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Abstract
5-Oxo-hexahydroquinoline (5-oxo-HHQ) represents a biologically attractive fused heterocyclic core. Various synthetic
analogs of 5-oxo-HHQ have been synthesized and assessed for different biological activities. Some derivatives have exhib-
ited myorelaxant, analgesic, anticancer, antibacterial, antifungal, antitubercular, antimalarial, antioxidant, anti-inflammatory,
multidrug resistance reversal, anti-Alzheimer, neuroprotective, antidiabetic, antidyslipidemic and antiosteoporotic activities.
This review provides a comprehensive report regarding the preparation and pharmacological characterization of 5-oxo-HHQ
derivatives that have been reported so far. This information will be beneficial for medicinal chemists in the field of drug
discovery to design and develop new and potent therapeutical agents bearing the 5-oxo-HHQ nucleus.

Keywords 5-Oxo-hexahydroquinoline · Biological effects · Multicomponent reaction · Medicinal chemistry · Structure–ac-
tivity relationship · Anticancer

Introduction

5-Oxo-1,4,5,6,7,8-hexahyroquinoline (5-oxo-HHQ) (1) is a
fused heterocycle which consists of a nitrogen containing
doubly unsaturated six-membered nucleus, termed dihy-
dropyridine (DHP) ring, and a cyclohexanone ring. During
the last decades, compounds containing 5-oxo-HHQ core
havebeenof great interest to the researchers due to their broad
pharmacological and biological significance [1–6]. Accord-
ingly, considerable attention has been given to the synthesis
of various 5-oxo-HHQ derivatives using multicomponent
reactions (MCRs) of diverse methodologies. This review
provides a systematic study to assemble the chemical and
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pharmacological aspects of several synthesized 5-oxo-HHQ
analogs reported to date.

Synthesis of 5-oxo-HHQs and the derivatives

Multicomponent condensation reactions provide the syn-
thesis of libraries of diverse small molecules in one-pot
procedure using several condensation reagents [7, 8]. 5-
Oxo-HHQs are synthesized by a type of MCR called
Hantzsch reaction which is used widely for the synthe-
sis of symmetrical and unsymmetrical DHPs. The reaction
includes cyclocondensation of an aldehyde, β-ketoester, 1,3-
cyclohexanedione and ammonia or ammonium acetate either
in acetic acid or in refluxing ethanol (Scheme1) [9, 10]. Some
modifications for this typical method have been applied in
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Scheme 1 Typical Hantzsch reaction for the synthesis of 3-carboxylate-substituted 5-oxo-HHQs using β-ketoester, aldehyde, 1,3-cyclohexanedione
and ammonia or ammonium acetate

Scheme 2 Schematic representation of synthetic route for the preparation of 3-carboxylate-substituted 5-oxo-HHQs using β-aminocrotonate

Scheme 3 Synthetic route for the preparation of N-substituted 2-amino-5-oxo-HHQs bearing carboxylate moieties at C3 position

Scheme 4 Synthetic route for the preparation of N-substituted 2-amino-5-oxo-HHQs bearing cyanide function at C3 position

Scheme 5 Synthetic route for the preparation of 5-oxo-HHQs having carboxamide substitutions at C3 position

order to achieve diverse biologically active HHQs with var-
ious substitutions at all positions.

Instead of the β-ketoester compounds, β-aminocrotonate
derivatives may be used for the synthesis of 5-oxo-HHQs
(Scheme 2). In this case, there is no need to use ammonia as
the source of nitrogen [1, 11].

N-substituted 2-amino-5-oxo-HHQs can be prepared
via a one-pot three-component cyclocondensation reac-
tion between N-substituted cyclohexane-enaminone, ethyl-
cyanoacetate and an aldehyde in the presence of a catalytic
amount of a base such as piperidine (Scheme 3) [5].

Substitution of a cyanide group at C3 of N-substituted
2-amino-5-oxo-HHQS is also possible by the reaction of
N-substituted cyclohexane-enaminone, an aldehyde andmal-
ononitrile in the presence of a catalytic amount of a base such
as piperidine (Scheme 4) [5, 12].

Cyclocondensation of 1,3-cyclohexanedione, different
aldehydes and ammonia with various acetoacetamides leads
to 5-oxo-HHQ derivatives with different carboxamide sub-
stitutions at C3 position of HHQ core (Scheme 5) [1, 3].

C3-unsubstituted 5-oxo-HHQs containing aryl moieties
at C2 and C4 positions have been obtained by proceeding
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Scheme 6 Synthesis of C3-unsubstituted 5-oxo-HHQs containing aryl moieties at C2 and C4 positions

through reaction of 1,3-cyclohexanedione, chalcone deriva-
tives and ammonium acetate in methanol or ethanol as
solvents (Scheme 6) [13, 14]. The reaction is also possible
by a solid-state green synthetic route without using solvent
and catalyst at 80 °C in high yields [15].

The traditional synthetic methods suffer from numer-
ous disadvantages such as low yields, long reaction time,
use of volatile organic solvents and harsh reaction condi-
tions. Therefore, in recent years, an increasing focus has
been put in the discovery of green synthetic approaches
toward the synthesis of 5-oxo-HHQs. In this vein, new syn-
thetic strategies using more effective energy sources and
less harmful solvents as well as reproducible and biodegrad-
able catalysts to achieve the 5-oxo-HHQ scaffold have been
developed. The use of ultrasound and microwave irradi-
ations, grinding technique, solvent-free approaches, ionic
liquids, reusable nano-catalysts, organocatalyst and nano-
metal organic frameworks has been reported in some studies
[16–25]. Some synthetic routes reported in the literatures are
summarized in Table 1.

Biological activities of various functionalized
5-oxo-HHQs

Calcium channel modulatory activity

L-type calcium channel modulatory activity

L-type channels are responsible for regulating contractility in
muscle cells [80]. Blockers and activators of L-type calcium
channels are commonly used for treatment of cardiovascular
diseases [81]. Since the discovery of the 1,4-DHPs, such as
nifedipine and Bay K 8644 as potent calcium channel block-
ers and activators, many DHP analogs have been synthesized
in order to investigate the structure–activity relationships
and to find more effective compounds [82–86]. In this vein,
some studies with the aim of fixing one carbonyl group in an
antiperiplanar position by anellation at theDHP structure and
introduction of the 1,4-DHP moiety into condensed systems

have been done and revealed that 5-oxo-HHQ core, the con-
densed ring system of the DHP structure, could be proposed
as a considerable scaffold in the field of drug discovery as
potential cardiovascular agents [87–92].

U. Rose described the synthesis and calcium modulatory
evaluation of some 5-oxo-HHQ derivatives. The racemic
hexahydroquinolines 2 and 3 showed positive inotropic
effects at the electrically stimulated left guinea pig atrium
and suppressed BaCl2-induced contractions of the guinea
pig ileum dose dependently with activity rates comparable
to those of nifedipine [88, 90, 93].

In 2000, Şimşk et al. synthesized a series
of 2,6,6-trimethyl-3-carbomethoxy(ethoxy)-4-aryl-
hexahydroquinoline analogs and evaluated their calcium
antagonistic activity in rat aortic rings precontracted with
30 mM K+. It was demonstrated that substitution of the
phenyl ring at C4 position with a pyridine ring resulted
in increased calcium antagonistic activity, so that com-
pound 4 displayed the highest activity among other tested
derivatives [91]. In a subsequent study, 23 compounds
with 2-ethyl-3-carbmethoxy-4-aryl-5-oxo-6,6-dimethyl-
hexahydroquinoline structure have been evaluated and
compounds 5, 6, 7, 8, 9 and 10 showed good calcium
antagonistic activity on isolated rat ileum lamb carotid
artery [92]. Moreover, in 2007, Şimşk et al. reported the
synthesis and evaluation of some novel 3-alkyloxycarbonyl-
4-(disubstituted)aryl-5-oxo-hexahydroquinoline derivatives
and found that introduction of a second electron-withdrawing
substituent into the phenyl ring increased the activity.
Results indicated that compound 11, containing 5-chloro-2-
nitrophenyl, was the most active compound comparable to
nifedipine as the positive control [1].
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A number of diethylaminocarbonyl-5-oxo-
hexahydroquinoline derivatives have been synthesized
and evaluated by Kısmetli et al. for calcium antagonistic
activity on isolated rat ileum and lamb carotid artery. The
results indicated that in isolated rat ileum, compounds 12,
13 and 14 were found to be more active than nicardipine at
a concentration of 10−5 mol/L and in lamb carotid artery
studies, at the concentration 10−4 mol/L compounds 14 and
15 showed greater inhibition than nicardipine [94].

2-Methyl-4-(1-methyl-5-nitro-2-imidazolyl)-5-oxo-
hexahydroquinolines bearing alkyl, cycloalkyl and aryl
carboxylates at C3 position (16) were synthesized by Miri
et al. All compounds exhibited calcium antagonist activity
on guinea pig ileum longitudinal smooth muscle, and some
of the compounds showed agonistic effect on guinea pig
auricle [11].

The synthesis and evaluation of various 6-amino-1,4-
dihydropyridines, such as ethyl 6-amino-4-aryl-5-cyano-
1,4-dihydro-2-methyl-3-pyridinecarboxylic acids and
2-amino-7,7-dimethyl-5-oxo-4-aryl-hexahydroquinoline-
3-carbonitriles, were described by León et al. [95].
5-Oxo-HHQs 17 and 18 were the best blockers of the
Ca2+ overload induced by depolarization with high K+ of
SH-SY5Y neuroblastoma cells, with values of 63.8% and
50.4%, respectively.
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Gupta andMisra [31] focused on difluoro-substituted hex-
ahydroquinolines bearing 6,6- or 7,7-dimethyl substitutions
while containingmethyl/ethyl carboxylates and carboxamide
moieties at C3 position. The most potent compound was 19
(86.8%), whereas nicardipine exhibited 69.6% inhibition of
barium chloride-induced contraction. Derivatives containing
6,6-dimethylweremore active than the 7,7-dimethyl analogs,
and carboxamide analogs exhibited less activity than com-
pounds with carboxylate moieties.

Bülbül et al. [96] explored relaxant responses (Emax) of a
series of HHQs with various carboxylates including methyl,
ethyl, isobutyl, tertbutyl, allyl, benzyl and 2-methoxyethyl
carboxylates on isolated strips of rabbit sigmoid colon cir-
cular smooth muscle and demonstrated that 5-oxo-HHQ
derivatives containing 2-methoxyethyl carboxylate such as
compound 20 were the most active compounds.

El-Khouly et al. [97] screened several 4-
indolylhexahydroquinolines for their spasmolytic activities
on isolated rat ileum. The obtained results indicated that
introduction of the indolyl ring did not lead to significant
activity; however, inserting bromine on the indole ring, as in
compound 21, improved the mentioned activity. Moreover,
it was observed that compounds bearing methyl substituent
instead of the ethyl group in ester function are more active
analogs.

Very recently, Kumar et al. [98] introduced compound 22
as a potent positive inotrope agent by performing in vivo
evaluations. Furthermore, docking analysis revealed that
the compound binds with the calcium channels even more
toughly than Bay K 8644. The active site of the receptor con-
tains residues LEU 26, VAL 27, LEU 29, VAL 31 and TYR
33 of chain A and VAL 56, TYR 59, LEU 60, LEU 159,
LEU 162, TYR 163 and PHE 166 of chain B, which make
good contacts with the ligand. A hydrogen bond between
the hydroxyl group of TYR 163 and carbonyl oxygen of the
ligand is also formed.

Synthesis andmyorelaxant activity of several 5-oxo-HHQ
derivatives bearing bulky 3-pyridylmethyl carboxylate at C3

(23) have been performed by Şafak et al. The results indicated
that all compoundsmade concentration-dependent relaxation
on isolated rabbit gastric fundus [99].
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Stereoselective calcium channel modulatory activity
of 5-oxo-HHQs

5-Oxo-HHQ derivatives have a critical asymmetric cen-
ter at C4 position of DHP ring. As C4 position of HHQ
core is chiral, this case causes activity differences depend-
ing on the isomers as it was reported for asymmetric
DHP analogs; one enantiomer may show agonist activity,
while the other one may serve as an antagonist. Calcium
agonist and antagonists bind to the same receptor and
replace each other in a competitive manner [100]. Nifedip-
ine (antagonist) and Bay K 8644 (agonist) bind a specific
DHP receptor, but Bay K 8644 affects opposite to those
of nifedipine [101–103]. The R-enantiomer of 5-oxo-4-
phenyl-1,4,5,7-tetrahydrofuropyridine-3-carboxylate bear-
ing 4-oxo-2-phenyl-4H-thiochromen-8-yl moiety at C4 was
found to be an agonist, while the S-enantiomer was found to
be antagonist.Moreover, S-enantiomer is 50-foldmore active
than R-enantiomer [104]. Rose and Drage [89] reported
the synthesis of enantiomerically pure HHQs of the struc-
tural type 24 and proved that the two enantiomers demon-
strated calcium antagonistic activities on smooth muscles;
however, the S-enantiomer was the tenfold more potent
than the R-enantiomer. Furthermore, R-enantiomer exhib-
ited positive inotropic effects on electrically stimulated
atria.

T-type and N-type calcium channel inhibitory activity:
analgesia activity

Cav3.2 (T-type) and Cav2.2 (N-type) calcium channels, the
most important members of voltage-gated calcium channels,
are responsible for the processing of peripheral nociceptive
information [105]. N-type channels are highly expressed in
afferent nerve terminals and control neurotransmitters’ (such
as glutamate and substance P) releases. However, T-type
channels are expressed both along the afferent fiber and in
a subset of nerve terminals and these channels both regulate
afferent fiber excitability and appear to contribute to low-
threshold neurotransmitter release. T-type calcium channel
activity is increased in afferent fibers in several chronic pain
conditions such as diabetic neuropathy, spinal nerve injury
and irritable bowel syndrome [106–110]. It is reported that
also Cav3.3 sub-type (L-type) involved in peripheral pain
signaling [111].

Bladen et al. optimized the reported L-type inhibitors
with 5-oxo-HHQscaffold by adding dimethyl groups, chang-
ing carboxylate moieties at C3 position and altering the
substituents on the phenyl ring. It was discovered thatmodifi-
cation of carboxylate moiety not only regulates the blocking
affinity for both L-type and T-type channels but also allows
for the development of HHQs with 30-fold selectivity for T-
type channels over the L-type. Compounds 25 and 26 were
introduced as selective T-type calcium channel blockers that
reduce inflammatory and neuropathic pain in mouse mod-
els. The two compounds exhibited high affinity to Cav3.2
channels and preferential inhibition over Cav1.2 [112, 113].
27 was a broad spectrum inhibitor of voltage-gated cal-
cium channels that inhibited both Cav1.2 L- and Cav3.2
T-type calcium channels equipotently. Moreover, 27 effec-
tively inhibited Cav3.3 (T-type) and Cav2.2 (N-type) [114].
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Structure–activity relationships of HHQs as modulators
of calcium channels

According to the data presented in above sections, a struc-
ture–activity relationship (SAR) can be deduced for 5-oxo-
HHQs as modulators of calcium channels (Fig. 1):

1. Nitrogen atom should be unsubstituted in the HHQ
nucleus.

2. The substituents at C2 position should be small groups
such as methyl or ethyl or primary amine.

3. The compounds having carboxylate groups at the 3-
position are the most effective compounds. The methyl
esters were found to be more active than ethyl esters. It
is reported that compounds bearing 2-methoxyethyl car-
boxylates are also effective inhibitors; however, inserting
tertbutyl, isobutyl, allyl, benzyl and hexyl esters would
reduce the activity. Converting linear carboxylate group
to annulated one caused the furoquinoline derivatives
to be less active than their hexahydroquinoline analogs.
Carboxylate groups can be replaced by other electron-
withdrawing groups such as nitrile or carboxamides.

Methyl pyridine carboxylate function allows for the
development of selective inhibitors of T-type channels.

4. As the C4 position of 5-oxo-HHQ core is chiral and DHP
receptors are stereoselective, one enantiomer may serve
as the more potent calcium channel antagonist. The aryl
group on C4 position is the basic requirement for optimal
activity. In addition, replacing phenyl ringwith pyridyl or
nitroimidazole moieties leads to active compounds. Type
and position of the substitution on the benzene ring is of
great importance. Ortho and meta electron-withdrawing
substitutions including NO2, F, Cl, Br and CF3 are pre-
ferred.

5. 5-Oxo-HHQ derivatives containing 6,6-dimethyl are
reported to be more active than the 7,7-dimethyl analogs.

Anticancer activities

Development of new synthetic cytotoxic agents bymedicinal
chemists is an ongoing approach for cancer treatment [115].
5-Oxo-HHQ derivatives fused or hybridized with various
biologically active cytotoxic structures have demonstrated
potent anticancer and antitumor activity.
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Fig. 1 Outline of
structure–activity relationships
of 5-oxo-HHQs as calcium
channel modulators

Taking into account that trimethoxybenzene moiety has
been reported to be crucial to obtain relevant cytotoxic and
antitubulin responses [116, 117], Alqasoumi et al. reported
the synthesis and cytotoxicity evaluation of many new
hybrid compounds comprising 5-oxo-HHQ pharmacophore,
bearing cyanide substituent at C3 position with different
moieties at C4 position and 3,4,5-trimethoxyphenyl at
nitrogen atom of HHQ core as potential tubulin inhibitors. 2-
Amino-7,7-dimethyl-5-oxo-4-(2-methoxyphenyl)-1-(3,4,5-
trimethoxyphenyl)-hexahydroquinoline-3-carbonitrile (28)
showed the highest potency against Ehrlich ascites carci-
noma (EAC) cell line with an IC50 value of 13.0 μM, which
was better than that of doxorubicin as the reference drug.
Unexpectedly, molecular docking analysis revealed that this
compound did not exert its cytotoxic activity through the
inhibition of the tubulin polymerization [2].

Some studies focused on synthesis and evaluation of
the cytotoxicity and radioprotective activity of novel series
of 5-oxo-HHQ derivatives bearing a sulfonamide moiety
[118–122]. As several compounds containing sulfonamide
group were found to possess potent carbonic anhydrase
inhibitory activity [123], docking analysis was performed
to confirm the potential inhibitory effect of the most potent
compounds on this enzyme. Some considerable structural
modifications are depicted in Figs. 2 and 3. Cytotoxicity
estimation of the compounds on EAC cell line revealed that
compound 29 bearing phenyl and NH2 groups at C4 and C2,
respectively, did not show cytotoxicity. However, replacing
NH2 with acetamide (30), phenylurea (31), phenylthiourea
(32) and imino-phenyl-dihydropyrimidine-thione ring (33)
would enhance the cytotoxic potential (Fig. 2) [121]. In
addition, compounds bearing substituted 4-phenyl moiety
with chloro (34), nitro (35) or bromo (36) groups, especially
at the para position, showed remarkable in vitro cytotoxic
activity (Fig. 3) [118]. In another study, the cytotoxicity of
HHQs with 2,4-dichlorophenyl group at C4 was evaluated
and it was revealed that phenylacetamide (38), benzenesul-
fonamide (39 and 40) substitutions at C2 and fusing DHP
ring with 4-imino-phenyl-dihydropyrimidine-thione and 4-
amino-dihydropyrimidin-one rings (41 and 42)wouldgreatly
improve the activity (Fig. 3) [119]. Later in 2012, Ghorab
et al. [124] reported novel quinoline and pyrimidoquinoline
derivatives, containing 4-bromophenyl substitution on nitro-
gen atom of central core (such as compounds 43, 44 and 45)
as potential cytotoxic agents (on MCF-7 cells) with syner-
gistic effects of γ-radiation.
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Fig. 2 Illustration of structural modifications on C2 position of 5-oxo-HHQ core studied by Ghorab et al. Upside green arrows demonstrate positive
influence on activity

123



Molecular Diversity (2019) 23:471–508 489

Fig. 3 Illustration of some structural modifications on C2 and C4 positions of 5-oxo-HHQ core studied by Ghorab et al.
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10-(4-Chlorophenyl)-9-(4-methylphenyl)-3,3,6,6-tetra-
methyl-decahydroacridin-1,8dione (46) was screened
against hepatocellular carcinoma cells (HepG2) and exhib-
ited an IC50 value of 4.4 mg/mL [125].

Paidepala et al. [126] reported catalyst-free efficient syn-
thesis of 5-oxo-HHQ using polyethylene glycol (PEG) as a
solvent and evaluated their cytotoxicity. Compound 47 was
found to display promising cytotoxicity against three human
cancer cell lines including MCF-7, human cervical cancer
cells (HeLa) and human neuroblastoma cells (SK-NSH).

Sangani et al. [127] synthesized pyrazole–quinoline–pyri-
dine hybrids and showed that some of them have excellent
anticancer activity against A549 (human lung adenocarci-
noma) and HepG2 cancer cells. Compound 48 showed good
cytotoxic potential on the two cell lines, and it was found
to be the most effective inhibitor of epidermal growth factor
receptor (EGFR).
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The synthesis and cytotoxic screening of new spirocyclic
2-oxindole derivatives of 2-amino-hydroquinolin-5-one have
been reported. It was noted that substituting the cyanide
function at C3 with an ester moiety improved the cytotoxic
activity. Moreover, compounds 49 and 50 were found to be
the most active members that demonstrated apoptotic inhi-
bition of the proliferation of MCF-7 cells through DNA
fragmentation, induction of the tumor suppressor protein
p53, induction of caspase-9, and finally the inhibition of
angiogenesis by decreasing vascular endothelial growth fac-
tor expression and secretion [128].

Costa Cabrer et al. [129] described the synthesis and
antiproliferative activity of novel hybrid 3-substituted poly-
hydroquinoline–fatty acids. The most potent compound,
the stearic fatty alkyl derivative (51), which contains 3-
hydroxyphenyl at C4, reduced glioma cell viability by 40%
at 5 μM.

It has been shown very recently that compound 52 bear-
ing a benzenesulfonamide moiety is a potent cytotoxic agent
against MCF-7 cell line with an IC50 value of 0.041 μM,
comparable to that of the reference drug doxorubicin (IC50

�0.040 μM) [130].

Structure–activity relationships of HHQs as anticancer
agents

According to the above mentioned studies, a SAR could be
proposed for 5-oxo-HHQ derivatives as cytotoxic agents as
follows:

1. It can be stated that aromatic substitutions on nitrogen
atom of HHQ core, such as 3,4,5-trimethoxyphenyl, ben-
zenesulfonamide, 4-chlorophenyl, 4-bromophenyl and
pyridine, would improve the cytotoxicity.

2. The derivatives having NH2 group at C2 position of
the central core are effective compounds. Replacing
NH2 with acetamide, benzamide, benzenesulfonamide,
phenylthiourea and dioxopyrrolidin moieties causes a
noticeable increase in the cytotoxicity of 5-oxo-HHQs.
Moreover, fusingDHP ringwith some pyrimidine deriva-
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tives such as 4-imino-phenyl-dihydropyrimidine-thione
and 4-amino-dihydropyrimidin-one ringswould improve
the cytotoxicity.

3. Nitrile and alkyl ester moieties are preferred at C3

position (COOEt>CN). Introducing amide or carboxyl
functional groups at this position would diminish the
activity [120].

4. Generally, it can be deduced that placing electron-
withdrawing groups such as Cl, Br and NO2 on para
position of 4-phenyl ring would improve cytotoxic activ-
ity.

5. Introducing methyl substitutions on 6-position of HHQ
nucleus led to an increase in the activity.

Antibacterial, antifungal, antitubercular
and antimalarial activities

Abdel-Gawad et al. reported the synthesis and biological
activity evaluation of a new series of N-naphthyl sub-
stituent hydroquinolines and pyrimidoquinolines and stated
that compounds 53, 54 and 55 demonstrated remarkable
antifungal activities against Saccharomyces cerevisiae com-
pared with fungicide mycostatine. They also proved that
these structures are radio resistant and sterilization by gamma
irradiation may prove to be applicable [131]. In a subse-
quent study, the team synthesized and evaluated some novel
thieno-quinoline, quinolino-thieno-pyrimidine and pyrido-
thieno-quinoline analogs and found 56 and 57 to be nearly
as active as mycostatine [132].

Sabbagh et al. [125] identified decahydroacridin-1,8-
dione 58 bearing a 3-nitrophenyl group and 5-oxo-HHQ 59
having a 2,4-dichlorophenyl moiety as highly active com-
pounds against Gram-positive and Gram-negative bacteria
based upon using the disk diffusion method.
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Thirty-two new N-(hetero) aryl-substituted 5-oxo-HHQ
compounds containing 4-functionally substituted 1,3-diaryl
pyrazole ring at C4 position of HHQ core (60 and 61)
were synthesized by Thumar et al. Most of the synthe-
sized compounds were found to be highly active against six
bacterial pathogens, including: Bacillus subtilis, Clostrid-
ium tetani, Streptococcus pneumoniae, Salmonella typhi,
Vibrio cholerae, Escherichia coli, and antifungal activity,
against Candida albicans. The best antibacterial activities
were obtained against Clostridium tetaniand and Bacillus
subtilis [133].

Ladani et al. [134] described the synthesis and antimi-
crobial activity of several polyhydroquinolines bearing the
tetrazolo-quinolone moiety at C4 position. The results
revealed that some of the derivatives (62 and 63) possess high
fungicidal activity against R. oryzae comparable to griseo-
fulvin.

Some novel biquinoline derivatives (64) bearing a thiazole
moietywere prepared byShan et al., and the compoundswere
tested for their antibacterial (against E. Coli, B. subtilis and
Staphylococcus aureus) and antifungal (against A. niger, F.
oxysporum and R. oryzae) activities. Most of the compounds
displayed moderate activity against all the mentioned strains
[135].

Singh et al. [56] investigated the antibacterial and antifun-
gal activity of some novel 1,2,3-triazole-linked 5-oxo-HHQ
and reported compound 65 as the best antifungal and antibac-
terial derivative with an MIC of 64 mg/mL against the
Gram-positive bacterial strains B. subtilis and S. aureus as
compared with the standard ciprofloxacin and 55.8% inhibi-
tion of mycelial growth against the fungal strain Aspergillus
flavus and 51.1% against Aspergillus nigeras compared with
the standard fluconazole.
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In an attempt to involve biologically active polyhydro-
quinoline, pyrazole and imidazole in one molecule, Kalaria
et al. [5] designed and synthesized a new library of poly-
hydroquinoline derivatives. Compounds were evaluated for
their in vitro antibacterial, antifungal, antimalarial and anti-
tubercular activities. In this regard, 66, 67, 68 and 69 were
introduced, respectively, as the strongest antibacterial, anti-
fungal, antitubercular and antimalarial agents of the series in
comparison with the standard drugs.

Kanani and Patel [136] synthesized a new category of
biquinoline derivatives and proved that compounds 70 and
71 exhibited excellent antimicrobial activity. Furthermore,
compound 72 with 91% inhibition at 6.25 μg/mL againstM.

tuberculosis H37Rv was found to be a potent antitubercular
agent.

Sangani et al. studied the inhibitory effect of some
pyrazole–quinoline–pyridine hybrids against β-ketoacyacyl
carrier protein synthase II (FabH) of E. coli which is the
essential enzyme for fatty acid biosynthesis. The most active
compound was reported to be 5-oxo-hexahydroquinoline-
3-carbonitrile derivative 73 which exhibited MIC of
1.56 μg/mL against E. coli (more effective than penicillin
G and comparable to kanamycin B) and inhibited FabH with
IC50 value of 3.1 μM [127].

Gohil et al. [137] synthesized a new series of tria-
zole/tetrazole hybrids-based biquinoline derivatives bearing
aromatic trifluoromethyl moiety at N −1 position as antimi-
crobial and antitubercular agents. Compounds 74, 75, 76 and
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77 were found to be the most potent antimicrobial and anti-
tuberculosis members.

Sapariya et al. prepared some 5-(phenylthio) pyrazole-
hexahydroquinoline derivatives and evaluated the synthe-
sized compounds for the in vitro antibacterial, antitubercular
and antimalarial activities. Most of the derivatives displayed
remarkable antibacterial activities. The results suggested that
compound 85 could be a promising candidate for a new class
of antimicrobial agents in future. Compounds 81, 82 and
83 were found to be superior antituberculosis agents against
M. tuberculosis H37Rv with 94%, 95% and 91% inhibitory
activity at 250 μg/mL concentration, respectively. The com-
pounds 78, 79, 80, 83, 84 and 85 with IC50 in the range of
0.042–0.097 μg/mL exhibited noticeable antimalarial activ-
ity against P. falciparum as compared to quinine with IC50

of 0.268 μg/mL [138].

Bhatt et al. [139] synthesized some derivatives containing
1,3-diphenyl pyrazole moieties and showed that compounds
86, 87, 88 and 89 presented broad spectrum antibacterial
activity against both Gram-positive and Gram-negative bac-
teria as compared with the reference drug ciprofloxacin.
Moreover, compound 88 was found to have promising anti-
fungal activity against A. clavatus and C. albicans which is
noticeably higher than that of the standard drugs nystatin and
griseofulvin.
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Some 4-indolyl-5-oxo-hexahydroquinoline derivatives
possessing various alkyl carboxylate groups were synthe-
sized byBaydar et al. andwere tested againstMycobacterium
tuberculosis H37Rv. It was concluded that introduction of
ethyl or isopropyl carboxylatesmoieties at C3 positionwould
enhance the activity. Molecular docking analysis of com-
poundswithM. tuberculosis enoyl reductase (InhA) revealed
that InhAmight be the possible target enzyme as compounds
were well accommodated in the enzyme’s active site [140].

Vanaerschot et al. [6] screened 3825 compounds from the
Genomics Institute of Novartis Research Foundation malaria
box and identified three lead compounds having HHQ scaf-
fold (90, 91 and 92) as potent gametocytocidal inhibitors. It
was proved that the compounds were potent in vitro trans-
mission blockers. In vivo studies demonstrated the ability
of lead HHQs to suppress plasmodium berghei blood-stage
parasite proliferation.

Antioxidant activity

A series of 5-oxo-hexahydroquinoline-3-carboxylates bear-
ing different substitutions at 4-phenyl were tested for
their antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and 2,2-azino bis (3-ethylenzothiazoline-sulfonic
acid) diammonium salt (ABST+) radical scavenging assays.
It was reported that insertion ofmethoxy groups at the phenyl
ring improved the antioxidant activity. Compounds 93 and 94
were found to be as the most potent derivatives [49].

Montes-Avila et al. studied DPPH radical scavenging
activity of some hydropyridines (dihydropyridines, polyhy-
droquinolines and polyhydroacridine derivatives) and con-
cluded that polyhydroquinolines were the most active com-
pounds among the studied hydropyridines. A schematic of
SAR representation of these compounds is illustrated in
Fig. 4. In particular, 95 and 96 having 5-oxo-HHQ scaffold
were themost potent derivative and exhibited 53.5 and 55.1%
DPPH scavenging activity at 100 μg/mL, while 97 possess-
ing hexahydroacridine-dione structure showed 30.0%DPPH
scavenging activity at the same concentration [141].

Structure–activity relationships of HHQs as antioxidant
agents

Considering the above-mentioned studies, a brief SAR can
be presented for 5-oxo-HHQ derivatives as antioxidants as
follows:

1. 5-Oxo-HHQs bearing carboxylate moiety on C3 demon-
strate antioxidant activity andmodification of the nucleus
to DHP or hydroacridine diminishes the activity.

2. Hydroxyl and alkoxy substituents at 3, 4 and 5 positions
of the C4-phenyl ring lead to derivatives with enhanced
antioxidant activity.

Singh et al. [56] obtained novel 1,2,3-triazole-linked
5-oxo-HHQvia an eco-friendly one-pot five-component syn-
thesis procedure under ultrasonic and microwave irradiation
in PEG 400. The antioxidant activity was evaluated using
DPPH assay, and compounds 98–101 showed good antioxi-
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Fig. 4 Schematic of structure–activity relationship of 5-oxo-HHQ s as antioxidant agents

dant activity at 0.8μmol/mL concentration as comparedwith
the standard BHT. It was observed that the antioxidant activ-
ity enhanced due to the presence of R2=OCH3 at the phenyl
ring.

COX-2 inhibitory and anti-inflammatory activities

Cyclooxygenase (COX), also known as prostaglandin syn-
thase (PGH), is a potent mediator of inflammation which
catalyzes the first step of the biosynthesis of PGG2 from
arachidonic acid to generate PGH2 [142]. It is well estab-
lished that there are at least two COX isozymes, COX-1
and COX-2. COX-1 is mainly associated with prostaglandin
production in gastric mucosa, but COX-2 is upregulated
in response to inflammatory stimuli and is involved in
pathologic processes [143]. Generally, nonsteroidal anti-
inflammatory drugs inhibit both COXs and, consequently,
lead to undesirable side effects [144].

A new class of 5-oxo-HHQ derivatives possessing a
SO2Me pharmacophore at the para position of the C2 or
C4 phenyl ring was designed and assessed as selective
cyclooxygenase-2 (COX-2) inhibitors by Zarghi et al. The
obtained results indicated that compounds having a MeSO2

group at the para position of the C2 phenyl ring were more
selective COX-2 inhibitors compared to their corresponding
regioisomers bearing a MeSO2 at the para position of C4

phenyl ring. Furthermore, introduction of a methoxy func-
tion at the para position of the C2 or C4 phenyl ring enhanced
the potency and COX-2 selectivity. Accordingly, compounds
102 and 103 were presented as the most potent COX-2
inhibitors with high COX-2 selectivity index. In contrast,
incorporation of Cl, Br or NO2 at C2 phenyl and C4 phenyl
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decreased COX-2 inhibitory potency and selectivity. Molec-
ular docking study of compound 102 in active site of COX-2
indicated that the SO2Me moiety on the C2 phenyl ring
accommodated into the secondary COX-2 binding site [13].
Later in 2015, they reported 4-(4-(methylsulfonyl)phenyl)-
5-oxo-hexahydroquinoline derivatives containing alkyl sub-
stituents at C2 position and alkyl carboxylates at C3 position
of 5-oxo-HHQ core. Compound 104 with IC50 value of
0.30 μM had the strongest COX-2 inhibitory activity. It
was proved that placing larger groups such as propyl and
phenyl at C2 position led to significant loss in activities.

Modification of ethylcarboxylate to the large-sized benzyl-
carboxylate group would diminish the activity [145]. Very
recently, Akbari et al. [146]modeledCOX-2 inhibitory activ-
ities of the above-mentioned 5-oxo-HHQs by quantitative
structure–activity relationship using step-wise multiple lin-
ear regression method. According to QSAR models results,
BEHm6 (highest eigenvalue n. 6 of Burden matrix/weighted
by atomic masses), Mor03u (signal 03/unweighted) and
IVDE (mean information content on the vertex degree equal-
ity) were important factors controlling the COX-2 inhibitory
activity.

Teng et al. [147] reported the synthesis and endometri-
tis anti-inflammatory activity (carrageenan-induced paw
edema) of 4-aryl-5-oxo-hexahydroquinoline derivatives and
find out compounds 105 and 106 with electron-donating
groups at the 4-phenyl ring demonstrated potent activities.
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Abd-Allah et al. [148] studied the anti-inflammatory
activity of novel hydroacridines by the carrageenan-
induced paw edema standard method in rats and revealed
that electron-donating alkyl groups in hydroacridines
could increase their anti-inflammatory activity. The highly
alkylated bishydroacridine-1,8-dione 107 exhibited high
anti-inflammatory potency more than standard employed
indomethacin.

P-gp-mediatedmultidrug resistance (MDR) reversal
activity

Multidrug resistance (MDR) is a major impediment to
successful chemotherapy, which may occur due to the
over-expression of ATP-binding cassette membrane trans-
porter family members including P-glycoprotein (P-gp),
the breast cancer resistance protein and the multidrug
resistance-associated protein 1 in cancer cells [149]. The
over-expression of P-gp, in cancer cells, leads to reduced
accumulation of chemotherapeutic drugs and results in
ineffective chemotherapy. Consequently, discovering small
molecules as P-gp inhibitors seems to be a promising
approach for overcoming MDR in cancer cells. P-gp sub-
strates include amphipathic compounds, lipid soluble com-
pounds and compounds with aromatic rings [150, 151].

In this direction, Shahraki et al. [3] synthesized several 5-
oxo-HHQ derivatives containing nitrophenyl moieties at C4

and different carboxamide substituents at C3 and evaluated
them for their ability to inhibit P-gp using a flow cytome-
try assay to measure the amount of rhodamine 123 (Rh123)
accumulations in uterine sarcoma cells that over-express P-
gp (MES-SA/DX5). Compounds with 2-nitrophenyl moiety,
such as 108with 4.6-fold Rh123 accumulation relative to the
negative control at 25 μM, demonstrated good activity.

Our team extended the work to synthesize and screen
twenty-five analogs bearing different pyridyl methyl car-
boxylates at C3 and different substituents at C4 as P-gp
inhibitors. Derivatives having phenyl moiety with electron-
withdrawing substitution (such as nitro, cyano, chloro and
bromo moieties) at C4 position of HHQ core presented the
highest P-gp inhibitory activity. Compounds 109 and 110
which showed 6.2- and 7.4-fold Rh123 accumulation rela-
tive to the negative control at 25μM, respectively, were even
more potent than verapamil as the positive control (5.5-fold
Rh123 accumulation relative to the negative control) [152].
In a subsequent study, we studied the inhibitory activity of 5-
oxo-HHQderivatives containing 2-pyridyl ethyl carboxylate,
2-pyridyl propyl carboxylate and 3-pyridyl propyl carboxy-
late moieties at C3. Accordingly, compounds 111 and 112
were among the most promising modulators of P-gp trans-
porter [153].
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Structure–activity relationships of 5-oxo-HHQs as MDR
reversal agents

According to the above-mentioned studies, a SAR could be
proposed for 5-oxo-HHQderivatives asMDR reversal agents
as follows (Fig. 5):

1. Derivatives bearing the pyridyl alkyl carboxylate moi-
eties at position 3 are better inhibitors of P-gp than the
compounds having carboxamide substituents, and more
lipophilic pyridyl ethyl carboxylate and pyridyl propyl
carboxylate substituents are better P-gp modulators than
pyridylmethyl carboxylate substituents. 3-Pyridyl propyl
carboxylate substitution led to the most active deriva-
tives.

2. Introducing alkyl and hetero aromatic moieties at the
C4 position would diminish the activity, while aromatic
moieties with electron-withdrawing substitutions such as
NO2 (as a hydrogen bond acceptor function), Cl and Br
(due to their lipophilicity)would improve theMDRrever-
sal activity.

3. Converting six-membered cyclohexenone ring to five-
membered would reduce the activity.

Transforming growth factor β inhibitory activity

Transforming growth factor β (TGFβ) is a cytokine that reg-
ulates many cellular functions including cell proliferation,
apoptosis, differentiation, angiogenesis and wound healing
[154, 155]. The TGFβ pathway is a promising therapeu-
tic target for a variety of diseases such as cancer, fibrosis
and autoimmune diseases. TGFβ signaling occurs follow-
ing initial binding of TGFβ superfamily ligands to the TGFβ

receptor type II (TGFβR2) that recruits and phosphorylates
TGFβ receptor type I (TGFβR1). The type I receptor then
phosphorylates SMADs which bind the coSMAD SMAD4.

Fig. 5 Structure–activity relationship and the effect of substituted moi-
eties on MDR reversal activity of 5-oxo-HHQs. Upside and downside
arrows demonstrate that the substitutions have a positive and negative
influence on activity, respectively. Cross sign indicates lack of the activ-
ity

SMAD/coSMAD complexes mount up in the nucleus, act as
transcription factors and contribute to the regulation of target
gene expression [156, 157].

Willems et al. [158] screened amouse embryonic stemcell
(ESC)-based differentiation assay against a small molecule
library and introduced 113 as the first selective TGFβ

inhibitor (IC50 �0.4–0.8 μM), which induced proteasomal
degradation of the TGFβR2 and inhibited TGFβ-induced
mesoderm formation from mouse ESCs during early dif-
ferentiation. In the subsequent study, they reported the
synthesis and structure–activity relationship (SAR) studies
of 50 selected 1,4-DHPs based on the “hit” compound 113.
Applying SAR-optimized substitution pattern on TGFβ inhi-
bition, compound 114 was discovered as the most potent
derivative (IC50 �170 nM), which is almost as potent as
the reported TGFβR1 inhibitor SB-431542 (IC50 �66 nM)
[159].
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Anti-Alzheimer and neuroprotective activities

Alzheimer’s disease (AD) is a neurodegenerative disease
with diverse etiologies including amyloid-β (Aβ) deposits,
tau protein aggregation, oxidative stress, or low levels of
acetylcholine that are thought to play significant roles in
the disease [160, 161]. Using acetylcholinesterase inhibitors
and, consequently, increasing the acetylcholine levels in the
brain is the primary therapeutic methodology in manage-
ment of AD [162].Moreover, regulating the entrance of Ca2+

through calcium channels could be a good strategy to prevent
cell death, as Ca2+ overload and dysfunction, involved in the
pathogenesis of AD, augments Aβ formation and cell death
[163, 164].

León et al. [165] discovered a series of new tacrine–HHQ
hybrids (115–119) that inhibited acetylcholinesterase, cal-
cium entry, and showed neuroprotection profile. Compounds
115–119 were introduced as a new family of molecules for
the management of AD.

The diaryl-HHQ 120 displayed moderate neuroprotective
and antioxidant activity and was also a potent inhibitor of
calcium entry [14].

Antidiabetic and antidyslipidemic activities

Non-insulin-dependent diabetesmellitus (Type-2 diabetes) is
primarily characterized by insulin resistance and abnormal
insulin secretion which causes hyperglycemia [166]. Dys-
lipidemia is connected to insulin insensitivity and associated
with increased atherosclerosis susceptibility [167].

A series of 2,4-disubstituted polyhydroquinoline deriva-
tives have been synthesized and evaluated for their antidi-
abetic and antidyslipidemic activity in various in vivo and
in vitro models by A. Kumar. Some derivatives such as
121, 122 and 123 exhibited antihyperglycemic activity in
sucrose-loaded model (SLM) and streptozotocin (STZ-S)-
induced β-cell-damaged diabetic model of Sprague–Dawley
strain male albino rats comparable to the standard drugs
with remarkable lipid and triglyceride modulating activity
in C57BL/KsBom-db mouse (db/db). Compound 123 was a
potent protein tyrosine phosphatase 1B (PTP-1B) inhibitor,
whereas compounds 121 and 122 having carboxylic group
inhibited the glycogen phosphorylase more efficiently than
PTP-1B [4].

Antiosteoporotic activity

Applying the molecular hybridization approach, Sashid-
hara et al. [168] discovered compound 124 as a potent
antiosteoporotic agent which increased bone mass density
and volume, expression of osteogenic genes, bone forma-
tion rate, mineral apposition rate, improved the trabecular
microarchitecture and decreased bone turn over markers in
an ovariectomized rodent model for postmenopausal osteo-
porosis. It was also proved that coumarin–HHQ were more
effective than individual coumarins or nifedipine and ben-
zofuran–HHQ hybrids. Very recently, the team designed
some benzofuran–HHQ hybrids and evaluated them for bone
anabolic activities. Compound 125 was introduced as the
most promising derivative, and it was stated that benzofu-
ran–HHQ hybrids were more active than their individuals.
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Compound 125 significantly stimulate bone morphogenic
protein-2 and osteoblast differentiation, increase alkaline
phosphatase activity and enhance osteoblasts by improving
mineralization activity in extracellular matrix. Furthermore,
the compound triggers the regeneration and healing proper-
ties in bone compared to the vehicle-treated group in a drill
hole fracture (defect) model [169].

Conclusions

So far, several derivatives of 5-oxo-HHQ scaffold have
been synthesized and numerous studies have been done on
the biological effects of such compounds. The 5-oxo-HHQ
derivatives display versatile biological and pharmacological
activities, i.e., cardiovascular, myorelaxant, analgesia, anti-
cancer, antibacterial, antifungal, antitubercular, antimalarial,
antioxidant, anti-inflammatory, MDR reversal, neuropro-
tective, antidiabetic, antidyslipidemic and antiosteoporotic
activities. Studies on the pharmacological activities of 5-oxo-
HHQ derivatives along with the chemistry involved in those
activities, which are compiled in this review, would be help-
ful in designing and developing new therapeutic agents.

According to reported various biological effects and struc-
tural diversity of 5-oxo-HHQs, some general considerations
seem to come out.While the presence of hydrogen on N1 and
small groups on C2 and C3 positions of 5-oxo-HHQ core for
calcium channel and COX-2 inhibitory activities are require-
ments, most of the cytotoxic derivatives have bulky and fused
substitutions on these positions. It is well established that C4-
aryl or C4-heteroaryl is a necessity in all reported biological
activities andbyplacing various substitutions on these groups
the biological effect could be improved or diminished. As an
example, placing alkoxy and hydroxyl moieties on 4-phenyl
improves the antioxidant potential of 5-oxo-HHQs, whereas
in the case of MDR reversal activity this action reduces the
effect.

Cytotoxic activity as well as MDR reversal potential of
5-oxo-HHQ derivatives may bring about new horizons in
cancer treatment. In vivo studies reveal some derivatives
are promising antimalarial, antidiabetic, antidyslipidemic

and antiosteoporotic agents. We believe that 5-oxo-HHQs
deserve more investigation, above all in the field of inter-
action with receptors and therapeutical targets as well as in
their use as the scaffold for the preparation of antimalar-
ial, antidiabetic, antidyslipidemic, antiosteoporotic and anti
MDR agents.
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