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Abstract
An economical and proficient approach has been developed for the synthesis of chromenopyrimidines via three-component 
reaction of thiobarbituric acid/barbituric acid, methylarenes and dimedone/1,3-cyclohexanedione by using lemon juice as a 
natural, biodegradable catalyst and TBHP as an oxidant. This transformation involves metal-free C–C bond formation via 
C–H activation of methylarenes under mild reaction conditions.
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Introduction

Recently, the direct C–H bond functionalization/C–C bond 
formation of hydrocarbons via C–H bond activation has 
attracted much attention in organic synthesis [1–6]. Espe-
cially, in view of the green perspective, selective and con-
trolled functionalization without using metal catalyst has 
become a challenging area for organic chemists. As a charac-
teristic C–H bond functionalization route, the direct benzylic 
oxidation of alkylarenes is a vital procedure to afford the 

parallel carbonyl compounds [7–10] which is used as a con-
stituent in the construction of well-designed fine chemicals 
and pharmaceuticals [11–13]. Methylarenes are the most 
abundant and inexpensive naturally available surrogates 
for carbonyl compounds, which are obtained from crude oil 
as a by-product in the production of gasoline and coke. A 
number of methods have been reported for the direct ben-
zylic oxidation of alkylarenes using heavy metal catalysts 
such as stoichiometric amount of  KMnO4 [14], Cr(VI) [15], 
excess amount of Fe [16], Ru [17], Mn [18], Bi [19], Co 
[20], Au [21], Rh [22], with an oxidant. These methods are 
non-selective, tiresome, environmentally unfavorable and 
operationally difficult. In view of the above, the direct selec-
tive oxidation of methylarenes to benzaldehydes is of crucial 
importance. Thus, there is a demand of operationally simple, 
high yielding, green, eco-friendly protocol using metal-free 
oxidants and high-atom economical pathway. The work on 
the controlled oxidation of methylarenes to benzaldehyde 
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in good yield [23–25] provoked us to design a new process 
that utilizes methylarenes as a green, low-cost and read-
ily accessible starting material for the in situ generation of 
benzaldehydes.

Chromenes are very important structural motif found in 
a variety of natural products like anthocyanins, tocophe-
rols, alkaloids, flavonoids [26–31] and biologically active 
molecules like antibiotic rhodomyrtone [32] and cancer 
cell apoptosis inducer BENC-511 [33]. Chromenes also 
exhibit an extensive range of biological activities such as 
anti-anaphylactic [34], antimicrobial [35], antitumor [36], 
spasmolytic [37], anticoagulant [38] and diuretic activities 
[39]. Therefore, the development of synthetic procedures 
that facilitate the synthesis of these compounds has attracted 
considerable attention. Pyrimidine derivatives are of exten-
sive curiosity due to their potential biological activity [40] 
and also their versatility as synthones in organic synthesis 
[41, 42].

Recent developments in the utilization of benzylic C–H 
bonds inspired us to look into the C–H bond activation of 
easily available and inexpensive methylarenes to achieve 
the synthesis of biologically active chromenopyrimidines. 
In past decades, the use of a natural catalysts in organic syn-
thesis has also attracted considerable attention due to their 
eco-friendly and environmentally acceptable nature. Lemon 
juice is a biodegradable and natural catalyst. The existence 
of citric and ascorbic acid makes the lemon juice as an acidic 
catalyst in organic synthesis [43–46].

Previously, chromenopyrimidines have been produced by 
multicomponent reaction of barbituric acid, 1,3-cyclohexan-
edione/dimedone and aromatic aldehyde using various cata-
lysts [47–49]. In spite of these efforts, a metal-free and mild 
approach for the synthesis of chromenopyrimidine deriva-
tives using accessible, inexpensive, naturally available and 
sustainable surrogates is still in high demand.

By considering all the above facts and as a part of our 
contemporary research on the design and construction 
of biologically active compounds [50], we herein report 
a lemon juice catalyzed, metal-free, one-pot synthesis of 
chromenopyrimidine derivatives via C–H activation of 
methylarenes by using tert-butyl hydroperoxide (TBHP, 70% 
in  H2O) as an oxidant (Scheme 1).

Results and discussion

The work initiated by taking thiobarbituric acid 
(1.0 mmol), toluene (2.0 mmol) and dimedone (1.0 mmol) 
as a model reaction. The desired product (4h) could not 
be obtained in sufficient yield when 10 mol% of sulfamic 
acid, benzoic acid, formic acid and acetic acid was used 
with 10 equiv. of TBHP (70% in  H2O) (Table 1, entry 
1–4). When lemon juice was used with TBHP, 40% yield 
of the product was obtained (Table 1, entry 5). Subse-
quently, screening of various solvents like benzene,  CCl4, 
hexane,  CH2Cl2,  CHCl3,  H2O (Table 1, entries 6–11) was 
done. Pleasingly, 67% yield was afforded with lemon juice 
(0.2 ml) and TBHP (4 equiv.) under solvent-free condi-
tion (Table 1, entry 14). Now, the amount of lemon juice 
and TBHP were optimized, and it was found that 0.3 ml 
of lemon juice with 3 equivalents of TBHP worked best, 
giving 85% yield of the product (Table 1, entry 17). Since 
lemon juice contains citric acid and ascorbic acid, their 
different amounts were tested under optimized condition 
(Table 1, entry 19–24) and it was found that lemon juice 
has better catalytic properties than citric acid followed by 
ascorbic acid. Better catalytic activity of citric acid than 
ascorbic acid can be attributed to the higher  Ka (acid disso-
ciation constant) value of citric acid. Encouraged by this, 
numerous oxidants like  H2O2, oxone,  K2S2O8, meta-chlo-
roperoxybenzoic acid (m-CPBA), peracetic acid (PAA), 
benzyl peroxide, benzoyl peroxide, tert-butyl peroxyben-
zoate (TBPB) and di-tert-butyl peroxide (DTBP) were 
tested with lemon juice, under solvent-free condition, but 
unfavorable results were obtained (Table 1, entry 25–33). 
In the further optimization, lemon juice without TBHP 
(Table 1, entry 34), TBHP without lemon juice (Table 1, 
entry 35) and reaction without lemon juice and TBHP 
(Table 1, entry 36) under solvent-free condition have been 
done, but they did not lead to the desired product. Com-
bination of citric and ascorbic acid has been tested under 
optimized condition to investigate their effect in lemon 
juice catalyzed reactions, and results are summarized in 
Table 1 (entry 37–40). Combinations have been made on 
the basis of amount of citric and ascorbic acid present in 
lemon juice [51, 52].

Scheme 1  Lemon juice 
catalyzed one-pot synthesis of 
chromenopyrimidine derivatives
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Table 1  Optimized reaction condition for the model reaction 4ha

a Reaction condition: thiobarbituric acid (1.0 mmol), toluene (2.0 mmol), dimedone (1.0 mmol)
b Isolated yield after column chromatography
n.d. not detected

Entry Catalyst Oxidant (eq.) Solvent Temperature 
(°C)

Time (h) Yieldb (%)

1 Sulfamic acid (10 mol%) TBHP(10) – 80 10 15
2 Benzoic acid (10 mol%) TBHP(10) – 80 10 18
3 Formic acid (10 mol%) TBHP(10) – 80 10 10
4 Acetic acid (10 mol%) TBHP(10) – 80 10 12
5 Lemon juice (0.2 ml) TBHP(10) – 80 10 40
6 Lemon juice (0.2 ml) TBHP(10) Benzene 80 7 Trace
7 Lemon juice (0.2 ml) TBHP(10) CCl4 80 7 Trace
8 Lemon juice (0.2 ml) TBHP(10) Hexane 80 7 28
9 Lemon juice (0.2 ml) TBHP(10) CH2Cl2 80 7 30
10 Lemon juice (0.2 ml) TBHP(10) CHCl3 80 7 32
11 Lemon juice (0.2 ml) TBHP(10) H2O 80 7 50
12 Lemon juice (0.2 ml) TBHP(5) H2O 80 7 50
13 Lemon juice (0.2 ml) TBHP(4) H2O 80 7 50
14 Lemon juice (0.2 ml) TBHP(4) – 80 3 67
15 Lemon juice (0.2 ml) TBHP(3) – 80 3 76
16 Lemon juice (0.2 ml) TBHP(2) – 80 3 65
17 Lemon juice (0.3 ml) TBHP(3) – 80 3 85
18 Lemon juice (0.4 ml) TBHP(3) – 80 3 75
19 Citric acid (1 mol%) TBHP(3) – 80 5 34
20 Citric acid (2 mol%) TBHP(3) – 80 5 40
21 Citric acid (3 mol%) TBHP(3) – 80 5 46
22 Citric acid (5 mol%) TBHP(3) – 80 5 58
23 Citric acid (10 mol%) TBHP(3) – 80 5 60
24 Ascorbic acid (10 mol%) TBHP(3) – 80 5 8
25 Lemon juice (0.3 ml) H2O2(3) – 80 3 n.d.
26 Lemon juice (0.3 ml) Oxone(3) – 80 3 n.d.
27 Lemon juice (0.3 ml) K2S2O8(3) – 80 3 Trace
28 Lemon juice (0.3 ml) m-CPBA(3) – 80 3 n.d.
29 Lemon juice (0.3 ml) PAA(3) – 80 3 Trace
30 Lemon juice (0.3 ml) Benzyl Peroxide(3) – 80 3 n.d.
31 Lemon juice (0.3 ml) Benzoyl Peroxide(3) – 80 3 n.d.
32 Lemon juice (0.3 ml) TBPB(3) – 80 3 20
33 Lemon juice (0.3 ml) DTBP(3) – 80 3 30
34 Lemon juice (0.3 ml) – – 80 3 n.d.
35 – TBHP(3) – 80 3 n.d.
36 – – – 80 12 n.d.
37 Citric acid/ascorbic Acid (10:1) TBHP(3) – 80 3 45
38 Citric acid/ascorbic Acid (100:1) TBHP(3) – 80 3 50
39 Citric acid/ascorbic Acid (1000:1) TBHP(3) – 80 3 57
40 Citric acid/ascorbic Acid (10000:1) TBHP(3) – 80 3 67
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In order to extend the scope of this methodology, a 
wide range of methylarenes, i.e., both electron-donating 
and electron-withdrawing groups containing methylar-
enes, were investigated under optimal conditions. The 

substituted methylarenes worked efficiently with thiobarbi-
turic/barbituric acid and dimedone/1,3-cyclohexanedione 
to afford the desired products in good yields (84–88%) 
(Figs. 1, 2).

Fig. 1  Substrate Scope. Reaction condition: thiobarbituric acid (1.0  mmol), methylarenes (2.0  mmol), dimedone/1,3-cyclohexanedione 
(1.0 mmol), TBHP (3 equiv.), lemon juice (0.3 ml), 3 h. Isolated yields are shown
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Some control experiments were carried out to establish 
the reaction mechanism. By performing quenching experi-
ment with radical scavengers like (2,2,6,6-tetramethylpiperi-
din-1-yl)oxidanyl (TEMPO) and butylatedhydroxytoluene 
(BHT), the participation of free-radical species in the reac-
tion was established. The model reaction gave the corre-
sponding product 4h in 17% and 10% yields in the presence 
of 2 equiv. of TEMPO and BHT, respectively, under stand-
ard conditions, whereas the product formation quenched 
completely with 5 equivalents. Thus, the involvement of 
radical intermediate was established by inhibitory action of 
TEMPO and BHT. A blank experiment was performed by 
taking toluene with TBHP which resulted in 87% of benza-
ldehyde, 9% of benzyl alcohol and trace amount of benzoic 

acid. The intermediacy of benzyl alcohol was confirmed by 
subjecting benzyl alcohol to standard conditions to deliver 
benzaldehyde in 96% yield. Further, the intermediacy of 
benzyl alcohol was confirmed by using it in the synthesis of 
4h under standard reaction conditions (Scheme 2).

The plausible reaction mechanism based on reported liter-
ature, isolated product and controlled experiment is given in 
Scheme 3. Oxidation of methylarenes (2) by TBHP leads to 
corresponding aromatic aldehyde (2Y) through radical path-
way. Now Knoevenagel condensation takes place between 
(1) and (2Y) to produce (A). Ultimately, Michael addition 
between (A) and (3) followed by removal of  H2O produced 
the final product (4/5).

Fig. 2  Substrate Scope. Reaction condition: barbituric acid (1.0 mmol), methylarenes (2.0 mmol), dimedone/1,3-cyclohexanedione (1.0 mmol), 
TBHP (3 equiv.), lemon juice (0.3 ml), 3 h. Isolated yields are shown
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Experimental

Thiobarbituric acid/barbituric acid, methylarenes, 1,3-dik-
etones and TBHP (70% in  H2O) were purchased from E. 
Merck, Germany and Sigma–Aldrich Chemicals, USA and 
were used as received. All the reactions were monitored by 
thin-layer chromatography (TLC) and visualized using UV 
light. Infrared (IR) spectra were recorded on a Perkin-Elmer 
FT–IR spectrometer. Melting points were determined by using 
Stuart Melting point apparatus SPM10. Elemental analyses 

(C, H and N) were carried out using Perkin-Elmer microana-
lyzer. 1H and 13C NMR spectra were recorded using Bruker 
500 MHz spectrometer in DMSO-d6, and chemical shifts were 
expressed in δ ppm, using TMS as an internal reference.

General procedure for extraction of lemon juice 
(preparation of catalyst) [53]

Fresh fruits of Citrus limon (lemon) was bought from the 
local shop and washed with water thoroughly. The juice 

Scheme 2  Control experiments using radical scavengers
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was extracted by fruit juicer and then filtered with cotton 
to remove the solid substance and to obtain a clear portion 
of juice. Now, clear juice was used as an acid catalyst after 
measuring its pH (between 2 and 3).

General procedure for the synthesis 
of chromenopyrimidine derivatives (4/5)

Methylarene (2.0 mmol) and TBHP (70% in  H2O, 3.0 equiv.) 
were stirred at room temperature for 10 min; then, thiobar-
bituric acid/barbituric acid (1.0 mmol), cyclic 1, 3-diketone 
(1.0 mmol) and extracted lemon juice (0.3 ml) were added 
to it. The reaction mixture was heated at 80 °C for 3 h. After 
the completion of reaction (monitored by TLC), the reaction 
mixture was cooled to room temperature and mixed with 
water. The mixture was extracted with ethyl acetate, dried 
with sodium sulfate, and organic solvent was evaporated under 
reduced pressure to obtain the product. Pure compounds were 
obtained by column chromatography.

Conclusion

In conclusion, a practical and efficient protocol for the 
metal-free C–C bond formation via C–H activation of 
inexpensive methylarenes has been developed. Juice of 
lemon has been exploited as a natural and biodegradable 
catalyst for the green and environmentally benign synthe-
sis of Chromenopyrimidine derivatives by multicompo-
nent reaction of barbituric/thiobarbituric acid, 1, 3-dik-
etones and methylarenes.
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