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Abstract
The effectiveness of chemotherapy in breast cancer treatment can be increased using a combinatorial agent. Hesperetin has 
been reported to increase the sensitivity of doxorubicin in breast cancer cells; however, the underlying molecular mechanism 
remains unclear. This present study was conducted to identify the potential target and molecular mechanism of hesperetin 
in circumventing breast cancer chemoresistance using a bioinformatics approach. Microarray data obtained after hesperetin 
treatment in the NCI-60 cell line panel collection were retrieved from the COMPARE public library. These data were then 
compared with the list of the regulatory genes of breast cancer resistance obtained from PubMed and further analyzed for gene 
ontology and KEGG pathway enrichment, as well as protein–protein interaction network. A Venn diagram of COMPARE 
microarray data and the gene list from PubMed generated 56 genes (potential therapeutic target genes/PTTGs). These PTTGs 
participate in the biological process of the JAK-STAT cascade and are located in the nucleus, exert a molecular function in 
protein serine/threonine kinase activity, and regulate the erbB signaling pathway. Drug association analysis demonstrated 
that both hesperetin and the erbB receptor inhibitors, i.e., monoclonal antibody and tyrosine kinase inhibitor, target the same 
mRNA expression. Furthermore, results of the molecular docking study revealed that hesperetin is a promising inhibitor 
that targets ABL1, DNMT3B, and MLH1 due to the similarity of binding properties with its native ligand. In conclusion, 
the possible pathways and the regulatory genes identified in this study may offer new insights into the mechanism by which 
hesperetin overcomes breast cancer chemoresistance. A combinatorial therapy with hesperetin targeting ABL1, DNMT3B, 
and MLH1 may be effective in circumventing chemoresistance in breast cancer.
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Introduction

Breast cancer causes the highest mortality rate among 
women and is also one of the leading causes of death in 
the world [1]. Conventional treatments for breast cancer 
include surgery, radiation therapy, chemotherapy, endocrine 
(hormone) therapy, and targeted therapy [2]. Chemotherapy 
is used as an adjunct to surgery, radiotherapy, or hormone 
therapy [3]. However, invasion, metastasis, and drug resist-
ance decrease the effectiveness of chemotherapy [4]. Thus, 
a combination of drugs can be used to obtain a synergistic 
effect of therapy, reduce drug toxicity, and reduce or inhibit 
the development of drug resistance [5]. In this context, a 
combinatorial agent is required to increase the effectiveness 
of chemotherapy.

Hesperetin, one of the citrus flavones, has been investi-
gated for its anticancer activities in several cancer cell mod-
els, including MDA-MB 231 breast cancer cells [6], SKBR3 
breast cancer cells [7], SiHa cervical cancer cells [8], and 
MCF-7 breast cancer cells [9]. One study reported that hes-
peretin treatment inhibits cell proliferation and induces cell 
cycle arrest at the G1 phase in PC3 prostate cancer cells 
by elevating IL-6 gene expression, IL-6 protein secretion, 
and the expression of pSTAT3, pERK1/2, and pAKT [10]. 
Another study found that hesperetin enhances apoptotic 
cell death and mitochondrial membrane potential loss in 
H522 lung cancer cells [11]. A recent review conducted by 

Ferreira de Oliveira demonstrated that hesperetin regulates 
cell cycle and apoptosis through the regulation of the JNK 
pathway [12].

Furthermore, studies have also investigated hesperetin 
in combination with chemotherapeutics. It was found that 
hesperetin could increase etoposide cytotoxicity and induce 
G2/M arrest in U2OS human osteosarcoma cells [13], 
increase the cytotoxicity of cabazitaxel and docetaxel in 
PCC-1 prostate cancer cells [14], and increase cisplatin sen-
sitivity by elevating the levels of reactive oxygen species in 
lung adenocarcinoma cells [15]. In breast cancer, hesperetin 
was shown to increase the sensitivity of MCF-7/Dox breast 
cancer cells to doxorubicin by inhibiting the expression 
of P-glycoprotein (PgP) [16]. Nevertheless, the molecular 
mechanism of hesperetin in overcoming chemoresistance in 
breast cancer needs to be further investigated.

In the present study, a bioinformatics approach was used 
to identify the potential target and mechanism of hespere-
tin in overcoming chemoresistance in patients with breast 
cancer. Microarray data obtained after hesperetin treatment 
in the NCI-60 cell line panel collection were retrieved from 
the COMPARE public library. These data were then com-
pared with the list of the regulatory genes of breast cancer 
resistance obtained from PubMed and further analyzed for 
gene ontology and KEGG pathway enrichment, as well as 
protein–protein interaction (PPI) network. Molecular dock-
ing study was performed to identify the potential interaction 
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between hesperetin and the protein target. We identified a 
possible specific molecular mechanism of hesperetin using 
an integrated bioinformatics analysis, which suggested that 
ABL1, DNMT3, and MLH1 could be developed as novel 
targets for overcoming chemoresistance in breast cancer.

Materials and methods

Data collection and processing

Cytotoxicity data and mRNA array data were obtained from 
the NCI-60 DTP Web site (https​://dtp.cance​r.gov/) [17]. 
COMPARE analysis with the public library produces a list 
of drugs that have similarities with hesperetin, as well as a 
list of gene expressions on the NCI-60 cell line panel [18]. 
The similarity pattern is expressed as the Pearson correlation 
coefficient. In this study, the list of compounds and genes 
was limited to the Pearson correlation coefficients of < − 0.5 
and > 0.5. Genes associated with breast cancer chemore-
sistance were obtained from PubMed using the key words 
“breast cancer resistance.”

Gene ontology and KEGG pathway enrichment 
analysis

Gene ontology (GO) enrichment analysis was conducted 
using the Database for Annotation, Visualization, and Inte-
grated Discovery v6.8 [19], with p < 0.05 considered as the 
cutoff value. KEGG pathway enrichment was also conducted 
using the overrepresentation enrichment analysis (ORA) 
from the WEB-based GEne SeT AnaLysis Toolkit (Web-
Gestalt), with a false discovery rate (FDR) of < 0.05 selected 
as the cutoff value [20].

Drug association analysis

To identify the potential target genes of hesperetin in breast 
cancer, drug association analyses were conducted using the 
ORA from the WebGestalt, with an FDR of < 0.05 consid-
ered as the cutoff value [20]. Briefly, the PTTGs were sub-
mitted to the ORA from the WebGestalt, with the functional 
parameter GLAD4U.

Construction of PPI network and hub gene selection

The PPI network was constructed using STRING-DB v11.0 
[21]. Confidence scores > 0.4 were considered to be signifi-
cant. The PPI network was visualized by the Cytoscape soft-
ware. Genes with the highest degree score of 10, analyzed by 
cytoHubba plugin, were selected as hub genes.

Molecular docking

Docking simulation was conducted to predict the binding 
properties of hesperetin on ABL1, DNMT3B, and MLH1. 
All computational simulations were generated on the Win-
dows 10 Operating System, with Intel Core i5-7th Gen as a 
processor and 4 GB of RAM. The PDB IDs of 4P7A, 5NR3, 
and 1FPU were chosen as the crystal structure model of 
MLH1, DNMT3B, and ABL1 proteins, respectively, based 
on the presence of the known inhibitor. MOE 2010 (licensed 
from the Faculty of Pharmacy, UGM) was used for dock-
ing simulation, RMSD calculation, and visualization of the 
interaction. The structure of hesperetin was drawn in the 
ChemDraw software and subjected to conformational search 
that was minimized in MOE using the Energy Minimize 
module. Docking simulation was conducted on the native 
ligand binding site based on the flexible structure of ligands 
and rigid receptor. For the docking simulation setting, Lon-
don dG and Triangle Matcher were chosen for score function 
and placement setting, respectively. Force field method was 
used to refine the docking results from 30 retain settings. 
The default settings were used in each application unless any 
further explanation was available. The results of the analysis 
were used to infer which conformation produced the lowest 
energy state when hesperetin bound to the target protein.

Results and discussion

Data collection and processing

This study investigated the molecular mechanism of hespere-
tin in breast cancer chemoresistance using a bioinformatics 
approach. The microarray data revealed that there were 554 
genes with a positive Pearson correlation coefficient and 13 
genes with a negative Pearson correlation coefficient (Sup-
plementary Table 1). In addition, the genes RHCE, RHD, 
and FAM65C showed the highest Pearson correlation coef-
ficient values of 0.904, 0.883, and 0.874, respectively. In 
contrast, the genes TCHH, LHX2, and STS showed negative 
Pearson correlation coefficient values of − 0.658, − 0.59, and 
− 0.59, respectively (Table 1).

Using COMPARE, we investigated the gene expression 
that was affected by treatment with hesperetin in the NCI-
60 cell line panel. A correlation analysis was performed 
between mRNA expression and IC50 values of hesperetin 
in the NCI cell line panel. A positive correlation coef-
ficient indicates a direct correlation, whereas a negative 
correlation coefficient indicates an inverse correlation. A 
direct correlation implies that a higher mRNA expression 
enhances drug resistance, whereas an inverse correlation 
implies that a higher mRNA expression enhances drug 
sensitivity [22]. A previous study has demonstrated that a 

https://dtp.cancer.gov/
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microarray-based gene expression profiling might indeed 
be a suitable tool to predict tumor responsiveness to nat-
ural products [23]. That study also highlighted that this 
approach has been confirmed to be successful in breaking 
down the mechanism of action of new compounds.

A PubMed search using the key words “breast cancer 
resistance” resulted in 2653 genes associated with breast 
cancer resistance (Supplementary Table 2). In addition, a 
Venn diagram of COMPARE microarray data and the gene 
list from PubMed generated 56 genes that were regulated 
by hesperetin and were related to breast cancer chem-
oresistance (Fig. 1b, Supplementary Table 3). These 56 
genes were considered as potential therapeutic target genes 
(PTTGs) and then evaluated in the subsequent experiment.

GO and KEGG pathway enrichment

GO analysis was performed according to the categories of 
biological process, cellular component, and molecular func-
tion. Several PTTGs (Table 2) participated in the biologi-
cal process of the cytokine-mediated signaling pathway, the 
JAK-STAT cascade, positive regulation of cell proliferation, 
and negative regulation of the Notch signaling pathway. 
These PTTGs are located in the nucleus, nucleoplasm, and 
cytoplasm. They also exert a molecular function in protein 
serine/threonine kinase activity, ATP binding, chromatin 
binding, and single-stranded DNA binding.

The KEGG pathway enrichment analysis of the PTTGs 
revealed regulation in several pathways (Fig. 2). Based 
on an FDR of < 0.05 and the highest enrichment ratio, 
the PTTGs were found to regulate the prolactin signaling 

Table 1   Top ten mRNA with the highest and lowest Pearson correlation coefficients

No Pearson correlation 
coefficient

Target vector ID Gene symbol Gene name

1 0.904 MoltId:GC389686 RHCE Blood group Rh(CE) polypeptide
2 0.883 MoltId:GC387983 RHD Rh blood group D antigen
3 0.874 MoltId:GC411521 FAM65C Family with sequence similarity 65, member C
4 0.847 MoltId:GC256471 PDE4DIP Myomegalin
5 0.824 MoltId:GC412460 CPED1 Cadherin-like and PC-esterase domain containing 1
6 0.815 MoltId:GC406846 FHL3 Four and a half LIM domains 3
7 0.813 MoltId:GC98129 GYPB Glycophorin-B
8 0.813 MoltId:GC400125 RELN Reelin
9 0.811 MoltId:GC174924 PKLR Pyruvate kinase
10 0.807 MoltId:GC168891 UNC13D Protein unc-13 homolog D
11 − 0.658 MoltId:GC16253 TCHH Trichohyalin
12 − 0.59 MoltId:GC10812 LHX2 LIM/homeobox protein
13 − 0.59 MoltId:GC12548 STS Steryl-sulfatase
14 − 0.576 MoltId:GC15206 DNAJB5 DnaJ heat shock protein family member B5
15 − 0.56 MoltId:GC11797 POLR3GL DNA-directed RNA polymerase III subunit RPC7-like
16 − 0.55 MoltId:GC405690 C10orf76 UPF0668 protein
17 − 0.539 MoltId:GC265602 HIF1AN Hypoxia-inducible factor 1-alpha inhibitor
18 − 0.539 MoltId:GC12356 SLC6A2 Sodium-dependent noradrenaline transporter
19 − 0.538 MoltId:GC18892 ID1 DNA-binding protein inhibitor ID-1
20 − 0.529 MoltId:GC16118 SFXN3 Sideroflexin-3

Fig. 1   a Chemical structure 
of hesperetin and b a Venn 
diagram of breast cancer chem-
oresistance regulatory gene 
from PubMed and mRNA from 
COMPARE
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pathway, non-small-cell lung cancer, type II diabetes mel-
litus, and the erbB signaling pathway. Several genes partic-
ipated in the biological process of the JAK-STAT cascade. 
The PTTGs are located in the nucleus. The PTTGs play 
a molecular function in protein serine/threonine kinase 
activity. The KEGG pathway enrichment analysis of the 
PTTGs revealed regulation in the erbB signaling pathway. 
The erbB signaling pathway regulates signaling in breast 
cancer cells, including proliferation, survival, angiogen-
esis, metastasis [24], migration, and invasion [25]. The 
erbB receptor family, which is a receptor tyrosine kinase, 
includes epidermal growth factor receptor (EGFR), erbB2 
(HER2), erbB3 (HER3), and erbB4 (HER4) [26]. Binding 
of the ligand to the erbB receptor family triggers dimeri-
zation and activation of the intracellular tyrosine kinase 
domain, followed by the activation of the kinase signaling 

pathway involving mitogen-activated protein kinase 
(MAPK), PI3 K/Akt, mTOR, and JAK-STAT [27, 28].

The erbB signaling pathway regulates chemoresistance in 
breast cancer through overexpression, mutation, and deregu-
lation of the downstream signaling molecules. It has been 
reported that overexpression of c-erbB-2/neu increased the 
resistance of breast cancer cells to paclitaxel [29]. In con-
trast, the downregulation of HER-2 was found to increase the 
sensitivity of breast cancer cells to adriamycin and paclitaxel 
[30]. Studies have shown that patients with triple-negative 
breast cancer [31] and those with primary breast cancer [32] 
exhibit mutation in the EGFR kinase domain. Moreover, 
mutation in the erbB2 kinase domain also occurs in patients 
with breast cancer [33]. In addition to the overexpression 
of the receptor, regulation of chemoresistance also occurs 
through the deregulation of the downstream signaling of 

Table 2   Top five of gene ontology of the PTTGs

Term P value Genes

Biological process
GO:0048538 ~ thymus development 3.56E−04 MAPK1, CRKL, BRAF, ABL1
GO:0019221 ~ cytokine-mediated signaling pathway 8.75E−04 STAT5A, SOCS1, STAT5B, JAK2, CISH
GO:0050731 ~ positive regulation of peptidyl-tyrosine phos-

phorylation
9.74E−04 GATA1, STK11, ANGPT1, ABL1

GO:0007259 ~ JAK-STAT cascade 0.001054172 STAT5A, SOCS1, STAT5B
GO:0008284 ~ positive regulation of cell proliferation 0.002722429 CRKL, STAT5A, HIPK2, STAT5B, IGF1, TET1
GO:0045648 ~ positive regulation of erythrocyte differentiation 0.002784055 GATA1, GATA2, STAT5B
GO:0046627 ~ negative regulation of insulin receptor signaling 

pathway
0.00305511 SOCS1, CISH, PRKCB

GO:0045746 ~ negative regulation of Notch signaling pathway 0.00305511 GATA2, HIF1AN, DLK1
GO:2000352 ~ negative regulation of endothelial cell apoptotic 

process
0.00305511 BRAF, ANGPT1, ABL1

GO:0042104 ~ positive regulation of activated T cell prolifera-
tion

0.00305511 STAT5A, STAT5B, IGF1

Cellular component
GO:0005634 ~ nucleus 0.023278228 STK11, STAT5A, STAT5B, PIM1, PRKAB1, ESR2, CBFA2T3, 

TET1, RAD51, PRKCB, GATA1, GATA2, MAPK1, 
HIST2H2BE, RASSF1, NOS3, JAK2

GO:0005654 ~ nucleoplasm 0.029201016 GATA2, MAPK1, HIF1AN, HIST2H2BE, ID1, STAT5A, 
MLH1, ELAVL1, ABL1, RAD51

GO:0005737 ~ cytoplasm 0.045236474 STAT5A, STAT5B, SOCS1, PIM1, CISH, RAD51, PRKCB, 
MAPK1, HIST2H2BE, RASSF1, HIPK2, EEF2 K, NOS3, 
RELN, JAK2, TUBB1, CBS

Molecular function
GO:0004674 ~ protein serine/threonine kinase activity 1.69E−04 MAPK1, BRAF, STK11, HIPK2, PIM1, EEF2 K, PRKCB
GO:0005524 ~ ATP binding 0.002142091 BRAF, STK11, PIM1, MLH1, HK1, PRKCB, RAD51, MAPK1, 

HIPK2, RRM1, EEF2 K, JAK2, ABL1
GO:0003682 ~ chromatin binding 0.00675883 GATA1, GATA2, STAT5B, MLH1, RAD51, PRKCB
GO:0020037 ~ heme binding 0.011353025 JAK2, NOS3, HBB, CBS
GO:0005506 ~ iron ion binding 0.017794072 HIF1AN, NOS3, TET1, HBB
GO:0003697 ~ single-stranded DNA binding 0.022091386 SSBP4, MLH1, RAD51
GO:0001085 ~ RNA polymerase II transcription factor binding 0.053191354 GATA1, GATA2
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the erbB receptors, e.g., JAK-STAT and MAPK. The JAK/
STAT signaling pathway is an important signal transduc-
tion pathway in cytokine and growth factor signaling that 
regulates cell proliferation, differentiation, migration, and 
survival [34]. A proteomics study showed that breast cancer 
chemoresistance is associated with the activation of JAK-
STAT signaling [35]. Deregulation of JAK-STAT signaling 
regulates migration and metastasis in breast cancer cells by 
targeting GRAMD1B expression [36]. Activation of erbB2 
signaling through STAT3 increases the resistance of breast 
cancer cells to paclitaxel through the upregulation of p21 
[37]. Therefore, targeting erbB signaling is an important 
strategy to overcome chemoresistance in breast cancer.

Drug association analysis

To identify the potential target genes of hesperetin in breast 
cancer, drug association analyses were conducted in this 
study. We screened drugs based on genes that are associated 
with the individual drug, i.e., hesperetin. The WebGestalt 

database was used for identifying suitable drug molecules 
that may be used for the treatment of disease caused by 56 
genes. We predicted the mechanism of hesperetin based on 
the similarity of the gene associated with certain drugs.

A total of 56 genes were analyzed using the ORA on 
the WebGestalt database, with the functional database 
GLAD4U. All the 56 genes were significantly associated 
with 76 drugs (FDR < 0.05). The drugs anagrelide, afutu-
zumab, panitumumab, pimozide, tetrahydrofolic acid, bepri-
dil, pemetrexed, raltitrexed, ruxolitinib, and selumetinib 
had the highest enrichment ratio, which indicates that these 
drugs and hesperetin are associated with the same gene 
(Fig. 3).

In addition, these 76 drugs primarily target erbB receptor 
signaling. Panitumumab is a fully human monoclonal anti-
body that blocks the EGFR in the treatment of patients with 
metastatic triple-negative breast cancer [38], metastatic colo-
rectal cancer [39], primary HER2-negative inflammatory 
breast cancer [40], and pancreatic cancer [41]. Pemetrexed 
is a multitarget antifolate that is used in combination with 

Fig. 2   KEGG pathway enrichment analyzed using the ORA, WebGestalt
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Fig. 3   Drug association analysis analyzed using the ORA, WebGestalt
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classical chemotherapy or mAb for the treatment of patients 
with non-small-cell lung cancer [42–46], advanced breast 
cancer [47], and metastatic breast cancer [48–50]. Ruxoli-
tinib is a potent and selective oral inhibitor of JAK1 and 
JAK2 used for the treatment of patients with myelofibrosis 

[51, 52]. Selumetinib is a MAPK inhibitor used for the treat-
ment of patients with neurofibromatosis [53], advanced non-
small-cell lung cancer [54], and metastatic KRAS wild-type 
or unknown non-squamous non-small-cell lung cancer [55].

Fig. 4   a Protein–protein interac-
tion networks of PTTGs ana-
lyzed using STRING-DB and 
Cytoscape and b Top ten hub 
genes with the highest degree 
score analyzed using Cytoscape
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PPI network construction and hub gene selection

A total of 56 genes were constructed to the PPI network 
complex containing 56 nodes and 142 edges, with an aver-
age node degree of 5.07, an average local clustering coef-
ficient of 0.415, and a PPI enrichment p value of < 1.0e−16 
(Fig. 4a). The top ten genes with the highest degree score 
were identified, i.e., JAK2, STAT5A, MAPK1, STAT5B, 
IGF1, ABL1, DNMT3B, CRKL, SOCS1, and MLH1 
(Fig. 4b, Table 3).

These top ten genes with the highest degree score are 
involved in erbB signaling. Insulin-like growth factor I 
(IGF1) is the ligand that binds to the insulin-like growth 
factor-1 receptor (IGF-1R), a member of the erbB family 
of receptors that play a vital role in cancer [56]. Tyrosine-
protein kinase ABL1 is a proto-oncogene that forms a 
fusion with BCR to become an active form of oncogene 
and is found abundantly in patients with leukemia [57]. 
ABL is involved in the regulation of endocytosis of EGFR 
in human tumors [58]. Furthermore, constitutively active 
ABL increases the invasion of breast cancer cells [59]. DNA 
(cytosine-5)-methyltransferase 3B (DNMT3B), an enzyme 
that catalyzes the methylation of the 5′ position of cytosine 
of DNA, plays an important role in cancer development [60]. 
Activation of EGFR has been reported to increase the activ-
ity of DNA methyltransferase in ovarian cancer [61]. The 
CRKL, an adaptor protein that activates SOS1-RAS-RAF-
ERK and SRC-C3G-RAP1 signaling in the downstream of 
EGFR activation, promotes the resistance of human non-
small-cell lung cancers to the EGFR inhibitor [62]. The sup-
pressor of cytokine signaling 1 (SOCS1) is also involved 
in erbB signaling pathway. A study showed that SOCS1 is 
important for the negative regulation of the IL-6R/Janus-
activated kinase (JAK)-mediated activation of STAT3 in 
head and neck squamous cell carcinomas [63]. The DNA 
mismatch repair protein MLH1 promotes cisplatin sensitiv-
ity of human endometrial carcinoma cells [64]. Polymor-
phism in MLH1 has been shown to be associated with the 

poor response of lung adenocarcinoma to EGFR tyrosine 
kinase inhibitors [65].

Molecular docking

Inhibition of erbB signaling can be used as a strategic 
method to overcome the resistance of breast cancer cells. In 
this study, we performed a molecular docking investigation 
to predict the possible inhibitory activity of hesperetin in 
erbB signaling. Docking simulation and ligand–protein bind-
ing visualization were generated by the MOE software. The 
protein targets ALB1, DNMT3B, and MLH1 were selected 
from the top ten genes with the highest degree score based 
on their uniqueness as a drug target. Native ligands were 
embedded into ABL1, DNMT3B, and MLH1 complexes 
consisting of STI-571, ethambutol, and ADP, respectively. 
On ABL1, hesperetin demonstrated a slightly lower docking 
score with STI-571 (Table 4). The lower the docking score, 
the more potent the binding affinity of the ligand, suggesting 
that ABL-1 binds and reacts preferentially with hesperetin. 
Hesperetin also formed an H-bond with Glu316 with a bond-
ing distance of 1.83, which was shorter than the H-bond dis-
tance of STI-571 with Met318 (Fig. 5). The binding of hes-
peretin was also stabilized through arene bonding between 
the aromatic cage of hesperetin with the hydrogen atom of 
Lys271 (Fig. 5). The higher docking score of hesperetin that 
was found on DNMT3B and MLH1 suggested the lower 
binding affinity than that of native ligands (Table 4). This 
result could possibly be due to Trp239 and Trp236, which 
interacted with hesperetin on DNMT3B through the arene-H 
bond (Table 4). This was in contrast to ethambutol, which 
not only formed an arene-H bonding with Trp239 but also 
formed an H-bond with Asp266 (Table 4). In the case of 
MLH1, although hesperetin formed only an H-bond with 
Ala103 and Asn38, the binding distance was slightly shorter 
than that of the H-bond formation of ADP (Table 4). Over-
all, hesperetin exhibited a promising inhibitory activity on 
ABL1, DNMT3B, and MLH1 with similar binding proper-
ties as those of the native ligand.

Table 3   Top ten hub genes 
based on score degree

No Gene symbol Full name Degree score

1 JAK2 Tyrosine-protein kinase JAK2 15
2 STAT5A Signal transducer and activator of transcription 5A 15
3 MAPK1 Mitogen-activated protein kinase 1 15
4 STAT5B Signal transducer and activator of transcription 5B 14
5 IGF1 Insulin-like growth factor I 14
6 ABL1 Tyrosine-protein kinase ABL1 13
7 DNMT3B DNA (cytosine-5)-methyltransferase 3B 11
8 CRKL Crk-like protein 10
9 SOCS1 Suppressor of cytokine signaling 1 9
10 MLH1 DNA mismatch repair protein Mlh1 9
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The molecular docking study provided adequate infor-
mation from the binding interaction to the potential inhibi-
tory activity of hesperetin on ABL1, DNMT3B, and MLH1. 
One of the potent ABL1 inhibitors, STI-571, bound to the 
ATP binding site of ABL1. The docking simulation on 
ABL1 demonstrated that hesperetin exhibited a different 
binding pattern from that of STI-571 but similar to that of 
ST013616 and DB04200, two designed ABL1 inhibitors that 
were stronger than imatinib and ponatinib. The OH group of 
ring A of hesperetin forms an H-bond with Glu316, which 
closely correlated with the inhibition of the ATP binding site 
on ABL1 [66]. The binding affinity was stabilized through 
the arene-H bond formed between ring B of hesperetin with 
Lys271, one of the protein kinase disruption characters [67]. 

These results indicate the significance of ring A and ring B 
of hesperetin for its binding affinity. Altogether, hesperetin 
has the potential to bind to the ATP binding site and thus 
inhibit the kinase activity of ABL1.

DNMT3B, one of the proteins involved in de novo meth-
ylation, was also used as a protein target of hesperetin. A 
previous study of hesperetin demonstrated the inhibition 
of DNMT1 activity in KYSE-510 human esophageal squa-
mous cells [68]. In the present study, although hesperetin 
had a higher score than ethambutol, the presence of a similar 
binding site could indicate the potential of binding affini-
ties to DNMT3B. Binding studies on the DNMT3B PWWP 
domain in combination with the epigenetic mark H3K36me3 
(H332–38K36me3) have revealed that Trp236 and Trp239 

ABL1

DNMT3B

MLH1

Native Ligand Hesperetin

Fig. 5   Visualization of ligand interaction to ABL1, DNMT3B, and MLH1 using MOE
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formed van der Waals and p-cation interactions with the 
trimethylated side chain of Lys3 on H3K36me3 [69]. Our 
results demonstrated that ring A of hesperetin exerts its func-
tion by forming the arene bond between the OH group and 
the CH group with Trp263 and Trp239, respectively. Over-
all, the binding of hesperetin could possibly interfere with 
the methylation process of DNMT3B on several epigenetic 
marks.

Hesperetin also exhibited its binding potential to MLH1, 
a DNA mismatch repair protein. An earlier research showed 
that ADP binding was required for the interaction of MutLα 
and MutSα with MLH1 to promote mismatch repair [70]. 
According to the results, we have once again confirmed 
the important role of rings A and B in hesperetin binding 
affinities. Ring A provides the arene-H bonding with Ile68 
and Asn38. Mutated Ile68 is associated with the activity 
of MLH1, while mutated Asn38 on MLH1 correlates with 
the marker of Lynch syndrome [71, 72]. On the other hand, 
ring B accommodates the arene binding with Leu104 and 
H-bond with Asn38 and Ala103 through its methoxy and 
hydroxyl groups, respectively. ADP also binds to Asn38, 
which forms a coordinate with Mg2+, a stabilizing agent of 
the secondary and tertiary structure of MLH1 [69]. Thus, 
it can be suggested that hesperetin interacts with MLH1 on 
the ADP binding site.

Targeted therapies for erbB family receptors include mon-
oclonal antibodies that target the extracellular domain and 
tyrosine kinase inhibitors that target the intracellular kinase 
domain [73]. However, resistance to therapy can occur due 
to changes in the conformation of the extracellular domain, 
as well as mutations in the tyrosine kinase domain [74].

Previous studies on hesperetin have demonstrated an inhi-
bition of the erbB signaling pathway. Hesperetin exhibited 
a strong interaction with the ATP binding site of HER2 and 
thus has the potential to be used as a candidate of HER2 
inhibitors [7]. Hesperetin was also shown to exhibit syner-
gism with irinotecan CPT-11 by suppressing STAT3 activ-
ity in colon cancer [75]. Furthermore, hesperetin inhibits 
MAPK signaling in osteoclastogenesis [76] and lipopolysac-
charide-induced acute lung injury [77]. Hesperetin deriva-
tive-12 (HDND-12) regulates macrophage polarization by 
modulating the JAK2/STAT3 signaling pathway [78]. In 
addition, the combination of hesperetin and sunitinib, an 
oral tyrosine kinase inhibitor against renal cancer, was found 
to be more effective than sunitinib alone in the treatment of 
corneal neovascularization [79]. Therefore, further in vitro 
and in vivo studies are required to investigate the combina-
torial effect of hesperetin in overcoming chemoresistance 
in breast cancer, especially in the erbB signaling pathway.

Conclusions

This study has demonstrated that hesperetin targets erbB 
signaling in overcoming chemoresistance in breast cancer. 
Both hesperetin and the erbB receptor signaling inhibitors, 
i.e., monoclonal antibody and tyrosine kinase inhibitor, tar-
get the same mRNA expression. More importantly, results of 
the molecular docking study revealed the potential target of 
hesperetin against the regulator of the erbB signaling path-
way. Overall, the results of this study could be beneficial for 
the research on accelerating and directing the screening of 
potential targets and delineating the molecular mechanism 
of hesperetin in overcoming breast cancer chemoresistance. 
Further in vitro and in vivo studies are required to validate 
the results of the present study.
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