which mechanis-
tic chemistry together with biology is crucial, in addition 
to the proficiency to carry out significant modelling with 
the ‘proper’ system. Electronic, hydrophobic and steric 
interactions constitute the chief interactions, and they must 
be suitably considered while modelling.

Conventionally, Lorentz–Lorenz equation is defined as 
[7],

In this equation, n refers to the refractive index, MW 
indicates the molecular weight and d depicts the density 
of the substance. The refractive index (MR) is a quanti-
fication of the interaction of light with the electrons in 
a molecule. The term MW/d represents the volume. As 
there is a minor variation in n, MR depends on MW/d. The 
initial attempt to apply molecular refractivity in terms of 
the Lorentz–Lorenz equation to biological processes was 
made by Pauling and Pressman [8]. Their study was based 
on hapten antibody interactions, which considered polariz-
ability and involved steric factors [9]. Agin et al. made a 
remarkable investigation of the ability of diverse chemi-
cals to obstruct the sartorius muscle of the frog incorporat-
ing two parameters: α (polarizability) and Ip (ionization 
potential) [10]. One more case of the minimum blocking 
concentration of various drugs on frog muscle results from 
a study by Kamlet and others [11]. In another investiga-
tion, Hahin and his coworkers examined the action of alco-
hols on frog nerves [12]. The pharmacological activities 
of a number of phenyl alkane p-ω-bis(trialkylammonium) 
compounds were analysed by Wien and Mason [13]. Mini-
mum blocking concentration to reduce action potential in 
central nerve cord from American cockroach was evalu-
ated by Nishimura et al. [14]. Recently, García-Jacas et al. 
explored the aptness of alignment-free geometric molecu-
lar descriptors based on N-linear algebraic maps, com-
monly known as QuBiLS-MIDAS, for extracting structural 
information of the molecules [15]. A comparison of differ-
ent QSAR methodologies for investigating their predictive 
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abilities was also presented by their group [16]. Various 
studies have been carried out to study the mechanism of 
different biological activities such as blocking potency, 
toxicity, anticonvulsant activity, neuromuscular activity, 
neurophysiological activities, to mention some [17–34]. 
The history of such works is vast and will not be discussed 
here.

The mechanism of action of local anaesthetics, narcot-
ics and drugs is in general one of the fundamental dif-
ficulties in the study of cell membranes [10]. There are 
two basic characteristics of this problem, which have puz-
zled and at the same time fascinated researchers: first of 
all, there is a broad range of chemical structures, varying 
from the inert gases to complex molecules, for example 
tetrodotoxin, which can stop electrical activity reversibly; 
secondly, a lot more is known about the characteristics of 
any of these chemical structures than regarding the mem-
brane with which they presumably interact. The foremost 
complication in earlier times has been the absence of suit-
able quantitative parameters, mainly those pertaining to 
active and inactive molecular structures.

Numerous forms of biological activities rest on the 
pharmacokinetics, circulation and distribution of chemi-
cals within the organism. Such processes are suggested to 
be greatly controlled by polarizability. Binding of chemi-
cals with body fluids or cells, their passage and various 
other interactions depend on the polarizability of the 
chemical as well as the system. However, regardless of its 
potential, most of the QSAR studies do not employ this 
elementary parameter. Thus, the objective of this study is 
to present the potential of Tandon et al.’s polarizability in 
computing molecular polarizability to use as an electronic 
interaction parameter for chemical–biological systems and 
to suggest the probable effects and action mechanism. It is 
believed that the study of the action mechanism of a vari-
ety of molecules would reveal important properties of the 
biological structures and eventually lead to an understand-
ing of the mechanism of anaesthesia, narcotics, toxicants 
and other similar chemicals.

Method of computation

The purpose of the present study is to assess the applicability 
of Tandon et al.’s polarizability [3] in computing molecular 
polarizability and further exploring its potential in the real 
field. For this purpose, varied biological activities of dif-
ferent compounds have been modelled using polarizability 
with the aim of explicating their course of action. In our 
analysis, we have empirically computed a CDFT-based reac-
tivity descriptor, viz. polarizability (α), for 312 compounds 
through the property of additivity [35–37] using atomic 
polarizability data tabulated by Tandon et al. [3]:

We have determined the molecular polarizabilities for a 
variety of molecules, viz. anaesthetics, miscellaneous drugs, 
phenyl-substituted and unsubstituted n-alkanols, phenyl 
alkane p-ω-bis(trialkylammonium) compounds, substituted 
benzyl pyrethroids, miscellaneous aliphatic alcohols and 
esters and 3-amidinophenylalanine derivatives. The data 
can be found in Online Resource 1.

The selected compounds have been categorized into seven 
sets on the basis of their biological activities, viz. minimum 
concentration of varied anaesthetics required for complete 
block of excitability in sartorius muscle of the frog, mini-
mum concentration of miscellaneous drugs for blocking 
electrical activity in frog muscle, minimum blocking con-
centration of miscellaneous alkanols to reduce action poten-
tial of frog nerves by 50%, relative biological response for 
neuromuscular blocking activity of aromatic bis-quaternary 
compounds on rabbit phrenic nerve diaphragm, minimum 
blocking concentration of pyrethroids to suppress action 
potential of central nerve cord of cockroach, 50% inhibitory 
growth concentration of miscellaneous aliphatic alcohols 
and esters to present toxicological activity in Tetrahymena 
pyriformis and binding affinity of 3-amidinophenylalanine 
derivatives towards thrombin. The biological activity data 
for these compounds have been taken from literature [10–14, 
38, 39]. Regression analysis has been carried out to correlate 
descriptor values with observed activities to build a scrupu-
lous and realistic QSAR model. In the study, the DFT-based 
reactivity descriptor, polarizability, is adopted as an inde-
pendent variable, while log of inverse of minimum block-
ing concentration (MBC), log of relative biological response 
(RBR), log of inverse of inhibitory growth concentration 
(IGC) or log of inverse of binding affinity (Ki) is considered 
a dependent variable to establish QSAR model to predict the 
biological activity:

and

In these expressions, log (1/MBC), (RBR), (1/IGC50) 
or (1/Ki) implies predicted biological activity, α indicates 
polarizability of the compound, while ‘a’, ‘b’ and ‘c’ repre-
sent constants calculated for respective set of compounds. 
β signifies the compressibility of the molecule. The total 
number of compounds in every set (n) is split into training 
and test set to develop the model and assess its predictive 
power, respectively. The division is made such that both 
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the sets contain similar functional group as far as possible. 
Goodness-of-fit of the developed model is determined by 
coefficient of determination (R2), and robustness is evaluated 
by cross-validation coefficient (using leave-one-out method) 
(R2

CV). Further, predicted residual error sum of squares and 
error bar analysis is used to test the uniformity and signifi-
cance of the data. All the OECD principles have been fol-
lowed; namely endpoint has been defined, an unambiguous 
algorithm is developed, applicability domain is defined, 
measures of goodness-of-fit, robustness and predictivity 
have been provided and finally, a mechanistic interpretation 
is also presented. The computations have been carried out 
using Minitab including the development, testing and valida-
tion of the developed regression models [40].

Results and discussion

The study describes the application of Tandon et al.’s polar-
izability in the real field as a predictor of biological activity 
for the chosen 312 compounds. Observed activity data (1/
MBC or RBR or 1/IGC50 or 1/Ki) of the selected compounds 
are taken as the dependent variable, whereas polarizability 
(α) is considered as an independent variable in developing 
the regression models. As mentioned in the above section, 
the study has been performed by differentiating the selected 
compounds into seven categories. Discussion for each of the 
above-mentioned sets is presented in this part.

Complete block of excitability in terms of minimum 
blocking concentration for sartorius muscle 
of the frog

The first set of compounds presents the potential of a broad 
variety of anaesthetics to block the sartorius muscle of the 
frog. Such blocking is possibly a result of nerve inhibition. 
The QSAR model obtained for the minimum blocking con-
centration using polarizability is represented by Eq. (8):

The predicted and observed biological activities (in mM) 
of the anaesthetics are presented in Table 1. It is seen that the 
molecules in the set possess heterogeneity in their chemi-
cal structures and yet show a close conformity with Eq. (8). 
High values of R2 and R2

CV signify a very impressive cor-
relation between the data sets. Predicted residual error sum 
of squares and standard error bar analysis presents uniform-
ity and significance of the data. The molecules used in the 
construction of the model are the different from the ones 

(8)
log

(

1

MBC

)

= (0.019)� − (0.596)

n = 39,R2 = 0.950,R2
CV

= 0.938

used for validation purpose. Internal validation by the test 
set transpires the predictability of the model. It appears that 
anaesthetics or other simple molecules interact with electri-
cally excitable membranes by a same mechanism. Hence, 
it is unacceptable to provide a dissimilar and specific inter-
action mechanism for each and every anaesthetic molecule 

Table 1   Minimum concentration of varied anaesthetics required for 
complete block of excitability in sartorius muscle of the frog (in mM)

a Observed data taken from reference [10]. bCompounds selected for 
test set

S. No Anaesthetics Observed log 
1/MBCa

Calculated 
log 1/MBC

1 Methanol − 0.09 0.12
2 Ethanolb − 0.25 0.54
3 Acetone 0.40 0.79
4 2-Propanolb 0.45 0.96
5 Propanol 0.60 1.27
6 Urethaneb 1.00 1.38
7 Ethyl etherb 1.07 1.20
8 Butanol 1.22 1.78
9 Antipyrineb 1.22 3.54
10 Pyridineb 1.23 1.95
11 Chloroform 1.50 0.70
12 Hydroquinone 1.60 1.65
13 Aniline 1.70 1.62
14 Benzyl alcoholb 1.70 1.12
15 Acetanilide 1.83 2.41
16 Pentanolb 1.80 1.80
17 Phenol 2.00 1.53
18 Toluene 2.00 1.83
19 Benzimidazole 2.19 1.91
20 Hexanol 2.44 2.22
21 Nitrobenzene 2.53 1.70
22 Quinolineb 2.70 2.36
23 8-Hydroxyquinolineb 2.70 2.63
24 Heptanolb 2.80 2.53
25 2-Naphthol 3.00 2.49
26 Methyl anthranilateb 3.00 2.69
27 Octanol 3.16 3.05
28 Thymolb 3.52 3.21
29 o-Phenanthroline 3.80 3.42
30 Ephedrineb 3.80 3.32
31 Procaine 4.67 4.84
32 Xylocaine 4.96 5.14
33 Diphenhydramine 5.80 5.67
34 Tetracaineb 5.90 5.68
35 Phenyltoloxamineb 6.20 5.67
36 Quinine 6.60 6.92
37 Eserine 6.66 5.55
38 Caramiphen 7.00 6.56
39 Dibucaineb 7.20 7.48
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based on its chemical configuration or structural relations to 
known biochemical systems. However, in reality, not every 
molecule behaves as an anaesthetic. The reason for this may 
be related to polarizability, water (lipid) solubility and other 
interactions such as hydrogen bonding taking place with 
molecules. If a group with lower polarizability and higher 
lipophilicity, for instance, an aromatic ring, is attached to 
a molecule such as sugar, the newly formed molecule will 
show anaesthetic action, i.e. block excitability, because it 
will allow an easy passage of chemicals through membranes 
which are less polar but more lipophilic. Thus, there will 
be a greater distribution of the chemicals to hydrophobic 
regions of the bioorganism consequently demonstrating an 
anaesthetic or excitability blocking activity, and the mini-
mum blocking concentration will be in accordance with the 
polarizability of that group. On the other hand, if a polar 
group enters into an organism, its solubility in water (hydro-
philicity) will increase since polarity of water is higher in 
comparison with lipids and proteins. As a result, there will 
be a slow passage of chemicals through membranes, which 
will favour excretion of chemicals out of the organism 
through various ways like urine, perspiration, etc. Therefore, 
the tendency to accumulate chemicals in high concentra-
tions will decrease and no or very less anaesthetic action 
will be observed. The exact course of action of anaesthetics, 
nevertheless, remains vague. Even though the correlation 
reported here is fairly remarkable, which lets us predict the 
minimum blocking concentration of some molecules with 
significant precision, the theoretical opinions in reference to 
the involved physical parameters perhaps need to be inves-
tigated further.

Blocking of electrical activity in terms of minimum 
blocking concentration for frog muscle

The second set of compounds presents the ability of miscel-
laneous drugs to block electrical activity in frog muscle. The 
QSAR model for computing the minimum blocking concen-
tration using polarizability is given in Eq. (9):

The predicted and observed biological activities (in mM) 
of the drugs are listed in Table 2. It is noted that the mole-
cules in the given set present a close agreement with Eq. (9). 
High values of R2 and R2

CV present the goodness-of-fit and 
robustness, which in turn suggest a remarkable association 

(9)
log

(

1

MBC

)

= (0.023)� − (1.121)

n = 21,R2 = 0.977,R2
CV

= 0.968

Outliers ∶ Chloroform, Nitrobenzene

amongst the activity data sets. Standard error bar analysis 
presents uniformity in data, while predicted residual error 
sum of squares indicates superiority of the model. The mol-
ecules used in the construction of the model are the dif-
ferent from the ones used for validation purpose. Internal 
validation by the test set signifies excellent predictability by 
the model. From a mechanistic point of view, an increase 
in the polarizability of drug may result in dipole–dipole 
or charge–dipole interactions between high-polarity drug 
molecules and chemicals associated with the electrical con-
duction of nerve impulses across nerve membranes such as 
zwitter ionic lecithin and/or ionic acetylcholine. As a result 
of such interaction, a hindrance is produced in the conduc-
tion of nerve impulses. Thus, it follows when interactions 
take place between extremely polar or charged species; the 
contribution of polarizability to blocking of electrical activ-
ity effect is highest. Undoubtedly, this indicates a definite 
relationship amongst highly polar solutes and certain molec-
ular entities contributing to the nerve impulse transmission 
where lecithin and acetylcholine appear probable candidates.

Table 2   Minimum concentration of miscellaneous drugs for blocking 
electrical activity in frog muscle (in mM)

a Observed data taken from reference [11]. bCompounds selected for 
test set. cOutliers for Eq. (9)

S. No Drugs Observed log 1/
MBCa

Calculated 
log 1/MBC

1 Toluene 2.00 2.01
2 Methanol − 0.09 − 0.06
3 Ethanolb 0.25 0.25
4 Propanol 0.60 0.96
5 2-Propanolb 0.45 1.14
6 Butanol 1.22 1.47
7 Pentanolb 1.80 1.77
8 Hexanol 2.44 2.48
9 Heptanolb 2.80 2.79
10 Octanol 3.16 3.50
11 Acetone 0.40 0.75
12 Phenolb 2.00 1.45
13 Thymol 3.52 3.68
14 Benzyl alcohol 1.70 2.16
15 Ether 1.07 1.47
16 Chloroformb,c 1.50 0.45
17 Aniline 1.70 1.76
18 Nitrobenzeneb,c 2.53 1.65
19 2-Naphthol 3.00 3.06
20 Pyridine 1.23 1.25
21 Quinolineb 2.70 2.46
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Reduction in action potential in terms of minimum 
blocking concentration for frog nerves by 50%

The third set is comprised of a variety of alkanols using 
which QSAR relationship is constructed for the compu-
tation of the minimum blocking concentration to reduce 
action potential of frogs. The model, displayed by Eq. (10), 
employs polarizability as a theoretical parameter:

The predicted and observed biological activities (in mM) 
of compounds are arranged in Table 3. An excellent correla-
tion is noted for the selected compounds with Eq. (10). High 
R2 and R2cv values imply a significant relationship between 
the predicted and observed activities. Predicted residual 
error sum of squares presents superior predictability by the 
model. The molecules used in the construction of the model 
are the different from the ones used for validation purpose. 
As per error bar analysis, there is a slight variation in the 
selected data. However, internal validation suggests the good 
predictability by the model. The variable, viz. polarizability, 
adopted for the prediction performs a crucial role in binding 
interactions between membrane proteins and molecules (like 
alkanols). An increase in alkanol potency with phenyl sub-
stitution is represented by Eq. (10). Although the addition of 
phenyl moiety causes an increase in potency, a decrease can 
be seen with increasing chain length. This suggests greater 
efficiency of increase in chain length over addition of phe-
nyl group. The explanation for such behaviour is possibly 
correlated with polarizability and hydrogen bond acceptor 
basicity. As the phenyl addition occurs, an increase in the 

(10)
log

(

1

MBC

)

= (0.021)� − (1.139)

n = 11, R2 = 0.988, R2
CV

= 0.972

hydrogen bond acceptor basicity of the molecule takes place, 
which is attributed to the polarization of a specific part of 
the molecule. Thus, the formation of hydrogen bonds with 
other donor molecules becomes facile. Since Na+ channels 
are known to play a crucial role in mechanism of action 
potential, obstruction of these channels will result in action 
potential block. Now, when a high-polarity (and the hydro-
gen bond acceptor basicity) chemical, i.e. alkanol, surrounds 
the Na+ channel, there will be an increment in the binding 
of donor hydrogen bond sites of the Na+ channel to alkanol 
molecules, thereby resulting in effective action potential 
block [41].

Neuromuscular blocking activity in terms of relative 
biological response for phrenic nerve diaphragm 
of rabbit

The fourth set presents the practicability of polarizability to 
predict relative biological response for neuromuscular block-
ing activity on rabbit nerves. The QSAR model obtained for 
the biological activity is represented by Eq. (11):

The predicted and observed biological activities (in mM) 
of the aromatic bis-quaternary compounds are presented in 
Table 4. The compounds selected for the investigation are in 
good accord with Eq. (11). The value of R2 and R2

CV justifies 
the dependence of the neuromuscular blocking activity on 
polarizability. Analysis of error bars presents consistency 
in the data but predicted residual error sum of squares is 
high implying average predictability. The molecules used 
in the construction of the model are different from the ones 
used for validation purpose. The result of internal valida-
tion for predictability of the model is satisfactory. The pre-
sent phenyl alkane p-ω-bis(trialkylammonium) series offers 
several suitable candidates of pharmacological importance, 
such as phenyl hexane p-ω-bis-(trimethylammonium iodide) 
and p-ω-bis(triethylammonium iodide). It is suggested that 
the block through such compounds occurs via depolariza-
tion, which alters the distribution of electric charge in the 
nerve cells as it enters or binds to the nerve cell. As a result, 
the transmission of signals is obstructed due to reversal of 
charges leading to neuromuscular block. However, there 
might be a possibility of competitive block too. It has also 
been observed that the replacement of methyl with ethyl 
groups in the series, in general, enhanced the neuromus-
cular blocking property. This may be elucidated by the fact 
that there is an increase in the polarizability on substitution 
of methyl with ethyl as indicated by our theoretical values. 
Accordingly, phenyl hexane p-ω-bis-(triethylammonium 
iodide) may act as a potential neuromuscular blocking drug.

(11)
log(RBR) = (0.009)� − (3.681)

n = 17, R2 = 0.825, R2
CV

= 0.780

Table 3   Minimum blocking concentration of miscellaneous alkanols 
to reduce action potential of frog nerves by 50% (in mM)

a Observed data taken from reference [12]. bCompounds selected for 
test set

S. No n-Alkanols Observed log 1/
MBCa

Calculated 
log 1/MBC

1 Methanol − 0.38 − 0.35
2 Ethanolb 0.06 0.11
3 n-Propanol 0.63 0.58
4 n-Butanolb 1.16 1.04
5 n-Pentanol 1.70 1.50
6 n-Hexanolb 2.18 1.97
7 n-Heptanol 2.66 2.43
8 Phenolb 2.09 1.21
9 Benzyl alcohol 1.70 1.68
10 Phenethyl alcoholb 2.00 2.14
11 3-Phenyl-1-propanol 2.51 2.60
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Suppression in action potential in terms 
of minimum blocking concentration for cockroach 
central nerve cord

In this set, the ability to suppress action potential is analysed 
using a physicochemical parameter, polarizability, of sub-
stituted benzyl pyrethroids in the excised central nerve cord 
of American cockroach according to Eq. (6). The regression 
analysis yielded Eq. (12):

The predicted and observed biological activities (in M) 
of the pyrethroid derivatives are recorded in Table 5. A 
nice agreement is highlighted by the series of compounds 
with Eq. (12). The obtained R2 and R2

CV validate the effec-
tive correlation between the two sets of data. Lower values 
of predicted residual error sum of square and uniformity 
in error bars imply good predictability by the model. The 
molecules used in the construction of the model are differ-
ent from the ones used for validation purpose. Internal val-
idation is also carried out by validating the test set which 
too transpires the predictability. It is well known that every 
cell in a living tissue is electrically polarized, i.e. main-
tains a potential difference across its plasma membrane. 

(12)
log

(

1

MBC

)

= (0.006)� − (4.523)

n = 14, R2 = 0.896, R2
CV

= 0.836

Outliers ∶ NO2, SO2Me

This potential difference is the effect of an association 
between ion pumps and ion channels (mainly Na+ and K+). 
When this membrane potential goes through a rapid rise 
and fall, an action potential is generated which depolarizes 
the nerve cell following which other nerve cells also get 
depolarized. Now, when a highly polar pyrethroid enters 

Table 4   Relative 
biological response for 
neuromuscular blocking 
activity of phenyl alkane 
p-ω-bis(trialkylammonium) 
compounds to rabbit nerves (in 
mM)

a The anion in all cases is I ‾. All substituents on phenyl ring are on 1 and 4 positions. bObserved data taken 
from reference [13]. cCompounds selected for test set

S. No Phenyl alkane p-ω-bis(trialkylammonium) compoundsa Observed log 
RBRb

Calcu-
lated log 
RBR

1 (CH3)3 N+C6H4N+(CH3)3 − 1.00 − 1.04
2 (CH3)3 N+CH2C6H4N+(CH3)3

c − 0.70 − 1.06
3 (CH3)3 N+CH2CH2C6H4N+(CH3)3 − 0.70 − 0.65
4 CH3CH2(CH3)2 N+CH2CH2C6H4N+(CH3)2CH2CH3

c − 0.22 − 0.46
5 (CH3CH2)2(CH3)N+CH2CH2C6H4N+(CH3)(CH2CH3)2 0.40 0.15
6 (CH3CH2)3 N+CH2CH2C6H4N+(CH2CH3)3 0.48 0.55
7 (CH3)3 N+(CH2)3C6H4N+(CH3)3 − 0.70 0.01
8 CH3CH2(CH3)2 N+(CH2)3C6H4N+(CH3)2CH2CH3

c 0.00 − 0.92
9 (CH3CH2)2(CH3)N+(CH2)3C6H4N+(CH3)(CH2CH3)2 0.60 0.35
10 (CH3CH2)3 N+(CH2)3C6H4N+(CH2CH3)3 0.78 0.51
11 (CH3)3 N+(CH2)4C6H4N+(CH3)3

c 0.48 -0.46
12 CH3CH2(CH3)2 N+(CH2)4C6H4N+(CH3)2CH2CH3 0.18 0.15
13 (CH3CH2)2(CH3)N+(CH2)4C6H4N+(CH3)(CH2CH3)2 0.70 0.55
14 (CH3CH2)3 N+(CH2)4C6H4N+(CH2CH3)3

c 1.30 0.73
15 (CH3)3 N+(CH2)5C6H4N+(CH3)3

c 0.78 − 0.27
16 (CH3)3 N+(CH2)6C6H4N+(CH3)3 0.70 0.15
17 (CH3CH2)3 N+(CH2)6C6H4N+(CH2CH3)3 1.40 1.34

Table 5   Minimum blocking concentration of pyrethroids to suppress 
action potential of central nerve cord of cockroach (in M)

a Observed data taken from reference [14]. bCompounds selected for 
test set. cOutliers for Eq. (11)

S. No Substituents Observed log  
1/MBCa

Calculated 
log 1/MBC

1 H 4.61 4.55
2 Fb 4.39 4.55
3 Br 4.56 4.58
4 CH3 4.78 4.68
5 C2H5

b 4.80 4.81
6 CH2C6H5 5.27 5.26
7 OCH3 4.83 4.72
8 OC2H5

b 4.84 4.95
9 OCH(CH3)2 5.11 4.99
10 OC6H5

b 5.67 5.17
11 COC6H5 5.32 5.25
12 NO2

c 5.00 4.64
13 CN 4.42 4.64
14 SO2Meb,c 4.23 4.89
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the living system, it interacts with the Na+ channel conse-
quently disturbing its mechanism which eventually results 
in the suppression of action potential. Thus, it is transpar-
ent that polarizability plays a very important role in the 
transmission as well as blocking of nerve impulse.

Toxicological activity in terms of 50% inhibitory 
growth concentration for T. pyriformis

The sixth set of compounds presents the potential of a 
broad variety of miscellaneous aliphatic alcohols and 
esters to display toxicological effect in T. pyriformis. The 
QSAR model obtained for the 50% inhibitory growth con-
centration using polarizability is represented by Eq. (13):

The predicted and observed biological activities (in 
mg/l) of the miscellaneous aliphatic alcohols and esters 
are presented in Table 6. It is seen that the molecules in the 
set possess heterogeneity in their chemical structures and 
yet show a close conformity with Eq. (13). High values of 
R2 and R2

CV signify a very impressive correlation between 
the data sets. Predicted residual error sum of squares and 
standard error bar analysis presents uniformity and signifi-
cance of the data. The molecules used in the construction 
of the model are different from the ones used for valida-
tion purpose. Internal validation by the test set transpires 
the predictability of the model. It is widely acknowledged 
that toxicity is a consequence of electronic interactions 
amongst the atoms/molecules of the toxicant and reactive 
site. Given that polarizability is a property of electronic 
distribution, it is assumed to play a major role in under-
standing diverse interactions including toxic interactions. 
From the analysis, it is observed that higher polarizabil-
ity leads to lower toxicological activity. It is also evident 
that bulky molecules are more toxic as compared to the 
lower counterparts. Further, other factors such as solubil-
ity, medium and concentration also influence the extent of 
toxicity. Nevertheless, it must be noted that not all mol-
ecules are toxic. Although the correlation presented here is 
quite noteworthy which allows prediction of the inhibitory 
growth concentration of some alcohols and esters with 
significant accuracy, the theoretical observations with 
respect to the involved parameter perhaps require to be 
probed further.

(13)
log

(

1

IGC50

)

= (0.018)� − (3.379)

n = 122, R2 = 0.845, R2
CV

= 0.838

Table 6   Inhibitory growth concentration of miscellaneous alcohols 
and esters to inhibit toxicity in T. pyriformis by 50% (in mg/l)

S. No Alcohols and Esters Observed 
log  
1/IGC50

a

Calculated 
log  
1/IGC50

1 ( ±)-1,2-Butanediol − 2.04 − 1.39
2 ( ±)-1,3-Butanediol − 2.30 − 0.99
3 1,2-Pentanediolb − 1.62 − 0.99
4 1,5-Pentanediol − 1.93 − 1.00
5 2-Methyl-2,4-Pentanediol − 1.95 − 0.59
6 ( ±)-1,2-Hexanediolb − 1.26 − 0.59
7 1,6-Hexanediol − 1.49 − 0.60
8 1,2-Decanediol 0.76 0.99
9 1,10-Decanediolb 0.22 0.99
10 Methyl alchohol − 2.66 − 2.70
11 Ethyl alchohol − 1.99 − 2.30
12 2-Propanolb − 1.74 -1.90
13 1-Propanol − 1.88 − 1.90
14 1-Butanolb − 1.43 − 1.51
15 ( ±)-2-Butanol − 1.54 − 1.51
16 2-Methyl-1-Propanol − 1.37 − 1.51
17 2-Pentanol − 1.15 − 1.11
18 3-Pentanolb − 1.24 − 1.11
19 3-Methyl-2-Butanol − 0.99 − 1.11
20 tert-Amyl Alcoholb − 1.17 − 1.11
21 2-Methyl-1-butanol − 0.95 − 1.11
22 3-Methyl-1-butanolb − 1.03 − 1.11
23 2,2-Dimethyl-1-propanol − 0.87 − 1.11
24 2-Methyl-2-propanol − 1.79 − 1.51
25 1-Hexanol − 0.37 − 0.71
26 3,3-Dimethyl-1-butanolb − 0.73 − 0.71
27 4-Methyl-1-pentanol − 0.63 − 0.71
28 1-Heptanol 0.10 − 0.31
29 2,4-Dimethyl-3-pentanolb − 0.70 − 0.31
30 1-Octanol 0.58 0.07
31 2-Octanolb 0.00 0.07
32 3-Octanol 0.03 0.07
33 1-Nonanol 0.85 0.47
34 2-Nonanolb 0.61 0.47
35 3-Ethyl-2,2-dimethyl-3-pentanol − 0.16 0.47
36 1-Decanol 1.33 0.87
37 ( ±)-4-Decanolb 0.84 0.87
38 3,7-Dimethyl-3-octanolb 0.34 − 1.27
39 1-Undecanol 1.95 1.27
40 1-Dodecanol 2.16 1.67
41 1-Tridecanol 2.40 2.06
42 2-Methyl-3-buten-2-olb − 1.38 0.87
43 4-Pentyn-1-olb − 1.42 − 1.43
44 2-Methyl-3-butyn-2-ol − 1.31 − 1.43
45 trans-3-Hexen-1-ol − 0.77 − 0.87
46 cis-3-Hexen-1-olb − 0.80 − 0.87
47 5-Hexyn-1-ol − 1.29 − 1.04
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Selectivity in terms of binding affinity 
for the enzyme thrombin

The last set presents the potential of 3-amidinophenylala-
nine-derived inhibitors to bind with thrombin in order to 
elucidate their selectivity. The binding affinity data used in 
this set are taken from reference [39] and are a well-known 
benchmark data set [42]. The QSAR model developed for 
the binding affinity using polarizability (α) together with 
compressibility (β), another important atomic and molecular 
descriptor [34], is represented by Eq. (14):

(14)

log

(

1

K
i

)

= (0.019)� + (0.006)� − (0.00001)�� − 4.65

n = 88, R2 = 0.645, R2
CV

= 0.623

Outliers∶ Compound 53, Compound 58,

Compound 69, Compound 88

Table 6   (continued)

S. No Alcohols and Esters Observed 
log  
1/IGC50

a

Calculated 
log  
1/IGC50

48 3-Methyl-1-pentyn-3-ol − 1.32 − 1.04
49 4-Hexen-1-ol − 0.75 − 0.87
50 5-Hexen-1-olb − 0.84 − 0.87
51 4-Pentyn-2-ol − 1.63 − 1.44
52 5-Hexyn-3-ol − 1.40 − 1.04
53 3-Heptyn-1-olb − 0.32 − 0.64
54 4-Heptyn-2-ol − 0.61 − 0.64
55 3-Octyn-1-olb 0.01 − 0.24
56 3-Nonyn-1-ol 0.34 0.15
57 2-Propen-1-ol − 1.91 − 2.06
58 2-Buten-1-ol − 1.47 − 1.67
59 ( ±)-3-Buten-2-olb − 1.05 − 1.67
60 cis-2-Buten -1,4-diol − 2.14 − 1.55
61 cis-2-Penten-1-ol − 1.10 − 1.27
62 3-Penten-2-olb − 1.40 − 1.27
63 trans-2-Hexen-1-ol − 0.47 − 0.87
64 1-Hexen-3-olb − 0.81 − 0.87
65 cis-2-Hexen-1-ol − 0.77 − 0.87
66 trans-2-Octen-1-ol 0.36 − 0.08
67 3-Butyn-2-ol − 0.40 − 1.83
68 1-Pentyn-3-olb − 1.17 − 1.27
69 2-Pentyn-1-ol − 0.57 − 1.27
70 2-Penten-4-yn-1-ol − 0.55 − 1.59
71 1-Heptyn-3-olb − 0.26 − 0.64
72 4-Heptyn-3-ol − 0.03 − 0.64
73 2-Octyn-1-ol 0.19 − 0.24
74 2-Nonyn-1-olb 0.64 0.15
75 2-Decyn-1-ol 0.98 0.54
76 2-Tridecyn-1-ol 2.36 1.74
77 4-Methyl-1-pentyn-3-ol − 0.02 − 1.04
78 4-Methyl-1-heptyn-3-ol 0.74 − 0.08
79 2-(Methylamino)ethanol − 1.82 − 1.70
80 4-Amino-1-butanol − 0.97 − 1.31
81 DL-2-Amino-1-pentanolb − 0.67 − 0.91
82 3-Amino-2,2-dimethyl-1-propanol − 0.92 − 0.91
83 6-Amino-1-hexanol − 0.95 − 0.51
84 DL-2-Amino-1-hexanol − 0.58 − 0.51
85 DL-2-Amino-3-methyl-1-butanol − 0.58 − 0.91
86 2-Amino-3,3-dimethyl-1-butanol − 0.71 − 0.51
87 2-Amino-3-methyl-1-pentanolb − 0.65 − 0.51
88 2-Amino-4-methyl-1-pentanol − 0.61 − 0.51
89 Diethanolamine − 1.79 − 1.19
90 1,3-Diamino-2-propanol − 1.42 − 1.50
91 3-(Methylamino)-1,2-propanediolb − 1.53 − 1.19
92 Ethyl acetate − 1.29 − 1.55
93 Propyl acetate − 1.23 − 1.16
94 Isopropyl acetate − 1.59 − 1.16
95 Butyl acetateb − 0.48 − 0.76

Table 6   (continued)

S. No Alcohols and Esters Observed 
log  
1/IGC50

a

Calculated 
log  
1/IGC50

96 Amyl acetate 0.16 − 0.36
97 Hexyl acetate − 0.01 0.03
98 Octyl acetate 1.05 0.83
99 Decyl acetate 1.87 1.62
100 Ethyl propionate − 0.94 − 1.16
101 Butyl propionate 0.17 − 0.36
102 Isobutyl propionate − 0.69 − 0.36
103 Propyl propionateb − 0.81 − 0.76
104 tert-Butyl propionateb − 0.40 − 0.36
105 Ethyl butyrate − 0.49 − 0.76
106 Ethyl isobutyrateb − 1.27 − 0.76
107 Ethyl valerate − 0.35 − 0.36
108 Propyl butyrateb − 0.41 − 0.36
109 Butyl butyrate 0.51 0.03
110 Propyl valerate 0.01 0.03
111 Amyl propionate − 0.04 0.03
112 Ethyl hexanoate 0.06 0.03
113 Methyl butyrate − 1.24 − 1.16
114 Methyl valerate − 0.84 − 0.76
115 Methyl hexanoateb − 0.56 − 0.36
116 Methyl heptanoate 0.10 0.03
117 Methyl octanoateb 0.53 0.43
118 Methyl nonanoate 1.04 0.83
119 Methyl decanoate 1.37 1.23
120 Methyl undecanoate 1.42 1.62
121 Methyl formate − 1.49 − 2.35
122 tert-Butyl formateb − 1.37 − 1.15

a Observed data taken from reference [38]. bMolecules selected as test 
set
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Table 7   Binding affinity 
of 3-amidinophenylalanine 
derivatives towards thrombin to 
predict selectivity differences 
(in mol/l)

S. no 3-Amidinophenylalanine 
derivativesa

Observed log 
(1/Ki)b

Calculated log (1/Ki) 
(including α and β)

Calculated log 
(1/Ki) (exclud-
ing α)

1 Compound 1 8.38 6.90 6.60
2 Compound 2 8.37 6.71 6.38
3 Compound 3 8.30 7.16 6.97
4 Compound 4 8.21 7.13 6.90
5 Compound 5 8.13 7.20 7.09
6 Compound 6 8.06 6.68 7.58
7 Compound 7 7.85 6.65 6.41
8 Compound 8 7.80 6.29 6.06
9 Compound 9 7.77 7.28 6.27
10 Compound 10 7.75 6.65 6.41
11 Compound 11 7.72 7.34 6.97
12 Compound 12 7.68 7.18 6.86
13 Compound 13 7.64 6.80 6.12
14 Compound 14 7.59 7.22 6.60
15 Compound 15 7.59 7.12 7.34
16 Compound 16 7.50 6.76 6.43
17 Compound 17 7.47 7.08 6.99
18 Compound 18 7.43 6.55 6.31
19 Compound 19 7.43 6.26 6.04
20 Compound 20 7.38 6.73 8.00
21 Compound 21 7.38 5.91 5.75
22 Compound 22 7.24 6.42 6.17
23 Compound 23 7.23 6.33 6.10
24 Compound 24 7.19 6.07 5.88
25 Compound 25 7.13 7.18 7.20
26 Compound 26 7.05 6.58 6.34
27 Compound 27 7.02 6.69 6.45
28 Compound 28 6.96 6.54 5.65
29 Compound 29 6.92 6.61 6.37
30 Compound 30 6.92 6.55 6.31
31 Compound 31 6.92 6.73 6.17
32 Compound 32 6.82 6.52 6.27
33 Compound 33 6.82 6.80 6.61
34 Compound 34 6.80 6.55 6.30
35 Compound 35 6.75 6.56 6.31
36 Compound 36 6.70 6.89 6.71
37 Compound 37 6.68 6.88 6.45
38 Compound 38 6.64 6.07 5.88
39 Compound 39 6.64 6.14 6.55
40 Compound 40 6.59 6.28 6.05
41 Compound 41 6.55 5.07 5.20
42 Compound 42 6.55 7.14 7.10
43 Compound 43 6.50 6.59 6.35
44 Compound 44 6.47 6.18 5.96
45 Compound 45 6.47 5.64 5.56
46 Compound 46 6.46 5.37 5.37
47 Compound 47 6.38 6.69 6.45
48 Compound 48 6.30 6.00 5.81
49 Compound 49 6.29 6.95 6.78
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The predicted and observed biological activities (in 
mol/l) of various 3-amidinophenylalanine-derived inhibi-
tors are presented in Table 7. A more or less acceptable 
conformity with Eq. (14) is highlighted by the series of 
compounds. The obtained R2 and R2

CV are satisfactory for 
validating the useful correlation between the two sets of 
data. Lower predicted residual error sum of squares and 

standard error bar analysis presents reliability and signifi-
cance of the data to some extent. The molecules used in 
the construction of the model are different from the ones 
used for validation purpose. Internal validation by the test 
set transpires the predictability of the model. It appears 
that an increase in polarizability leads to an increase in 
the binding affinity of inhibitors to thrombin, in general. 

a Structures available in Reference [39]. bObserved data taken from reference [39]. cCompounds selected for 
test set. dOutliers for Eq. (14). eOutliers for Eq. (15)

Table 7   (continued) S. no 3-Amidinophenylalanine 
derivativesa

Observed log 
(1/Ki)b

Calculated log (1/Ki) 
(including α and β)

Calculated log 
(1/Ki) (exclud-
ing α)

50 Compound 50 6.24 6.28 6.05
51 Compound 51 6.20 6.41 6.89
52 Compound 52 6.18 6.32 6.09
53 Compound 53d,e 6.16 7.29 7.50
54 Compound 54 6.05 5.90 5.80
55 Compound 55 5.96 6.28 6.05
56 Compound 56 5.92 5.46 5.50
57 Compound 57 5.75 5.07 5.83
58 Compound 58d,e 5.68 7.14 7.11
59 Compound 59 5.64 5.89 5.90
60 Compound 60 5.54 6.36 6.12
61 Compound 61 5.51 4.95 5.04
62 Compound 62 5.51 5.45 5.75
63 Compound 63 5.24 5.13 5.23
64 Compound 64 5.21 5.69 5.59
65 Compound 65 5.14 4.89 5.43
66 Compound 66 4.89 4.12 4.65
67 Compound 67 4.82 4.19 4.77
68 Compound 68 4.77 5.35 5.05
69 Compound 69d 4.57 3.78 4.56
70 Compound 70 4.52 4.85 5.47
71 Compound 71 4.46 4.91 5.15
72 Compound 72 4.36 5.20 5.27
73 Compound 73c 8.48 5.32 5.00
74 Compound 74c 7.89 5.89 5.74
75 Compound 75c 7.59 6.49 6.16
76 Compound 76c 7.52 6.44 5.73
77 Compound 77c 7.44 6.22 6.00
78 Compound 78c 7.28 6.07 5.88
79 Compound 79c 7.16 6.29 6.27
80 Compound 80c 6.77 6.52 6.62
81 Compound 81c 6.59 6.53 5.90
82 Compound 82c 6.55 6.72 6.54
83 Compound 83c 6.52 7.25 6.27
84 Compound 84c 6.28 6.79 6.58
85 Compound 85c 6.28 6.69 6.45
86 Compound 86c 6.15 7.20 7.25
87 Compound 87c 5.42 7.41 6.36
88 Compound 88c,d,e 4.75 4.57 4.90
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This is acceptable since higher polarizability favours inter-
action with potential molecules. Further, it is expected 
that replacement of simple groups by sterically extensive 
groups should enhance affinity.

In order to establish the potential of polarizability in 
explaining chemical–biological interactions, another model 
has been constructed for the same set which considers only 
compressibility and excludes polarizability. The model is 
represented by Eq. (15):

The predicted binding affinities (in mol/l) of vari-
ous 3-amidinophenylalanine-derived inhibitors based 
on compressibility are also presented in Table 7. The 
molecules used in the construction of the model are the 
different from the ones used for validation purpose. On 
comparing the models based on polarizability/compress-
ibility (Eq. 14) and just compressibility (Eq. 15), it is 
observed that the polarizability/compressibility-based 
model is more potent. Comparatively higher values of R2 
and R2

CV are evident for polarizability-dependent model 
signifying a superior correlation between the data sets 
than the model excluding it. Further, predicted residual 
error sum of squares and standard error bar analysis 
transpires fine uniformity and significance of the data 
in the case of multi-descriptor model. Similarly, internal 
validation for the two models also justifies the ability of 
polarizability to act as a suitable descriptor for chemi-
cal–biological interaction modelling. It is recommended 
that multi-descriptor models are constructed as they offer 
accurate explanation of the occurring phenomenon due 
to the incorporation of wide range of effects. For this 
purpose, reference [43] can be used to calculate a number 
of descriptors.

A comparison of the predictive potential (R2
pred) of 

the present polarizability-based MLR methodology with 
the predictive potentials of 14 QSAR methodologies for 
thrombin models reported in the literature is presented 
in Table 8 [15, 16, 42, 44–46]. It is evident from Table 8 
that the present MLR model based on polarizability is 
satisfactory, although not the finest, amongst the data sets 
considered. However, owing to the simplicity, cost-effec-
tiveness and hastiness of the present model, it is clear that 
the obtained results are rather useful to get a preview of 
structure and activity relationships.

The outcomes of this investigation undoubtedly reveal 
the importance of Tandon et al.’s model of polarizabil-
ity in the real field. A striking correlation is presented 

(15)

log

(

1

Ki

)

= (0.004)� + 1.722

n = 88, R2 = 0.534, R2
CV

= 0.508

Outliers∶ Compound 53, Compound 58, Compound 88.

between the predicted and observed biological activities. 
The reliability and predictability of the newly designed 
QSAR model are apparent from the statistics for every 
set. Moreover, it is heartening to note that the predicted 
biological activities are numerically comparable to those 
approximated by other complex techniques. Nevertheless, 
the above QSAR corresponds to only a small fraction of 
QSARs. An amazing element of our analysis is the diver-
sity of the groups of chemicals studied.

Conclusion

A study is performed to investigate the application of 
recently proposed model of polarizability by Tandon 
et al. in the real field by determining molecular polariz-
ability through additive property. A comprehensive chemi-
cal–biological interaction analysis has been carried out 
for preferred 312 compounds using molecular polarizabil-
ity as a predictor to estimate their biological activity. An 
exceptional resemblance is found between the predicted 
and observed activities. The usefulness of this descriptor 
to predict the biological activity is revealed by superior 
correlations. All the principles of OECD are nicely fol-
lowed in our study. Therefore, it is clear from the results 
that Tandon et al.’s polarizability can be suitably imple-
mented as a molecular descriptor in real fields such as 
biological activity estimation for anaesthetics, narcotics, 

Table 8   Comparison of the predictive potential (R2
pred) of the present 

polarizability-based methodology for thrombin models with respect 
to those obtained by 14 QSAR methodologies established in the lit-
erature

S. No QSAR Methodologies R2
pred

1 MLR model based on polarizability 0.688
2 QuBiLS-MIDAS models based on truncation [16] 0.769
3 QuBiLS-MIDAS models not based on truncation 

[15]
0.767

4 O3QMFA [44] 0.600
5 COSMOsar3D [44] 0.660
6 O3Q [45] 0.670
7 O3A/O3Q [45] 0.300
8 2D-FPT [46] 0.737
9 CoMFA [42] 0.630
10 COMSIA basic [42] 0.550
11 COMSIA extra [42] 0.630
12 2D [42] 0.040
13 2.5D [42] 0.280
14 EVA [42] 0.110
15 HQSAR [42]  − 0.250
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neurophysiological and other similar drugs. Species 
possessing lone pair of electrons offer future prospects 
for polarizability. Thus, further investigations based on 
such potent compounds must be carried out as they hold 
immense significance in this direction. Finally, it is sug-
gested for future explorations that the use of descriptor 
polarizability should be contrasted with some other drug-
like descriptors as well.
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