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Abstract
Three-dimensional descriptors are often used to search for new biologically active compounds, in both ligand- and structure-
based approaches, capturing the spatial orientation of molecules. They frequently constitute an input for machine learning-
based predictions of compound activity or quantitative structure–activity relationship modeling; however, the distribution
of their values and the accuracy of depicting compound orientations might have an impact on the power of the obtained
predictive models. In this study, we analyzed the distribution of three-dimensional descriptors calculated for docking poses of
active and inactive compounds for all aminergic G protein-coupled receptors with available crystal structures, focusing on the
variation in conformations for different receptors and crystals. We demonstrated that the consistency in compound orientation
in the binding site is rather not correlated with the affinity itself, but is more influenced by other factors, such as the number
of rotatable bonds and crystal structure used for docking studies. The visualizations of the descriptors distributions were
prepared and made available online at http://chem.gmum.net/vischem_stability, which enables the investigation of chemical
structures referring to particular data points depicted in the figures. Moreover, the performed analysis can assist in choosing
crystal structure for docking studies, helping in selection of conditions providing the best discrimination between active and
inactive compounds in machine learning-based experiments.
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Introduction

Computational methods are an indispensable part of the drug
design process, supporting the search for new compounds
with desired biological activity. One of the most popular
in silico strategies is virtual screening (VS), in which large
libraries of compounds (commercially available or generated
computationally using various combinatorial approaches)
undergo nonexperimental evaluation [1–3]. Usually, one of
the first filters in VS cascades is connected with the applica-
tion of ligand-based approaches [4], when only structures of
compounds with already determined affinity for a particular
receptor are used for making predictions for new com-
pounds. The structures that successfully pass to subsequent
filtering steps are typically assessed by the confrontation of
the features they possess with pharmacophore models con-
structed for a particular target [5, 6] and/or are docked to
the binding site of the respective protein (structure-based VS
[7]).

One of the fundamental issues connected with the appli-
cation of various computational methods in the search for
new drug candidates is the provision of proper conversion
of the chemical structure to a form that can be handled by
computer methods. The most popular way to capture chem-
ical information is the application of numerical descriptors
or fingerprints [8–11]. The former method usually charac-
terizes the physicochemical properties of compounds, and
the examples of such descriptors are as follows: molecu-
lar weight, octanol–water partition coefficient (logP), pKa,
number of hydrogen bond donors, number of hydrogen bond
acceptors, number of atoms of a particular type, number of
bonds of a particular type, atomic charges, polarity, molec-
ular volume, etc. On the other hand, fingerprints are a result
of the translation of compounds into the form of a bit string.
Their two main groups can be distinguished: key-based and
of a hashed type. Key-based fingerprinting annotates the
presence (1) or absence (0) of particular chemical moi-
eties in the molecule, whereas in the hashed fingerprints,
bit strings are formed from the molecular graph, on the basis
of which paths up to a fixed length are generated (subse-
quently, starting from each atom), and a hashing function
is applied to encapsulate the structural information in the
string. Fingerprints are used not only for chemical structure
characterization, but they are also applied for description
of ligand–receptor complexes obtained in docking. They
provide information about the interactionof a ligandwith par-
ticular amino acids of a protein, as in the case of interaction
fingerprints (IFts) [12] and structural interaction fingerprints
(SIFts) [13]. The most important advantages of fingerprints
are the relative simplicity, low computational costs connected
with their generation, and simplicity of making compar-
isons between two 0–1 strings. The latter procedure can
be carried out with the use of various similarity coeffi-

cients or by application of machine learning approaches [14,
15].

The ligand-based approaches usually make also use of
various molecular descriptors. They are generated from the
two-dimensional (2d) structure of the compound (2d descrip-
tors), or they use their spatial orientation obtained either
in minimization of a ligand solely or using the docking
poses—three-dimensional (3d) descriptors [16, 17].

Predictive models (constructed most often with the use of
machine learning methods of various complexities) based on
such representations can be of great help in the search for
new active compounds. Such approaches are widely known
for the ability to deal with a large amount of information in a
fast and efficient way, so the application of machine learning
is rapidly growing also in the field of computer-aided drug
design, mainly due to a significant increase in amount of data
also in the field of cheminformatics and pharmacy. However,
despite the great power possessed by various algorithms in
the identification of new potentially active compounds, their
performance strongly depends on experimental conditions,
such as training set compositions, compounds representation,
and parameters of particular learning algorithms themselves.
Therefore, a multifactor optimization needs to be performed
in order to obtain the optimal predictive power of such meth-
ods [18, 19].

In this study, we focused on one of the above-mentioned
parameters influencing the performance of machine learning
methods performance, that is, the compounds representation,
3d descriptors in particular. The variations of their values,
depending on the input used for their generation (docking
pose), were analyzed. It was examined whether the consis-
tency of 3d descriptor values obtained for different orienta-
tions in the binding site of the same compound is correlated
with the compound activity. All existing crystal structures of
aminergic G protein-coupled receptors (GPCRs) were used
for docking of known ligands and compoundswith confirmed
inactivity toward the respective proteins. The 3d descriptor
values calculated for poses obtained from docking for active
and inactive compounds were compared with those descrip-
tors that were generated from compounds with minimized
energies (prepared in LigPrep for docking) and compared
with the analysis of variations in atom positions in the dock-
ing poses of a particular compound. The results of such
study were also made available online (http://chem.gmum.
net/vischem_stability), together with the possibility to man-
ually analyze chemical structures referring to aparticular data
point. The differences in the distribution of 3d descriptor val-
ues indicate that not all crystal structures are effective in this
type of experiments (docking followed by automatic analysis
of its results), and the prepared tool can be of great help dur-
ing the design of such studies, especially by assisting in the
selection of crystal structures for docking that would provide
optimal performance ofmachine learningmethods (when the
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Table 1 Crystal structures used
in the study Target Crystal structure Co-crystallized ligand Resolution (Å)

5-HT1B 4IAQ [24] Dihydroergotamine 2.8

4IAR [24] Ergotamine 2.7

5V54 [25] CHEMBL428892 3.9

5-HT2B 4IB4 [26] Ergotamine 2.7

4NC3 [27] Ergotamine 2.8

5TUD [28] Ergotamine 3.0

5TVN [29] Lysergide 2.9

5-HT2C 6BQG [30] Ergotamine 3.0

6BQH [30] Ritanserin 2.7

ACM1 5CXV [31] CHEMBL258622 2.7

ACM2 3UON [32] (R)-(−)-QNB 3.0

4MQS [33] Iperoxo 3.5

4MQT [33] LY2119620
Iperoxo

3.7

ACM3 4DAJ [33] Tiotropium 3.4

4U14 [34] Tiotropium 3.6

4U15 [34] Tiotropium 2.8

4U16 [34] Methscopolamine 3.7

ACM4 5DSG [35] Tiotropium 2.6

Beta1 2VT4 [36] (S)-Cyanopindolol 2.7

2Y00 [36] Dobutamine 2.5

2Y01 [36] Dobutamine 2.6

2Y02 [36] Carmoterol 2.6

2Y03 [36] Levisoprenaline 2.9

2Y04 [36] Levalbuterol 3.1

2YCW [37] Timolol 3.0

2YCX [37] (S)-Cyanopindolol 3.3

2YCY [37] (S)-Cyanopindolol 3.2

2YCZ [37] Timolol 3.7

3ZPQ [38] 4-(1-Piperazinyl)-1H-indole 2.8

3ZPR [38] 4-Methyl-2-piperazin-1-yl-quinoline 2.7

4AMI [39] Bucindolol 3.2

4AMJ [39] (S)-Carvedilol 2.3

4BVN [40] (S)-Cyanopindolol 2.1

4GPO [41] – 3.5

5A8E [42] 7-Methylcyanopindolol 2.4

5F8U [43] (S)-Cyanopindolol 3.4

Beta2 2R4R [44] – 3.4

2R4S [44] – 3.4

2RH1 [45] Carazolol 2.4

3D4S [46] Timolol 2.8

3KJ6 [47] – 3.4

3NY8 [48] AC1NSK5 N 2.8

3NY9 [48] CHEMBL1233771 2.8

3NYA [48] (−)-Alprenolol 3.2

3P0G [49] BI-167107 3.5

3PDS [50] FAUC50 3.5
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Table 1 continued
Target Crystal structure Co-crystallized ligand Resolution (Å)

4GBR [51] Timolol 4.0

5D5A [52] Carazolol 2.5

5D5B [52] Carazolol 3.8

5D6L [53] Carazolol 3.2

5X7D [54] Carazolol
PubchemCID: 129318963

2.7

D2 6CM4 [55] Risperidone 2.9

D3 3PBL [56] Eticlopride 2.9

D4 5WIU [57] Nemonapride 2.0

5WIV [57] Nemonapride 2.1

H1 3RZE [58] Doxepin 3.1

Table 2 Number of compounds from each dataset used in the study

Receptor Number of compounds
before LigPrep

Number of compounds
after LigPrep

Actives Inactives Actives Inactives

5-HT1B 535 435 1174 758

5-HT2B 416 311 670 540

5-HT2C 1219 1028 1849 1664

ACM1 703 964 1335 1000

ACM2 727 687 1426 1287

ACM3 1054 548 1861 979

ACM4 176 352 404 562

Beta1 174 509 264 701

Beta2 230 395 386 556

D2 3521 2741 6480 4980

D3 2761 799 5203 1272

D4 1198 473 1902 827

H1 610 587 1301 922

distribution of descriptor values for active and inactive com-
pounds will be too similar, the machine learning algorithms
would also face difficulties in making distinction between
these two groups of molecules).

Methods

The compounds with experimentally determined activ-
ity/inactivity were fetched from the ChEMBL database [20]
according to the previously described protocol [21]: Only
data produced on human- and rat-cloned receptors were
considered, sets of active compounds included structures
with Ki parameter values below 100 nM (also activities

expressed as IC50 were taken into account, assuming that Ki

� IC50/2) [22], and the sets of inactive compounds included
structures with Ki (or equivalent activity parameter) values
above 1000 nM. The considered targets were all aminergic
GPCRs for which crystal structures are available, including
serotonin receptors 5-HT1B, 5-HT2B, 5-HT2C; muscarinic
receptorsM1,M2,M3,M4; adrenergic receptors beta1, beta2;
dopamine receptors D2, D3, D4; and histamine receptor H1.
All respective crystal structures were fetched from the PDB
database [23], and they are presented in Table 1.

The compounds were prepared for docking in LigPrep
[59] (protonation states generated at pH 7.4±0.0; a maxi-
mum of four stereoisomers per compound was allowed), and
the number of compounds in each dataset is presented in
Table 2.

The compounds were docked in Glide to the respective
crystal structures; a maximum of ten docking poses were
allowed for each compound. For each compound conforma-
tion obtained in docking, 3d descriptorswere generated using
the recently published package for descriptors calculation—-
Mordred [60]. It contains 214 3d descriptors grouped into the
following categories: CPSA, geometrical index, gravitational
index, MoRSE, moment of inertia.

The descriptor-based compound representations were
compared in the following way—for each compound, the
standard deviation (std) between values of all descriptors
obtained for all docking poses of a particular compound was
calculated and visualized using LargeVis by embedding into
a 2d space. The results of such analysis were prepared in
an interactive way and made available online, so chemical
structures referring to a particular data point can be manu-
ally analyzed (http://chem.gmum.net/vischem_stability). In
addition, studies considering the first k conformations (for
compound sets sorted bydocking score)were performedwith
k adopting values 3, 5, and 10. Moreover, the stds of coor-
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Fig. 1 Example analysis of consistency in compounds docked poses
presented as the average std of all descriptors used for compounds rep-
resentation

Fig. 2 Scheme of the study presented in the paper

dinates of each atom of a compound were calculated (after
the compounds alignment) and compared to determine how
differences in descriptor values are related to differences in
atom positions for various docking poses (Fig. 1).

The scheme of the whole project is presented in Fig. 2.

Results and discussion

The averaged std values of generated descriptors between
various compound conformations, depending on the number
of compound orientations taken into account, are gathered
in Table 3 with the stds of atom positions for docking poses
obtained for a particular compound.

The analysis clearly shows that the variation of compound
orientations in the binding site depends on the crystal struc-
ture used for docking rather than on the compound affinity for
the receptor. Moreover, the rate of variation in the atom posi-
tions is not necessarily correlated with the rate of variation
in the 3d descriptor values, although it is the most common
situation. Additionally, active compounds were not more
consistently docked (in terms of both 3d descriptor values
and atom positions) in comparison with inactive molecules,
although intuitively and theoretically that should be the case.

The number of docking poses taken into account in the
performed analyses has only a slight impact on the observed
dependencies that were rather consistent for a particular crys-
tal structure, in terms of both similarity between 3d descriptor
values and consistency of compound orientations described
as the std of their atom coordinates. For the 5-HT1B crys-
tal structures, the std of both 3d descriptor values and atom
coordinates was higher for active than inactive compounds
for all cases. On the other hand, 5-HT2B ligands were, in
general, more consistent in terms of the analyzed properties
than compounds that were inactive for this receptor.

Interestingly, 5-HT2C and ACM1 ligands were more con-
sistent compared with inactive compounds in terms of atom
coordinates but less consistentwhen 3d descriptorswere con-
sidered. However, for the rest of themuscarinic receptors, the
tendencies were again shifted toward higher inconsistency
for active compounds.

Adrenergic receptors were, in general, characterized by
higher consistency for active compounds in terms of both
parameters considered; however, there are examples of crys-
tal structures for which there were variations in the consis-
tency of 3d descriptor values and atom coordinates—such as
2R4R, 2R4S, 3KJ6, 3P0G, and 5D5A. The above-mentioned
differences occurred also for the crystal structure of his-
tamine receptor H1.

Example differences in docking poses for various crystal
structures for two pairs of structurally similar active and inac-
tive compounds (CHEMBL428892, CHEMBL66310, and
CHEMBL387545, CHEMBL225364 pairs) toward 5-HT1B

are presented in Fig. 3.
The docking results presented in Fig. 3 confirm the strong

dependence of the consistency of a compound docking pose
on the crystal structure used for docking. The active com-
pound, CHEMBL428892, was docked in varying poses for
the 4IAQ crystal structure, whereas when 4IAR and 5V54
were used, it similarly fit in the respective binding site.
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Table 3 Comparison of average std of between analyzed 3d descriptors and atom coordinates

Target Crystal
structure

3d descriptors std/std of atoms positions
Number of conformations considered

3 5 10

Actives Inactives Actives Inactives Actives Inactives

5-HT1B 4IAQ 0.254/0.581 0.208/0.536 0.309/0.733 0.252/0.650 0.332/0.948 0.271/0.846

4IAR 0.259/0.652 0.212/0.571 0.312/0.815 0.260/0.692 0.335/1.039 0.278/0.880

5V54 0.246/0.582 0.206/0.535 0.295/0.719 0.250/0.668 0.320/0.890 0.270/0.884

5-HT2B 4IB4 0.191/0.487 0.219/0.539 0.243/0.640 0.266/0.675 0.258/0.840 0.281/0.853

4NC3 0.194/0.495 0.217/0.526 0.242/0.618 0.272/0.671 0.257/0.856 0.290/0.816

5TUD 0.192/0.486 0.217/0.524 0.240/0.614 0.266/0.656 0.256/0.792 0.282/0.807

5TVN 0.201/0.478 0.225/0.529 0.243/0.602 0.272/0.657 0.256/0.758 0.285/0.838

5-HT2C 6BQG 0.204/0.503 0.200/0.543 0.246/0.627 0.242/0.666 0.258/0.755 0.257/0.861

6BQH 0.211/0.518 0.206/0.556 0.258/0.650 0.246/0.672 0.272/0.804 0.262/0.845

ACM1 5CXV 0.255/0.572 0.218/0.539 0.304/0.716 0.260/0.670 0.325/0.907 0.276/0.854

ACM2 3UON 0.283/0.603 0.207/0.534 0.343/0.766 0.246/0.663 0.374/0.987 0.260/0.813

4MQS 0.272/0.640 0.197/0.506 0.323/0.781 0.244/0.643 0.346/1.013 0.255/0.845

4MQT 0.279/0.645 0.202/0.509 0.332/0.781 0.242/0.643 0.358/1.013 0.257/0.804

ACM3 4DAJ 0.284/0.587 0.221/0.523 0.340/0.736 0.265/0.647 0.359/0.998 0.277/0.821

4U14 0.287/0.615 0.220/0.521 0.342/0.749 0.262/0.646 0.361/0.995 0.276/0.824

4U15 0.288/0.598 0.224/0.531 0.343/0.747 0.270/0.660 0.362/0.982 0.282/0.840

4U16 0.281/0.563 0.220/0.533 0.332/0.706 0.268/0.671 0.350/0.957 0.281/0.844

ACM4 5DSG 0.266/0.597 0.195/0.506 0.322/0.774 0.240/0.626 0.344/0.969 0.252/0.797

Beta1 2VT4 0.246/0.555 0.252/0.557 0.290/0.675 0.302/0.683 0.304/0.813 0.313/0.792

2Y00 0.237/0.528 0.247/0.569 0.283/0.691 0.295/0.706 0.294/0.813 0.306/0.842

2Y01 0.252/0.624 0.255/0.618 0.299/0.755 0.309/0.764 0.312/0.884 0.320/0.917

2Y02 0.247/0.577 0.246/0.570 0.293/0.704 0.299/0.707 0.306/0.806 0.313/0.858

2Y03 0.252/0.570 0.255/0.569 0.299/0.698 0.309/0.711 0.311/0.878 0.320/0.838

2YCW 0.240/0.514 0.249/0.560 0.285/0.652 0.297/0.688 0.296/0.773 0.309/0.838

2YCX 0.246/0.547 0.248/0.537 0.294/0.673 0.291/0.633 0.307/0.786 0.305/0.830

Cases where std was higher for active compounds are presented in bold

On the other hand, its inactive analog, CHEMBL66310,
was docked less consistently to all crystals used; the high-
est variations occurred for 5V54, as one of the poses was
flipped. CHEMBL387545 adopted two different orientations
in the binding site of 4IAQ, and two in 4IAR, whereas
for 5V54, all of the obtained docking poses were similar.
CHEMBL225364, despite being inactive toward 5-HT1B,
was docked very similarly to its 4IAQand 5V54 crystal struc-
tures with conformation variations occurring for 4IAR.

Example visualization of the 3d descriptors space is pre-
sented in Fig. 4. It can be observed that for the outcome
of this docking studies, representation by 3d descriptors
will not necessarily provide good performance of predic-
tive model constructed with the aim of making distinction
between active and inactive compounds toward ACM3.

Visualizations for all crystal structures are available online
at http://chem.gmum.net/vischem_stability, together with

the provision of compound structures referring to a particular
data point (Fig. 5). The possibility to manually analyze the
results enables the explanation and optimization of machine
learning methods performance and other automatic and
semiautomatic analyses performed on 3d descriptors as com-
pounds representation. Such visualizations can be of great
help at the stage of designing such experiments, e.g., in
terms of choosing the crystal structure that provides the best
discrimination between active and inactive compounds, espe-
cially considering that the consistency in 3d descriptor space
is not necessarily correlated with the std of atom coordinates
in various docking poses, or in terms of proper evaluation
of the applicability of a model, by the analysis of chemi-
cal structures of compounds that occupy similar regions of
3d descriptors space, despite possessing different activities
toward considered receptor.
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Fig. 3 Analysis of docking results of selected compounds to crystal structures of serotonin receptor 5-HT1B; green: active compound, red: inactive
compound; D3.32 residue of the protein is visualized as sticks. (Color figure online)

To explain the causes of such dependencies of the com-
pound pose variations, the analysis of the relationship
between the number of rotatable bonds and the std in 3d
descriptor values, expressed as the Pearson correlation coef-
ficient, was carried out (Table 4; for simplification, the
results were averaged for all crystal structures for a particu-
lar protein). According to intuition, the performed analysis
indicated a strong dependency of the consistency in descrip-
tor values on the number of rotatable bonds (the higher the
number of rotatable bonds, the lower the consistency of 3d
descriptor values) with Pearson correlation values approach-
ing 0.718 for 5-HT2B. Another observation is that in general,
the correlation between the number of rotatable bonds and

the variations in compound orientations in the binding site
(described by 3d descriptors) was stronger when a higher
number of docked poses was taken into account. Example
visualizations of such dependencies are presented in Fig. 6,
and respective figures for the remaining data are present in
the Supplementary Material.

Moreover, an analysis of std of each descriptor values
separately was performed (SupplementaryMaterial; for sim-
plification, the obtained std values were averaged for all
crystal structures available for a particular protein). It was
found out that the lowest variation occurred for 3D-MoRSE
descriptors determined for a distance equal to 1 (std of
1–2×10−18), whereas the highest std values were on aver-
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Fig. 4 Example analysis of stability of docking poses for ligands of the ACM3 receptor. Gray area refers to compounds active or inactive toward
other targets considered in the study. In this case, active compounds are relatively well demarcated from the inactive ones

Fig. 5 Example visualization of the prepared online tool. Red points refer to active compounds and black to the inactive ones. Chemical structure
corresponding to each data point can be manually analyzed. (Color figure online)

age obtained for descriptors from the group of geometrical
indexes, such as the geometric Petitjean index and the geo-
metrical shape index (std of 0.5–0.7 on average). Relatively
high fluctuations in descriptor values (of similar std range as
in the case of the geometrical shape index descriptors) were
also observed for 3D-MoRSE descriptors calculated for a
distance equal to 10.

Concluding remarks

In summary, a deep analysis of 3d descriptors generated for
compounds docked to crystal structures of aminergicGPCRs,
with the aim of their application in machine learning experi-
ments, supplemented with the tool for manual inspection of
structures referring to a particular data point was prepared.
A strong dependence of the obtained results on the crystal
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Table 4 Comparison of values of the Pearson correlation coefficient
between the number of rotatable bonds and the average std of the 3d
descriptor values for particular compound conformations

Target Number of compound conformations
considered/Pearson correlation coefficient
value

3 5 10

5-HT1B 0.367 0.452 0.546

5-HT2B 0.506 0.562 0.718

5-HT2C 0.442 0.519 0.618

ACM1 0.247 0.326 0.513

ACM2 0.289 0.316 0.562

ACM3 0.285 0.330 0.562

ACM4 0.265 0.462 0.657

Beta1 0.290 0.329 0.446

Beta2 0.185 0.211 0.332

D2 0.345 0.422 0.595

D3 0.283 0.334 0.530

D4 0.309 0.375 0.560

H1 0.190 0.218 0.000

Fig. 6 Analysis of average std of the 3d descriptor values depending on
the number of rotatable bonds in a particular compound for 5-HT2BR
ligands, when ten docked poses were taken into account

structure used for docking was proved. Moreover, although
the variation of 3d descriptor values is typically correlated
with the variation of compound conformations, there were
several cases where these dependencies were not preserved,
revealing the limitations of the applied depiction of docking
poses (for the ideal representation, higher variation in dock-
ing poses should led to higher variation in descriptor values

and vice versa). Additionally, the ability to manually ana-
lyze all the information, including the analysis of chemical
structures referring to particular data points, enables a better
design of machine learning experiments conducted on such
type of data, allowing for the maximization of the power of
predictive models, for example by proper selection of crystal
structures for studies (those that provide the best discrimi-
nation between active and inactive compounds in machine
learning-based experiments) or the proper evaluation of the
model applicability via the analysis of chemical structures
with overlapping fragments of descriptors space.
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