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Abstract
As one of the hot topics in the epigenetic studies, histone deacetylases inhibitors (HDACIs) have been introduced to treat a 
variety of diseases such as cancer, immune disorder and neuronal diseases. Given the high numbers of available pathways 
in which HDACs are involved, the HDACIs that act particularly on Class I or Class II enzymes are considered as possible 
candidates for anticancer drugs. Due to their effective roles in the onset of cancer and its progression, HDAC Class I isoforms 
(HDAC 1, 2, 3 and 8) were considered in this study. Herein, our objective is to determine the important isoform-selective and 
isoform-active structural features of HDACIs using the valid classification models. For this purpose, a diverse dataset com-
prising 8224 HDAC modulators was collected from the binding database. To identify the significant discriminative features, 
five classification models were generated by supervised Kohonen network and support vector machine methods. Variable 
importance in projection method was used as a variable selection approach. The results obtained from descriptor analysis 
show that physicochemical properties, such as hydrogen bonding, number of branches, size, flexibility, polarity and sphericity 
in the structure of molecules, were closely related to the bioactivity of HDACIs. The reliability and predictive ability of the 
conducted models were evaluated using the tenfold cross-validation techniques, test sets and applicability domain analysis. 
All of the obtained classification models represented high statistical quality and predictive ability with accuracy greater than 
85% for the test sets. The proposed strategy and the selective patterns represented in this paper can be applied by researchers 
in the pharmaceutical sciences who aim to use the same idea for the design of drugs with improved anticancer properties.
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Introduction

Histone acetyltransferases (HATs) and histone deacetylases 
(HDACs) are two groups of epigenetic enzymes which play 
a critical role in the regulation of gene expression. HATs 
acetylate the N-ɛ-amino groups of lysine residues in histone 
proteins allowing specific transcription factors to access the 
DNA sequence. On the contrary, HDACs catalyze the dea-
cetylation of N-ɛ-amino groups of lysine residues in histone 
and non-histone proteins. Disruption of this balance due to 
the improper HDAC activity causes the changes in the gene 
expression and chromatin structure. This inappropriate gene 
expression leads the cause of different types of cancer [1]. 
In fact, inhibition of HDAC using inhibitors is related to the 
arrest of cell growth, cell differentiation and apoptosis in the 
several cancer cell lines [2].

HDAC inhibition is a new approach to interfere in the 
cell cycle regulation. Hence, it has a major therapeutic 
potential in the treatment of many diseases. Up to now, 
total of eighteen genes encoding HDAC family members 
are known in humans which grouped into four classes and 
two major categories:  Zn+2 and  NAD+ [3]. The classical 
HDACs (Class I, II and IV) are  Zn2+-dependent enzymes, 
whereas Class III HDACs (Sirtuins) needs the cofactor 

 NAD+ (nicotinamide adenine dinucleotide) for their dea-
cetylation activity [3]. Researchers confirmed that differ-
ent HDAC isoforms play distinct roles in expanding a wide 
variety of tumors.

In this study, Class I of HDACs, consisting of HDACs 
1, 2, 3 and 8, was selected to build a proper model. They 
have the strongest enzymatic activity among the other 
HDAC classes and great ability to control many func-
tional and regulatory mechanisms [4]. The overexpression 
of these HDACs is associated with neurological diseases, 
immune disorders, [5] inflammation, [6] cardiovascular 
disease [7] and the variety of cancers such as breast, colon, 
lung, prostate and gastric cancers [8–11]. To date, five 
HDACIs (vorinostat, romidepsin, belinostat, chidamide 
and panobinostat) have been approved by Food and Drug 
Administration (FDA) as anticancer drugs [12]. However, 
lack of selectivity against a specific target in many HDA-
CIs causes toxicity in the healthy cells. Thus, the isoform-
selective inhibitors have great advantages in the develop-
ment of a drug with less side effects.

In an attempt to discover HDACIs, various in 
silico approaches including ligand-based QSAR, 
[13–16] 3D-QSAR, [17–19] pharmacophore, [20–22] 
and structure-based molecular docking [23] of new 
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potential HDACIs have been introduced, which make sig-
nificant contributions to the molecular understanding of 
enzyme–drug interactions. The applicability domains of 
these studies in the most cases are restricted by limited 
diversity (< 50 compounds in most cases) [13, 14, 24, 25] 
or scaffold type (e.g., hydroxamic acid derivatives only) 
[24, 25] in the training dataset. On the other hand, only 
some types of machine learning methods have been the 
subject of several structure–activity relationship (SAR) 
modeling studies of HDACIs. Also, some studies have 
been accomplished for the classification of isoform-selec-
tive HDACIs based on their activities [26–28].

The main purpose of our investigation is to consider more 
targets and ligands and consequently constructs a reliable 
model, in order to identify key features of isoform-selective 
and isoform-active HDACIs. Thus, we collected a large data-
set containing 8224 HDACIs from binding database (BD) 
[29] and established five classification models based on sup-
port vector machine (SVM) and supervised Kohonen net-
work (SKN) methods. The variable importance in projection 
(VIP) method was used to select the suitable set of molecular 
descriptors from 3224 molecular descriptors calculated by 
DRAGON software [30]. The statistical evaluation of the 
developed classification models was implemented by param-
eters derived from confusion matrix. The results indicated 
that in binary active/inactive classifiers for HDACs 1 and 2, 
compared to SKN method, SVM gives better classification 
accuracy rates. In the discrimination between active/inactive 
HDACIs 3 and 8, both methods have approximately equal 
potency. In the multiclass classification, SVM shows a better 
ability to discriminate isoform-selective HDACIs.

In this research, reliable classification models are devel-
oped to discover the significant discriminant features 
through the study of structure-isoform-activity and struc-
ture-isoform-selectivity relationships of Class I HDACIs.

Materials and methods

Dataset

In this work, four datasets including 8224 molecules of 
HDAC1, HDAC2, HDAC3 and HDAC8 together with their 
corresponding biological activity (in terms of  IC50 (nM)) 
and chemical structure information were collected from the 
binding database as 3D-SD files.

The data in each group were categorized to active, moder-
ate and inactive sets based on  IC50 values. The compounds 
with  IC50 ≤ 300 nM were considered as active, while those 
with  IC50 ≥ 3000  nM were classified as inactive ones, 
and compounds with the  IC50 values within the range of 
300–3000 nM were proposed as moderate and were not used 
in the model development. According to this definition, the 

HDAC1 group consists of 2350, 951 and 1063, HDAC2 
group includes 500, 370 and 326, HDAC3 group contains 
651, 110 and 526 and HDAC8 group has 301, 590 and 484 
active, moderate and inactive molecules, respectively.

The molecular weight (MW), calculated LogP (LOGP), 
polar surface area (PSA), number of donor atoms for 
H-bonds (nHAcc) and number of acceptor atoms for 
H-bonds (nHDon) values for collected molecules were in 
the ranges of 137 to 1591, − 16.3 to 7.95, 20.23 to 1590.11, 
1 to 34 and 0 to 21, respectively. The average values of MW, 
LOGP, PSA, nHAcc and nHDon were 404.36 (± 108.01), 
3.31 (± 2.26), 146.01 (± 142.34), 6.75 (± 2.50), and 3.18 
(± 1.43), respectively. (Standard deviation values are given 
in parentheses.) The values of these properties reveal that the 
considered molecules define a reasonable drug-like chemi-
cal space.

The optimized 3D molecular structures (as.hin files), 
input data matrices (as MATLAB files) and SD files down-
loaded from the binding database were given in Online 
Resource 1.

3D molecular structure generation

To prepare the 3D structure of the compounds for the 
descriptor calculation, we used Open Babel software (ver. 
2.4.0) [31]. The preparation steps were carried out as fol-
lows: first the hydrogen atoms were added to the SD files. 
Afterward, the 3D structures of the molecules were gener-
ated. The partial atomic charges were assigned according 
to Merck molecular force field (MMFF94), and then any 
duplicate conformers were removed.

As a result, 622, 251, 374 and 124 molecules with the 
same structure of groups HDAC1, HDAC2, HDAC3 and 
HDAC8 were eliminated, respectively.

Subsequently, the 3D geometry optimization of molecu-
lar structures was carried out by implementing MMFF94 
force field. The energy optimization parameters (such as 
maximum number of steps = 2500, use the steepest descent 
algorithm, convergence criteria = 10−6 kcal mol−1) were set 
at their default values.

Finally, the SD files were divided into numbered output 
files consecutively and simultaneously converted into .hin 
files format. The resulting 3D structures were imported into 
Dragon software (version 5.5) to calculate the molecular 
descriptors.

Calculation and selection of molecular descriptors

Dragon software was used to calculate 3224 molecular 
descriptors for each chemical structure. These descrip-
tors include 22 blocks of 0D (atom and molecular counts, 
molecular weight, sum of atomic properties); 1D (fragment 
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counts); 2D (topological descriptors); and 3D (geometrical, 
atomic coordinates) descriptors for encoding the ligands. 
To improve the predictive power and interpretability of the 
models, it is necessary to filter the descriptors. It is in need 
to use properties with a simple and applicable interpreta-
tion. For these reasons, a suitable subset of 450 descriptors 
was selected for building the classification models. Then 
from among them, the variables with 90% zero or constant 
values were eliminated. Also, from the two descriptors with 
correlation more than 0.9, the one showing higher pair cor-
relation with all other descriptors was removed from the data 
matrix. Afterward, to reduce the bias of the models and to 
present an equal contribution for each variables in the data 
analysis, several preprocessing methods (such as variance 
scaling, rang scaling, mean centering and auto-scaling (cen-
tering + variance scaling)) were performed on the remaining 
variables. In the previous study, we examined the effect of 
using preprocessing methods on the accuracy of classifica-
tion results and variables selection [32]. Herein, the best 
results were achieved by auto-scaled (scaling and centering) 
descriptors.

Finally, we used the VIP scores from partial least square 
discriminant analysis (PLS-DA) algorithm as a variable 
selection method [33]. In this method, the importance of 
descriptors was detected in determining class membership 
of response vector. For this propose, to each descriptor was 
calculated a VIP coefficient based on the PLS loadings. The 
 VIPj coefficient for the jth feature was calculated from a 
weighted sum of the squares of the weight in the PLS analy-
sis according to Eq. 1.

where p is the total number of variables in the model, bf and 
tf are regression coefficient and score for the fth latent vari-
able, respectively. Also, wjf is a weight for the jth variable 
and fth latent variable [34]. The  VIPj is a measure of the 
influence of j variable in the PLS model. In this method, the 
VIP coefficients of variables have been obtained as a score 
vector, which are a summary of all the components and their 
related responses. In this vector, the variables were arranged 
in decreasing order of VIP (decreasing order of importance). 
The variables with higher VIP values are more important for 
modeling the responses.

We used tenfold cross-validation technique for optimizing 
the number of variables in this work. For this purpose, dif-
ferent models with 5 to 13 VIP variables were constructed 
by SVM and SKN methods and their accuracy values were 
compared in validation sets. The number of descriptors that 
provided the best classification accuracy in the validation 
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procedure was selected as the optimal number of variables. 
The prediction accuracy values in terms of the number of 
variables in training and validation sets for the SVM and 
SKN methods are listed in Table S1 as Online Resource 2.

Comparison of the accuracy values of these models 
shows that the best results were obtained by 10-variable 
models. Therefore, the sets of the first ten variables with 
the larger VIP coefficients (more important) were selected 
for the development of the SVM and SKN models. These 
VIP-molecular descriptors define a specific subspace from 
the whole chemical space which is mainly occupied by 
active and selective HDACIs.

Dataset categorization

The classification models were developed into two dif-
ferent strategies with the purpose of discovering struc-
ture–activity and structure–isoform selectivity relation-
ships of Class I HDACIs.

In the first strategy, molecules were classified accord-
ing to their isoform selectivity. This model was made only 
with active inhibitors. The model is useful to discrimi-
nate between different active molecules and to determine 
important pharmacophores which lead to isoform-selective 
interactions with HDACs.

In the second strategy, for each isoform, active molecules 
were discriminated from inactive ones, using binary classi-
fiers. These models discover distinctive molecular features to 
classify the molecules as active or inactive inhibitors. These 
classifiers can be useful when molecules are prioritized to 
screen databases or to design focused libraries.

The threshold values of the  IC50 for classification of 
active or inactive compounds were presented in section 
“Dataset.”

To define isoform-selective inhibitors, we used the 
active inhibitors and “Selectivity Factor” (SF) parameter. 
The SF for each isoform is calculated as the  IC50 ratio of 
an inhibitor against considered isoform to  IC50 of the same 
inhibitor against any other isoforms. (For example, Eq. 2 
is SF for HDAC1 relative to HDAC2.)

We used a 20-fold benchmark for determining highly selec-
tive inhibitors. Those compounds that showed SF ≥ 20 for 
one isoform over the other isoforms were considered selec-
tive and those that failed to satisfy these criteria as duplicate 
or common inhibitors were eliminated.

The  IC50 and SF parameters have been selected based 
on the results reported in the studies on the function of 
HDACIs as active or selective inhibitors [22, 27, 35, 36].

(2)SF (HDAC1/HDAC2) =
IC

50(HDAC1)

IC
50(HDAC2)



1081Molecular Diversity (2020) 24:1077–1094 

1 3

Based on the above description, five different classifiers 
were created in this work. The first model was made by a 
multiclass classifier for discriminating selective inhibitors 
of HDAC1, HDAC2, HDAC3 and HDAC8 isoforms, which 
included 1739, 227, 402 and 142 selective inhibitors, 
respectively. The second model discriminated 1744 active 
and 1047 inactive inhibitors of HDAC1. The third model 
was designed to classify 301 and 274 active and inactive 
HDACIs2. The fourth model was constructed to distin-
guish 473 active and 330 inactive HDACIs3, and the fifth 
model is developed to categorize 239 active and 424 inac-
tive HDACIs8. In binary classifiers, the biological activity 
response was expressed in a ‘binary’ format (active = “1”; 

inactive = “2”) and was correlated with molecular descrip-
tors. In the multiclass classifier, a response vector of four 
classes was built and for each isoform was assigned a class 
label (Class “1” = HDACIs1, Class “2” = HDACIs2, Class 
“3” = HDACIs3, Class “4” = HDACIs8). By defining these 
thresholds, the number of molecules in each class is shown 
in Scheme 1.

After preparation of input matrices, in which their rows 
represent molecules and each column represents a VIP-
selected descriptor, two machine learning techniques, 
namely SVM and SKN, were employed to develop clas-
sification models. The steps to build classification models 
were presented in Scheme 1.

Binding 
Database

8224 molecules

Open Babel 

3D Structures 
Generation 

Dragon

Descriptor 
Calculation

Pre filtration 
450 Descriptor 

Selection

VIP Descriptor 
Selection

Model 1
Active HDAC 1   1739
Active HDAC 2     227
Active HDAC 3     402
Active HDAC 8     142

Based on the ActivityBased on Therapeutic Targets

Model 3
Active HDAC2 

301
Inactive HDAC2

274

Model 4
Active HDAC3

473
Inactive HDAC3

330

Model 5
Active HDAC8

239
Inactive HDAC8

424

Model 2
Active HDAC1

1744
Inactive HDAC1

1047

Dataset 
Categorization

Random Dataset 
Splitting

70% Training & 
Validation sets

30% Test set

QSAR Model 
Development

SKN SVM

Model performance assessment

Scheme 1  Flowchart for classification models development



1082 Molecular Diversity (2020) 24:1077–1094

1 3

Supervised Kohonen network (SKN)

The SKN is a supervised form of self-organizing map 
(SOM) derived from Kohonen maps. In SKN, Kohonen and 
output (Grossberg) layers are glued together to give a com-
bined layer that is updated according to the training scheme 
of Kohonen maps [37]. You can see [38, 39] to know the 
training detail of the SKN method.

To obtain a SKN model with optimal performance, it is 
essential to optimize the number of neurons and epochs. 
For this purpose, according to the number of independent 
variables in this study, SKN models were built with differ-
ent combinations of network sizes and epochs. The neurons 
were tested in numbers of 12, 14, 16, 18, 20, 22, 24, 28, 30 
and 32, and the number of epochs was set to 20, 30, 40, 50, 
80, 100, 150, 200, 250 and 300.

In this study, the network characteristics comprised hex-
agonal topology, toroidal boundary conditions, batch train-
ing and random initialization. SKN was calculated using the 
Kohonen_CPANN_toolbox written by Milano chemometrics 
and QSAR research group [40].

Support vectors machine (SVM)

SVM represents a supervised machine learning technique 
based on the principle of structural risk minimization and 
the statistical learning theory of Vapnik [41]. This feature 
lends well to the SVM model and has a good generalization 
performance in classifying nonlinear and high-dimensional 
learning problems.

In this study, between examined polynomial, linear and 
radial basis (RBF) kernel functions, RBF provided good 
classification performance (more classification accuracy and 
smaller training time). In the RBF kernel, the values of two 
parameters C and γ were optimized using grid search method 
and tenfold CV of the training data set. This means that dif-
ferent pairs of (C, γ) were tested and ones that created the 
best CV accuracies were picked for further analysis. During 
the grid search processor, C was varied at this range (0.1, 1, 
4, 8, 10, 20, 30, 40, 50, 60, 80, 100, 200, 300, 500, 1000), 
while γ was changed in the interval from (0.05, 0.10, 0.14, 
0.20, 0.28, 0.34, 0.40, 0.50, 0.65, 0.80, 0.95, 1.13, 1.60, 
2.26, 3.20, 4.60). In the end, optimal C and γ parameters 
were selected and used to build the SVM models. The result-
ing values for these parameters in each of the classification 
models are given as footnotes in Tables 1, 2, 3, 4 and 5.

The results show that “one-versus-rest” SVM approach 
works better for multiclass data, so we adopted this method 
for the classification of isoform-selective compounds. In 
sum, this approach builds a separate SVM model to clas-
sify each class against the rest. This constructs k separate 
binary classifiers for the classification of k-classes, and the 
kth binary classifier is trained using the data from the kth 

class as positive examples and the remaining k − 1 classes 
as negative examples. For a new sample, the class label is 
determined by the binary classifier with the strongest vote.

SVM analysis was carried out using the libSVM software 
library developed in 2018 [42] in the MATLAB interface 
R2017b.

Model evaluation

The statistical significance of all classifiers has been 
assessed with several metrics derived from the confusion 
matrix including: sensitivity, specificity, precision and non-
error rate for training, validation and test sets. The accuracy 
and Matthews correlation coefficient (MCC) values which 
refer to the ratio of correctly classified compounds were cal-
culated to measure the overall performance of classifiers.

The stability and predictive ability of the generated clas-
sification models were validated by tenfold CV procedure, 
test sets and applicability domain (AD) analysis.

We used a random method to split the datasets into the 
70% calibration (training and validation) and 30% test sets. 
The training and validation sets were used in the model 
building process to find and fix the best combination of 
parameters and initial evaluation of model’s performance. 
Further predictive abilities and generalization performance 
of the optimized models were assessed by test sets.

In tenfold Venetian-Blinds CV approach, training set was 
randomly divided into 10 subsets (k = 10), 9 subsets (k − 1) 
were used as training set, and the remaining single subset 
was retained as validation set to predict the trained model. 
This process is repeated 10 times until each subset is evalu-
ated once. The final result was obtained from the average 
result over each of the k models.

In addition, the graphical representation of the models 
performance was shown by receiver operating characteristic 
(ROC) curves and SKN maps.

Applicability domain (AD)

The reliability of the models in chemical space created by 
selected descriptors was evaluated by applicability domain 
(AD). AD of the models was evaluated by “Leverage” analy-
sis. This approach allows the determination of the position of 
new compounds within the chemical space and the activity 
range of the constructed models [43]. The leverage value for 
each compound is calculated by the following Eq. 3:

where X is the descriptor matrix of the training set and xi is 
the descriptor row vector of the desired compound i. The 
limit of model domain is quantitatively determined by criti-
cal threshold for leverage as: h* = 3(p + 1)/n, where n is 

(3)hi = xt
i
(XTX)xi
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the number of compounds in the training set and p is the 
number of VIP-selected descriptors. A test compound was 
considered to be an outlier that has a standardized residual 
more than three times of the considered standard deviation 
units, while compounds with a leverage value higher than 
h* (h > h*) were identified as structurally influential or high 
leverage compounds [44].

Results and discussion

Classification of compounds based on therapeutic 
targets

Discrimination of selective HDAC1, HDAC2, HDAC3 
and HDAC8 inhibitors from each other

In order to classify isoform-selective inhibitors of class I 
HDACs, a multiclass classifier was constructed. Based on 
the activity criterion and selectivity factor (SF) defined 

Table 1  Comparative statistical 
results of SVM and SKN 
models for classification of the 
isoform-selective HDACIs in 
the training, validation and test 
sets

Note: Class 1 = Active HDACIs 1; Class 2 = Active HDACIs 2; Class 3 = Active HDACIs 3; Class 
4 = Active HDACIs 8. The optimum parameters of the SVM are C = 10, γ = 0.5

Sensitivity Specificity Precision Non-error rate Accuracy

Training
SVM
 Class 1 0.947 ± 0.021 0.603 ± 0.022 0.841 ± 0.025 0.642 ± 0.025 0.829 ± 0.027
 Class 2 0.671 ± 0.019 0.992 ± 0.022 0.766 ± 0.018
 Class 3 0.695 ± 0.020 0.953 ± 0.019 0.746 ± 0.021
 Class 4 0.658 ± 0.024 0.999 ± 0.022 0.949 ± 0.025

SKN
 Class 1 0.907 ± 0.020 0.662 ± 0.025 0.856 ± 0.022 0.647 ± 0.027 0.803 ± 0.026
 Class 2 0.381 ± 0.029 0.963 ± 0.022 0.507 ± 0.028
 Class 3 0.651 ± 0.024 0.949 ± 0.020 0.714 ± 0.021
 Class 4 0.649 ± 0.022 0.983 ± 0.025 0.698 ± 0.024

Validation
SVM
 Class 1 0.751 ± 0.019 0.459 ± 0.022 0.894 ± 0.023 0.496 ± 0.024 0.744 ± 0.026
 Class 2 0.395 ± 0.026 0.912 ± 0.023 0.329 ± 0.021
 Class 3 0.465 ± 0.027 0.862 ± 0.030 0.492 ± 0.031
 Class 4 0.352 ± 0.029 0.925 ± 0.027 0.831 ± 0.025

SKN
 Class 1 0.817 ± 0.028 0.515 ± 0.027 0.785 ± 0.025 0.529 ± 0.030 0.683 ± 0.032
 Class 2 0.277 ± 0.024 0.935 ± 0.025 0.315 ± 0.029
 Class 3 0.509 ± 0.024 0.899 ± 0.025 0.498 ± 0.028
 Class 4 0.395 ± 0.031 0.976 ± 0.026 0.505 ± 0.028

Test
SVM
 Class 1 0.807 0.473 0.907 0.495 0.757
 Class 2 0.444 0.978 0.374
 Class 3 0.543 0.923 0.542
 Class 4 0.357 0.996 0.833

SKN
 Class 1 0.871 0.527 0.818 0.485 0.731
 Class 2 0.109 0.967 0.250
 Class 3 0.569 0.895 0.477
 Class 4 0.393 0.987 0.647
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in “Dataset categorization” section, active and selec-
tive compounds were selected for each isoform and 
an input dataset matrix was made with a dimension of 
(1739 + 227 + 402 + 142) × 450. By disregarding descriptors 
with constant or near constant values inside each column, 
200 descriptors remained to continue analysis. The names 
and brief definitions of 10 VIP-selected descriptors along 
with their average values in each class are listed in supple-
mentary material Table S2. It can be observed from this 
table that the most significant molecular descriptors belong 

to three classes of functional group counts (FGCs), topologi-
cal indices and atom-centered fragments (ACFs) descriptors 
and include: number of Imidazoles (nImidazoles), number 
of intramolecular H-bonds (with N, O, F), (nHBonds), num-
ber of Pyridines (nPyridines), mean square distance (MSD) 
index,  CH2R2 (C-002), Narumi harmonic topological index 
(HNar), H attached to heteroatom (H-050),  CR3X (C-011), 
Narumi geometric topological index (GNar) and Kier ben-
zene-likeliness index (BLI).

Table 2  Comparative statistical 
results of SVM and SKN 
models for classification of the 
active and inactive HDACIs 1 
in the training, validation and 
test sets

Note: aMCC = Matthews correlation coefficient. The optimum parameters of the SVM are C = 10, γ = 3.2

Sensitivity Specificity Precision Non-error rate Accuracy MCCa

Training
SVM 0.959 ± 0.051 0.902 ± 0.055 0.944 ± 0.042 0.931 ± 0.049 0.938 ± 0.064 0.888 ± 0.032
SKN 0.924 ± 0.054 0.864 ± 0.050 0.922 ± 0.042 0.894 ± 0.048 0.902 ± 0.048 0.789 ± 0.039
Validation
SVM 0.898 ± 0.021 0.764 ± 0.025 0.868 ± 0.022 0.831 ± 0.028 0.849 ± 0.018 0.672 ± 0.034
SKN 0.855 ± 0.039 0.698 ± 0.044 .0830 ± 0.047 0.777 ± 0.095 0.798 ± 0.071 0.562 ± 0.045
Test
SVM 0.927 0.781 0.860 0.854 0.867 0.724
SKN 0.885 0.825 0.879 0.855 0.860 0.711

Table 3  Comparative statistical 
results of SVM and SKN 
models for classification of 
the HDACIs 2 in the training, 
validation and test sets

Note: The optimum parameters of the SVM are C = 100, γ = 2.26

Sensitivity Specificity Precision Non-error rate Accuracy MCC

Training
SVM 0.951 ± 0.054 0.931 ± 0.031 0.939 ± 0.031 0.941 ± 0.048 0.941 ± 0.048 0.882 ± 0.035
SKN 0.901 ± 0.042 0.848 ± 0.039 0.869 ± 0.036 0.875 ± 0.045 0.876 ± 0.047 0.754 ± 0.040
Validation
SVM 0.839 ± 0.025 0.783 ± 0.027 0.813 ± 0.019 0.811 ± 0.022 0.813 ± 0.020 0.624 ± 0.026
SKN 0.815 ± 0.032 0.746 ± 0.029 0.783 ± 0.033 0.781 ± 0.041 0.783 ± 0.049 0.563 ± 0.032
Test
SVM 0.914 0.930 0.930 0.922 0.922 0.844
SKN 0.930 0.879 0.927 0.904 0.904 0.815

Table 4  Comparative statistical 
results of SVM and SKN 
models for classification of 
the HDACIs 3 in the training, 
validation and test sets

Note: The optimum parameters of the SVM are C = 10, γ = 3.2

Sensitivity Specificity Precision Non-error rate Accuracy MCC

Training
SVM 0.953 ± 0.022 0.880 ± 0.036 0.922 ± 0.035 0.917 ± 0.029 0.924 ± 0.037 0.841 ± 0.030
SKN 0.948 ± 0.019 0.900 ± 0.021 0.933 ± 0.027 0.924 ± 0.033 0.928 ± 0.039 0.851 ± 0.032
Validation
SVM 0.864 ± 0.024 0.780 ± 0.031 0.853 ± 0.025 0.822 ± 0.019 0.830 ± 0.021 0.658 ± 0.022
SKN 0.881 ± 0.026 0.738 ± 0.033 0.834 ± 0.025 0.809 ± 0.024 0.822 ± 0.034 0.625 ± 0.033
Test
SVM 0.978 0.901 0.926 0.940 0.944 0.888
SKN 0.981 0.921 0.935 0.944 0.948 0.901
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The FGCs descriptors such as nImidazoles and nPyri-
dines have positive average values for HDACIs1 and HDA-
CIs 2, 3 and 8, respectively. The large average values of 
these descriptors suggest that an increase in the number 
of Imidazole rings in the structures of inhibitors leads to 
an enhancements in the tendency to interact with HDAC1, 
while increment in the number of pyridine rings would be 
beneficial to increase interactions with HDACs 2, 3 and 8 
targets.

The larger average values of nHBonds in HDACIs 1, 3 
and 8 indicate the positive impact of intermolecular hydro-
gen bonds for more interactions with HDACs 1, 3 and 8.

The topological descriptor MSD is calculated from 
the second-order distance distribution moments of the 
H-depleted molecular graph. This index decreases with 
increment molecular branching in an isomeric series [45]. 
MSD has the large average value for HDACIs 2, 3. The high 
average value of this descriptor demonstrates that reducing 
the molecular branches (MSD) is desirable for enhancing the 
interactions with HDACs 2, 3.

The larger average values of C-002 descriptor for HDA-
CIs1 and 3 suggest that an increase in the number of atom-
centered–CH2 fragments with two functional groups R-CH2-
R′ (C-002), where R may be the same or different, raises the 
tendency to interact with HDAC1 and 3.

HNar and GNar are narumi harmonic and topological geo-
metric indices, which are related to the molecular branch-
ing and calculated from the number of non-hydrogen atoms 
divided by the summation of reciprocal vertex degree [46]. 
The larger average values of these descriptors for HDACIs 2, 
3 and 8 indicated that there is a direct relationship between 
increasing the values of these descriptors with increasing 
interactions with HDACs 2, 3 and 8.

The positive average value of H-050 in HDACIs 1 shows 
that incrementing the number of H attached to heteroatom 
is effective for increasing the tendency to interact with the 
HDAC1. C-011 descriptor has positive average values in 
HDACIs 1 and 8, and this suggests the positive effect of the 

presence of C-011 substitutions in the molecular structure 
of the inhibitors for further interactions with HDAC 1, 8.

The last descriptor is Kier benzene-likeliness index (BLI) 
that is a measure of aromaticity and obtained by dividing 
the first-order valence connectivity index by the number of 
non-H-bonds of the molecule [47]. According to the larger 
mean values of this descriptor in HDACIs2, 3, 8, it can 
be concluded that an increase in molecular aromaticity is 
more appropriate for interactions with the HDAC2, 3 and 
8 isoforms.

The isoform-selective structural characteristics presented 
in this model reveal the effective roles of some functional 
groups (nPyridines, nImidazoles), atom-centered fragments 
(C-002, C-011), intramolecular interactions (nHBonds, 
H-050), molecular branching (MSD, HNar, GNar) and aroma-
ticity (BLI) in the structure of inhibitors for selective interac-
tion between the ligand and each isoform. This information 
is very useful for describing the interaction of drugs with 
their biological targets and can be used to extract impor-
tant pharmacophores and molecular features necessary for 
specific interaction to the HDACs targets and to design new 
drugs with higher selectivity activities.

The statistical results derived from the confusion matrix 
and MCC values for the developed model by the above 
descriptors are presented in Table 1. The values of predic-
tion accuracy in the test set for SKN and SVM methods 
were obtained more than 70%. SKN map and its optimal 
parameters for the training set are shown in Fig. 1. It can be 
seen that the molecules are reasonably separated according 
to their therapeutic targets, and the molecules with similar 
target are collected in neighboring clusters of neurons. The 
results indicated that both methods have a good potential 
to classify isoform-selective HDACIs, although the SVM-
based classifiers are more accurate than SKN.

Classification of compounds based on activity

In this section, to discover structure–activity relationships 
between active and inactive of HDACIs, four classification 

Table 5  Comparative statistical 
results of SVM and SKN 
models for classification of the 
active and inactive HDACIs 8 
in the training, validation and 
test sets

Note: The optimum parameters of the SVM are: C = 100, γ = 6.4

Sensitivity Specificity Precision Non-error rate Accuracy MCC

Training
SVM 0.754 ± 0.033 0.944 ± 0.041 0.883 ± 0.049 0.849 ± 0.045 0.875 ± 0.049 0.726 ± 0.041
SKN 0.843 ± 0.051 0.962 ± 0.059 0.925 ± 0.048 0.902 ± 0.047 0.919 ± 0.049 0.823 ± 0.050
Validation
SVM 0.644 ± 0.030 0.867 ± 0.027 0.732 ± 0.024 0.756 ± 0.025 0.787 ± 0.026 0.528 ± 0.022
SKN 0.722 ± 0.044 0.826 ± 0.038 0.701 ± 0.036 0.774 ± 0.043 0.789 ± 0.052 0.545 ± 0.050
Test
SVM 0.937 0.965 0.937 0.951 0.955 0.903
SKN 0.979 0.941 0.904 0.960 0.955 0.906
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models were created using binary classifiers and 10 VIP-
selected descriptors. The names and brief definition of these 
descriptors along with their average values in each class and 
their corresponding p values were listed in Online Resource 
2 Tables S3–S6. To examine the relative importance as well 
as the contribution of each descriptor in the model develop-
ment, we used the unpaired Student’s t-test. Statistical tests 
were two-sided and assumed that the null hypothesis was 
true. The difference between the average values of the two 
groups and also the small p values indicated the importance 
and discriminative power of the selected descriptors.

Discrimination of active and inactive HDACIs1

In this model, the retrieved dataset contained 1744 active 
and 1047 inactive HDAC1 molecules that constructed a data 
matrix with dimensions of (1744 + 1047) × 450. By disre-
garding descriptors with constant or near constant values 
inside each column, 198 descriptors remained for analy-
sis. Table S3 (in supplementary) lists the information of 
VIP-selected descriptors. Four selected structural features 
belong to the ACFs and FGCs classes and included C-027 
(R–CH–X), nHBonds, nRNHO (number of aliphatic hydrox-
ylamines) and nImidazoles, where all of these descriptors 
have positive average values for HDACIs1. Consequently, 
the present of such a type of fragments in inhibitor structures 
leads to their improved activity of HDACIs1.

Other important structural features of the HDACIs1 are 
shape descriptors that belong to two geometrical and GETA-
WAY (GEometry, Topology and Atom Weights AssemblY) 
classes and include folding degree index (FDI), 3D Petitjean 

shape index (PJI3), length-to-breadth ratio by WHIM (L/
Bw) and mean electrotopological state (Ms) descriptors.

The FDI is obtained from the largest eigenvalue of the 
distance/distance matrix, and then it is normalized by divid-
ing the number of atoms. This index is sensitive to con-
formational changes and represents a quantitative measure 
of the similarity between chains with the same length but 
different geometries. This value tends to one for linear mol-
ecules (of infinite length) and decreases depending upon the 
folding of the molecule [48].

PJI3 (Petitjean shape indice) is a topological anisometry 
descriptor proposed to describe the degree of deviation from 
a perfect cyclic topology. The values of PJI3 vary in a range 
of 1 (for acyclic graphs) to 0 (for strictly cyclic graphs). PJI3 
is obtained from the fraction of the difference of geometric 
diameter and radius to the geometric radius [49].

Length-to-breadth ratio by WHIM (L/Bw) is defined as 
the ratio of the longest to the shortest side of the rectangle 
that envelopes the molecular structure. The geometric mean 
on the leverage magnitude (HGM) is the simplest GETAWAY 
descriptor that is constructed from the diagonal elements 
of the molecular influence matrix (leverages) and encodes 
the influence of each atom in determining the overall shape 
of the molecule. Thus, the HGM index is sensitive to the 
change of molecular shape and increases with branching and 
decreases with molecular size [50].

The mean electrotopological state molecular descriptor 
(Ms) is the average of the Kier-Hall electrotopological state 
for each non-hydrogen atom in the molecular structure [51]. 
Briefly, the electrotopological state describes the electronic 
and topological characteristics for each atom in a structure 
and also the electronic interactions due to all other atoms in 
the molecule with that atom. Each atom type is assigned an 
intrinsic state based on Kier-Hall electronegativity whose 
value is large for electronegative atoms and decreases with 
increasing the number of σ bonds [52].

The last descriptor is total absolute charge of atoms in a 
molecule (Qtot), a measure of molecular polarity, which is 
calculated from the sum of the absolute values of the atomic 
charges over all atoms in a molecule.

Here, with regard to the low mean values of the shape 
descriptors for HDACIs1 in Table S3 (see Online Resource 
2), it was demonstrated that an increase in the amounts 
of these descriptors negatively impacts on the inhibitory 
activities.

Generally, it can be concluded that molecular structures 
with fewer branches and larger size, less electronegative 
atoms and more sigma bond, high flexibility, acyclic struc-
tures and less length-to-breadth ratio are more suitable for 
increasing the activity of HDACIs1.

The statistical results obtained of the SVM and SKN 
classifiers in the training, validation and test sets and opti-
mal parameters of SVM are shown in Table 2. SKN map 

Fig. 1  The SKN map with the size of 24 × 24 and 60 epochs for the 
classiication of the isoform-selective HDACIs. Note: Blue hexagon 
refers to class 1 = Active HDACIs 1. Red hexagon refers to class 2 = 
Active HDACIs 2. Green hexagon refers to class 3 = Active HDACIs 
3. Yellow hexagon refers to class 4 = Active HDACIs 8. (Color figure 
online)
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together with its optimal parameters is shown in Fig. 2a–c 
demonstrates the ROC curves and their calculated AUC val-
ues from the test set for both models. Clear discrimination 
between the active and inactive molecules in the SKN map 
and also the AUC values more than 85% represent the good 
performance of the built models. Statistical comparison of 
results illustrated that despite the acceptable ability of SKN, 
the SVM method provides more accurate results in modeling 
the structure–activity relationship of HDACIs 1.

Discrimination of active and inactive HDACIs2

In this model, there were 301 and 274 molecules in the class 
of active and inactive HDAC2, respectively. Therefore, a data 
matrix (X) was created with the size of (301 + 274) × 450 
from the entire dataset where 195 variables remained 
after removing constant and high correlation descriptors. 
Table S4 (supplementary) depicts the information of 10 
selected descriptors, where the model was constructed with 
nRNHO, nArNHR (secondary aromatic amines), C-027 
(R–CH–X), TE1 (topographic electronic descriptor), C-033 
(R–CH···X), N-069 (aromatic and aliphatic amines Ar-
NH2/X-NH2), nPyrimidines (Pyrimidines), RPCG (relative 
positive charge), H-050 and nN (nitrogen atoms) descriptors.

C-027 and C-032 represent atom-centered aromatic –CH 
fragments which are connected with one single bond to a 
functional group R; C-027 carbon atom shares a single bond 
with a heteroatom, while a C-032 carbon atom shares an aro-
matic single bond with a heteroatom. TE1 belongs to charge 
descriptors and reflects the electronic charge distribution and 
interatomic distances of the molecules. Its quantity increases 
with the increment of the charge differences between two 
atoms and reducing the interatomic distance in the molecule 
[48]. The RPCG descriptor was obtained from the partial 
charge of the most positive atom divided by the total posi-
tive charge. RPCG is controlled by different heteroatoms, 
i.e., nitrogen and oxygen, and is intensely influenced by the 
presence of donor–acceptor atoms for H-bonds.

The larger average values for all ten descriptors in HDA-
CIs 2 reflect the fact that increasing the values of these 
descriptors will induce positive impacts on the inhibitory 
activities. This means that the presence of electronegative 
heteroatoms, such as oxygen and nitrogen (C-027, C-032, 
H-050, nN), as well as nitrogen substitutions connected 
to the carbon skeleton (nArNHR, nRNHO, nPyrimidines, 
N-069), increases relative positive charge (RPCG), and 
the charge differences between two atoms reducing the 

Fig. 2  a The SKN map with the size of 30 × 30 and 100 epochs. b, 
c ROC plots of the SVM and SKN models for the classification of 
the active and inactive HDACIs 1. Note: Open hexagon refers to class 
1 = Active HDACIs 1, Filled hexagon refers to class 2 = Inactive 
HDACIs 1

▸
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interatomic distance (TE1) is effective factors that would 
induce positive effect on the activity of HDACIs 2.

The results from the confusion matrix for SKN and SVM 
methods are given in Table 3. By examining the results, it 
is indicated that the SVM method has more capability to 
discriminate the active inhibitors of HDAC2 from inactive 
ones. The trained SKN map together with the label of the 
molecules in each neuron and optimal numbers of neurons 
and epoch and also ROC curves and their AUC values are 
demonstrated in Fig. 3.

Discrimination of active and inactive HDACIs 3

This model contains 473 active and 330 inactive HDA-
CIs3, where a data matrix is created with the size of 
(473 + 330) × 450. After removing the inappropriate descrip-
tors, a subset of 200 descriptors remained. The important 
structural features of HDACIs3 are shown in Table  S5 
(in supplementary) that include: H-050, N-072 (RCO-
N</>N–X = X), nRNHO, nROH (number of hydroxyl 
groups), Qneg (total negative charge), C-002  (CH2R2), nPyr-
roles (number of Pyrroles), RBF (rotatable bond fraction) 
and nArCONHR (number of secondary aromatic amides).

Descriptors of class ACFs and FGCs such as H-050, 
N-072, nRNHO, nROH, C-002, nPyrroles and nArCONHR 
have larger average values in HDACIs 3. Therefore, it can 
be concluded that the presence of H attached to heteroatom, 
RCO-N </>N–X = X type fragment, aliphatic hydroxyl 
amines, hydroxyl groups,  CH2R2 fragment, Pyrroles and 
secondary aromatic amides in the molecular structure of 
inhibitors are desirable to enhance inhibitory activities.

Another significant feature in this model is Qneg or total 
negative charge, which is obtained from the sum of all of 
the negative charges of the atoms in a molecule. The lower 
average value of this descriptor indicates a negative influ-
ence on the inhibitory activity. Therefore, its lower values in 
HDACIs 3 would be beneficial in improving the inhibitory 
activity.

The constitutional descriptor RBF corresponds to the 
rotatable bond fraction in the molecule. The large average 
value of this variable in HDACIs3 shows that the increase 
in rotatable bonds fraction in the molecule is conducive to 
increasing the activity of inhibitors. The last descriptor is 
Lop, and a topological centric index which is defined as the 
mean information content is derived from the pruning parti-
tion of an acyclic graph [53]. Lop quantifies the degree of 
compactness of molecules distinguishing between molecular 

Fig. 3  a The SKN map with the size of 12 × 12 and 150 epochs. b, 
c ROC plots of the SVM and SKN models for the classification of 
the active and inactive HDACIs 2. Note: Open hexagon Refers to 
class 1 = Active HDACIs 2, Filled hexagon refers to class 2 = Inactive 
HDACIs 2

▸
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structures organized differently with regard to their centers 
[54]. The positive average value of this variable suggests that 
increasing the amount of Lop index could be an effective 
factor in improving inhibitors’ activity.

According to the above description, the VIP-selected 
descriptors in this model reveal the importance of the 
presence of these fragments (H attached to heteroatom, 
RCO-N </>N–X = X type fragment, aliphatic hydroxyl 
amines, hydroxyl groups,  CH2R2 fragment, Pyrroles and 
secondary aromatic amides) in increasing the activity of 
HDACIs 3. Also, an increment in rotatable bonds fraction 
and compactness and decrease in the total negative charge 
in the structure of molecule have a favorable effect in the 
activity of HDACIs 3.

The statistical parameters of this binary classifier together 
with the MCC values and optimal parameters of SVM are 
given in Table 4. The ROC curves and SKN map, along with 
the AUC values and optimal SKN parameters, are shown in 
Fig. 4. The results indicated that both methods have accept-
able and almost equal potency in discrimination active–inac-
tive HDACIs 3 and the SVM method yields better results in 
the validation sets.

Discrimination of active and inactive HDACIs 8

In this model, a binary classifier was constructed using 239 
active and 424 inactive HDACIs8. The size of the gener-
ated data matrix was (239 + 424) × 450. After removing 
the constant and high correlation variables, 191 descrip-
tors remained for development of model. Table S6 (sup-
plementary) comprises the information of 10 VIP-selected 
descriptors in this model. Six descriptors belong to the 
ACFs and FGCs classes: nRNHO, nImidazole, C-011 and 
C-041 descriptors have larger average values in HDA-
CIs8, which means that increasing the number of aliphatic 
hydroxylamines (nRNHO) and Imidazoles (nImidazole) and 
C-atoms fragments connected as X–C(= X)–X and  CR3X 
(C-041, C-011) in the molecular structures of inhibitors, 
where X represents any electronegative atom (O, N, S, P, 
halogens) and = represents a double bond, would be favora-
ble for increasing the inhibitory activities of HDACIs 8. But 
the small average values of N-066 and  nRCONR2 descrip-
tors in inhibitors illustrate that an increase in the number of 
secondary aliphatic amines (N-066) and tertiary aliphatic 
amides  (nRCONR2) lead to a decrease in the activity of 
inhibitors.

Fig. 4  a The SKN map with the size of 16 × 16 and 50 epochs. b, c 
ROC plots of the SVM and SKN models for the classification of the 
active and inactive HDACIs 3. Note: Open hexagon Refers to class 
1 = Active HDACIs 3, Filled hexagon refers to class 2 = Inactive 
HDACIs 3

▸
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The next descriptor in this model is the MSD (mean 
square distance). As explained in section “Classification of 
compounds based on therapeutic targets,” the value of this 
descriptor decreases with the increasing molecular branch-
ing. The small mean value of this variable in HDACIs 8 
suggests that an increment in the number of branches in the 
molecule is suitable for increasing the inhibitory activity.

LP1 (Lovasz–Pelikan index or leading eigenvalue) is a 
topological descriptor. It has been known as an index of 
molecular branching, and the highest values correspond to 
the most branched graphs and the smallest values to chain 
graphs [53]. The higher mean value of this descriptor in 
inhibitors illustrated the positive effect of increasing the 
number of branches in the activity of HDACIs 8.

The next descriptor is molecular asphericity (ASP), 
which describes the deviation from a spherical shape in 
terms of all three main principal moments of inertia of the 
molecule [53]. For the linear molecules, the value of the 
ASP is higher than that of the spherical molecule. Therefore, 
due to the small average value of this variable in HDACIs 
8, it can be concluded that spherical molecules have more 
inhibitory activity. L/Bw is the last selected descriptor in this 
model that has a negative effect on the inhibitors’ activity 
and reducing its value is predicted to increase the activity 
of HDACIs8.

In sum, as is apparent from Table  S6, VIP-selected 
descriptors in this model reveal the importance of the 
presence of aliphatic hydroxyl amines, imidazoles,  CR3X 
and X–C(= X)–X fragments and increment the number 
of branches, spherical and size in the molecular struc-
ture of inhibitors to increase the inhibitory activity of the 
compounds.

The statistical results of SVM and SKN methods and 
optimal parameters of SVM are listed in Table 5. The SKN 
map and ROC curves along with its optimal SKN param-
eters and AUC values are presented in Fig. 5. The tabulated 
results show that both methods (SKN and SVM) have an 
equal ability to classify active/inactive HDACIs8. However, 
comparing the MCC and non-error rate values indicates that 
the SKN method yields better results. The prediction accu-
racy greater than 95% in the test sets reveals the stability and 
predictive ability of the generated classifiers to model the 
structure–activity relationship of HDACIs8.

Fig. 5  a The SKN map with the size of 14 × 14 and 50 epochs. b, c 
ROC plots of the SVM and SKN models for the classification of the 
active and inactive HDACIs 8. Note: Open hexagon refers to class 
1 = Active HDACIs 8, Filled hexagon refers to class 2 = Inactive 
HDACIs 8

▸
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Descriptors analysis

At first, it is worth noting that despite huge structural 
diversity, HDACIs are generally characterized by a com-
mon pharmacophore model: a zinc binding group (ZBG) 
such as hydroxamic acid and benzamide interacts with  Zn2+ 
ion at the bottom of active site of HDACs, a hydrophobic 
linker domain occupies the narrow tunnel of HDACs and 
connects the ZBG, and a surface recognition group (cap). 
Cap, a hydrophobic and aromatic or heteroaromatic group, 
is essential for recognizing and interacting with amino acid 
residues on the rim of active site of HDACs [55].

Structural modification in the pharmacophores of HDA-
CIs is still a challenge, and further research is needed to 
design potent and selective inhibitors. It is believed that 
computational methods can provide valuable information 
in the least time to discover new drugs with developed 
potential.

Taking into account the above description, a brief anal-
ysis on the selected descriptors was performed to better 
understand the structure–activity and isoform selectivity 
relationships of HDACIs.

In this study, different types of descriptors are involved to 
build the classification models as ACFs, FGCs, topological, 
geometrical, charge and constitutional descriptors. Among 
these descriptors, the FGCs and AFCs make the major con-
tributions to build the classification models. These descrip-
tors are a simple representation of molecular structure that 
arises from the chemical identity of each atom to describe 
the role of particular functional group and atom connectivity 
in the molecular skeleton on their activities.

Some of the FGCs and AFCs descriptors have been rep-
licated in the most models, which illustrate the importance 
of these features in increasing the inhibitory potency of 
HDACIs. Like nRNHO that exists on all four binary clas-
sification models shows a positive effect on the inhibitory 
activity of HDACIs 1, 2, 3 and 8. Also, the existence of 
H-050 (in HDACIs 2, 3) and nHBonds (in HDACIs 1) 
descriptors highlights the importance of hydrogen bonds 
in the interactions between inhibitor and target. Moreo-
ver, the functional groups like the Pyrimidine (in HDACIs 
2), Imidazole (in HDACIs 3, 8), Pyrrole (in HDACIs 3) 
and also amino substitutions such as N-072, nArNHR (in 
HDACIs 3), N-069 (in HDACIs 2), N-066 and nRCONR2 
(in HDACIs 8) with positive average values in inhibitors 
make a positive contribution to increasing the inhibitory 
activity. These substructures are known as important and 
effective substitutions in the structure of synthesized 
HDACs inhibitors and can interact with the targets as an 
electron-donating groups by chelate formation or through 
intermolecular hydrogen bonding with the zinc ion on the 
active site of HDACs [56]. In addition, these features have 
been introduced in other HDACIs classification study [57].

Other important factors related to the activity of HDA-
CIs are branching, flexibility, cyclicity and the size of the 
inhibitors. MSD, LP1 (in HDACIs 8) and HGM (in HDA-
CIs1) variables show the importance of molecular branch-
ing in increasing the activity of inhibitors. Additionally, 
the results suggest that an increase in the molecular flex-
ibility by incorporation of rotatable bonds RBF (in HDA-
CIs 3) and FDI (in HDACIs 1) is conducive to inhibitory 
activity. The importance of molecule sphericity was deter-
mined by the ASP (in HDACIs 8) and PJI3 (in HDACIs 1) 
descriptors. The presence of L/Bw index (in HDACIs 1, 
8) confirms that the size of inhibitors plays a major role 
in the inhibitory activity. These molecular shape descrip-
tors have a determining property in the different physico-
chemical processes, such as interaction capability between 
ligand and target. These properties indicate the important 
structural features of pharmacophoric groups to locate in 
an appropriate position of the HDACs active site for better 
drug–enzymes interaction.

In addition, the polarity of molecules has a great effect 
on the inhibitors’ activity. The presence of charge descrip-
tors such as Qtot (in HDACIs 1), RPCG (in HDACIs 2) and 
Qneg (in HDACIs 3) shows the importance of polarity for 
HDACIs inhibitory potency, because different heteroatoms 
and donor–acceptor atoms in H-bond influence molecular 
polarity. Therefore, the presence of C-027 (in HDACIs 1, 
2), nN, C-033 (in HDACIs 2) and C-011, C-041 (in HDA-
CIs 8) reveals the impact of polarity and electronegative 
atoms in drug–enzyme interaction.

As seen in Table S2, the selected descriptors in iso-
form-selective model indicate that the presence of imi-
dazole (in HDACIs 1) and pyridine rings (in HDACIs 2, 
3, 8) in the structure of inhibitors plays a positive role 
in an increasing tendency to interact with these targets. 
Also, increasing the number of intramolecular H-bonds 
contributes to selective interactions with the HDACs1, 3 
and 8. These features are also available on some active/
inactive binary models. Such as nImidazole and nHbonds 
with positive average values existing in the active HDACIs 
1, this suggests that these properties can simultaneously 
enhance the inhibitory activity and interaction with HDAC 
1. As well as, the nPyridine descriptor in active HDACIs 
2 is useful for increasing inhibitory activity and the desire 
to interact with the HDAC2. These properties can be con-
sidered in the synthesis of active and selective inhibitors 
by pharmaceutical chemists.

The increase in the number of branches and aromaticity 
in the structure of inhibitors has a positive influence on the 
selective interaction with the HDCAs 2, 3 and 8.

The desire to selective interactions with HDAC 1 will be 
enhanced by increasing the number of hydrogens attached to 
heteroatom. Also, the presence of  CR3X atom-centered frag-
ments in the structure of HDACIs 1, 8, and  CH2R2 fragments 
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in HDACIs 1, 3 increases the tendency to interact with these 
targets.

This analysis makes it possible to identify the contribu-
tion of the different physicochemical properties of the mol-
ecules to pharmacological activity. All of the VIP-selected 
descriptors in this study are closely associated with the 
structural features of synthesized inhibitors in existing 
research [58–60], which confirms the good performance of 
the proposed models in this study.

Statistical results

By examining the tabulated results indicated that SKN and 
SVM methods have an acceptable ability to model struc-
ture–activity and structure–isoform selectivity relationships 
of HDACIs. SVM method provides the better results than 
SKN in the discrimination of active–inactive HDACIs 1 and 
2, but both methods have almost equal ability to model struc-
ture–activity relationships of HDACIs 3 and 8. In classifi-
ers of isoform-selective HDACIs, the SVM model provides 
more accurate statistical results than the SKN. The AUC 
values more than 0.85 for SKN and SVM models indicated 
the good predictive power of the developed models.

We computed the AD for the developed classifiers. The 
cutoff leverage values together with the number of ‘‘in 
domain’’ test set molecules are given in Online Resource 2 
(Table S7). As can be seen in this table, most of the test set 
molecules fall within the AD of the models; therefore, our 
models were useful for evaluation of HDACIs in which no 
experimental data are available.

Conclusion

This study represents the continuation of our efforts for the 
development and application of classification models toward 
the discovery of important and distinctive structural features 
for some of considered compounds [32, 61]. In this work, 
isoforms of class I HDACs (HDACs 1, 2, 3 and 8) were 
targeted considering their over expression in many diseases. 
We followed two goals in this study: First to determine the 
best variables which produced the most distinction between 
the isoform-selective and active/inactive HDACIs. For this 
propose, we used the VIP technique as a variable selection 
method and two powerful machine learning methods (SVM, 
SKN) to classify a diverse set of HDACIs. We believe the 
combination of the best subsets of variables and a diverse 
dataset next to the convenient chemoinformatics models can 
be used as a reliable lead designing tool for exploring new 
potent and selective inhibitors in a drug discovery pipeline. 
Our second goal is to evaluate the effect of various structural 
properties on drug–target interaction that was performed 
with the aid of descriptor analysis. In sum, the interpretation 

of selected descriptors underscores the fact that the pres-
ence of functional groups like the pyrimidine, imidazole, 
pyrrole and also amino substitutions such as aliphatic 
hydroxylamines, aromatic secondary amides and molecu-
lar polarity, intramolecular H-bonds, hydrogens attached to 
heteroatom, number of branches, flexibility, cyclicity and 
size in the structure of inhibitors are important responsible 
parameters for the selectivity and activity of HDACIs. The 
results illustrate that the SVM and SKN classifiers achieved 
high accuracy in discriminating HDACIs in the terms of 
isoform selectivity and activity, although SVM represents 
an almost better classification accuracy rates compared to 
SKN. The high accuracy values of the obtained classifiers 
for the training, validation and test sets demonstrate that the 
information provided in this work is reliable for designing 
HDACIs with the better therapeutic potency and reduced 
side effect. The obtained results can significantly contribute 
to the molecular understanding of enzyme–drug interactions.
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