
Molecular Diversity (2019) 23:453–470
https://doi.org/10.1007/s11030-018-9885-5

SHORT COMMUNICAT ION

In search of the representative pharmacophore hypotheses
of the enzymatic proteome of Plasmodium falciparum:
a multicomplex-based approach

Anu Manhas1 ·Mohsin Y. Lone1,2 · Prakash C. Jha3

Received: 28 May 2018 / Accepted: 6 October 2018 / Published online: 12 October 2018
© Springer Nature Switzerland AG 2018

Abstract
Drug resistance has made malaria an untreatable disease and therefore intensified the need for the development of new drugs
and the identification of potential drug targets. In this pursuit, in silico efforts made in the past have not shown significant
responses. Therefore, in the present work, the multicomplex-based pharmacophore modeling approach was employed to
construct the pharmacophores of the 16 selected Plasmodium falciparum (Pf ) targets. All the constructed hypotheses (153)
were screened against a focused dataset made up of experimental actives of the chosen targets (3705 inhibitors). The rationale
was to check the affinity of the inhibitors for the off-targets. Subsequently, the constructed hypotheses from each target were
pooled based on the feature types and the pooled-hypotheses were then clustered to offer an insight about the pharmacophore
similarity. Tanimoto similarity index was also calculated to look for the similarity among the inhibitors belonging to different
Pf targets. Overall, the work was accomplished to bid healthier perceptive of the pharmacophore-based virtual screening and
abet in providing guiding principles for the construction of stringent pharmacophores that can be employed for the screening.
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Introduction

Malaria is a lethal disease caused by Plasmodium falciparum
(Pf ), one of the deadly species of the plasmodium parasite
[1]. According toWHO, around 3.3 billion cases and 438,000
deaths were reported in 2015 [2]. Although there has been
a decline in the malaria transmission over the past 15 years
(2000–2015) [3], most of the countries face widespread of
malaria due to the emergence of drug resistance [4–8].Owing
to this reason, WHO has considered malaria as the first pri-
ority tropical disease [9]. Therefore, the scenario has drawn
attention of the researchers toward the design of new strate-
gies/drugs to accelerate the process of eradication of malaria.

However, it is a well-known fact that the drug discovery and
development is a laborious, time-consuming and an expen-
sive process. Thus, the application of computer-aided molec-
ular design and development of computational methods for
lead generation and optimization are of enormous signifi-
cance to reduce the overall cost and time allied with drug
discovery program [10]. In this pursuit, a class of compu-
tational techniques known as pharmacophore modeling has
been extensively applied [11–13]. This technique has proven
to be very effective for lead identification and has been funda-
mentally divided into structure-based (SB) and ligand-based
(LB) approaches. LB methods solely rely on the informa-
tion extracted from the set of ligands, whereas SB methods
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depend on the molecular recognition between the protein–li-
gand complexes. However, it is well reported in the literature
that the LBmethod suffers from drawbacks as the generation
of the model depends on the ligands only [14]. LB method
solely depends on the selection of the appropriate training
set which affects the performance of the model [15–21]. One
way to overcome this drawback is to switch to SB approach
which imposes necessary constraints vital for activity and
selectivity [14, 22, 23]. In general, SB methods exploit the
information of either apo-structure (protein only) or sin-
gle protein–ligand complex to the hypothesis generation.
However, if more than one receptor-ligand complexes are
available, then multicomplex-based pharmacophore mod-
eling would be the finest to incorporate all the important
interaction patterns simultaneously [24, 25]. Therefore, this
strategy was employed to search the representative hypothe-
ses of the selected enzymatic druggable targets of Pf.

In the present study, six protein classes ofPf viz. Oxidore-
ductases, Hydrolases, Transferases, Lyases, Isomerases and
Ligases were chosen. However, only 16 different enzymes
(fromfiveprotein classes)were selected on the basis of exper-
imental inhibitory activity. Subsequently, the protein–ligand
complexes of 16groupswere subjected to the pharmacophore
generation using multicomplex-based approach [24, 26–28].
The generated models were typically validated by using a
focussed database made up of experimental actives of the
selected targets. Eventually, the generated pharmacophore
models from each group were pooled based on the feature
types. A model from each pool was selected and then clus-
tered by using Euclidean distance method. The aspiration
was to provide an insight about the pharmacophore similar-
ity among the selected enzyme classes and share of features
among the inhibitors. Rationale behind the current work
was to search for the representative pharmacophores and to
provide guiding principle for the design of stringent pharma-
cophore that can be employed for the virtual screening (VS).
We anticipate that the present study (Scheme 1) will advance
the knowledge of SB pharmacophore modeling approach as
well as provide useful suggestion for their application in VS.

Materials andmethods

Selection and preparation of protein–ligand
complexes

All the protein–ligand complexes were manually selected
from the RCSB Protein Data Bank (Supplement Table 1).
However, only those complexes were selected which possess
the following criteria: (1) the crystallized ligands/inhibitors
must possess experimentally determined activity in terms of
IC50, K i or Kd measures, (2) the protein must belong to the
enzymatic protein class, (3) the target must be crystallized

with more than one inhibitors/ligands, (4) the crystallized
inhibitors/ligands must belong to the same condensation site
and (5) the protein–ligand complex with highest resolution
should be taken, if solved at different crystallographic reso-
lutions. This resulted in the selection of five protein classes
for the present study (Fig. 1). The selected complexes were
retrieved and subsequently grouped on the basis of enzyme
commission number. The grouped protein–ligand complexes
were then prepared by employing Protein Preparation Wiz-
ard of Accelrys-Discovery Studio (DS) [29].

Superimposition and pharmacophore generation

The alignment and superimposition of the prepared pro-
tein–ligand complexes from each group were carried out
by exploiting Align and Superimpose Proteins module of
Accelrys-DS [29]. The rationale behind the superimposition
was to integrate the essential common interactions in a single
coordinate file. The choice of reference for the superimposi-
tion of proteins was made on the basis of highest crystallo-
graphic resolution (Table 1). Subsequent to the superimposi-
tion, all the protein chains were deleted except the reference
in order to avoid the repetition of 3D-coordinates of the pro-
teins. The superimposed conformers from each group were
then subjected to the pharmacophore generation by using the
HipHop algorithm of the Common Feature Pharmacophore
Generation protocol of Accelrys-DS [29]. Owing to the use
of crystal bound conformers, the conformational flexibility of
the ligands was disabled prior to pharmacophore construc-
tion. In addition, the inter-feature distance was set to 2Å
to consider close chemical features during pharmacophore
generation. The pharmacophore features viz. hydrogen-bond
acceptor (A), hydrogen-bond donor (D), hydrophobic (H),
hydrophobic aliphatic (Z), hydrophobic aromatic (Y), posi-
tive ionizable (P), negative ionizable (N) and ring aromatic
(R) were requested for the model construction.

Database preparation and pharmacophore
validation

A curated database comprising of 3705 experimental actives
of the 16 selected targets was made to test the perfor-
mance of the generated pharmacophore models (Supplement
Table 2). The molecules of the database pertaining to the
selected 16 druggable targets were extracted from the lit-
erature as well as retrieved from the BindingDB [30] and
ChEMBL [31] (release June-2017) databases. Due to the
unavailability of the experimental actives of triosephosphate
isomerase (TP), human inhibitors were taken into consid-
eration. All the chosen molecules were then collated into a
single structure data format (SDF) filewhichwas prepared by
employing CHARMm force field [32]-based BEST confor-
mational generation method of Build 3D Database protocol
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Plasmodium falciparum structural proteome

Oxidoreductases Hydrolases Transferases Lyases Isomerases

1. DHFR
PL-Complexes = 8
Inhibitors = 157

2. DHODH
PL-Complexes = 14
Inhibitors = 457

3. DXR
PL-Complexes = 16
Inhibitors = 119

4. ENR
PL-Complexes = 18
Inhibitors = 174

5. LD
PL-Complexes = 8
Inhibitors = 69

1. AM1 
PL-Complexes = 22
Inhibitors = 888

2. DUTPase
PL-Complexes = 5
Inhibitors = 94

3. MLA
PL-Complexes = 2
Inhibitors = 651

4. PL-2
PL-Complexes = 9
Inhibitors = 729

1. CCP
PL-Complexes = 2
Inhibitors = 89

2. PNP
PL-Complexes = 2
Inhibitors = 75

3. SS
PL-Complexes = 3
Inhibitors = 26

4. TK
PL-Complexes = 3
Inhibitors = 66

1. FAS
PL-Complexes = 4
Inhibitors = 73

2. OPD
PL-Complexes = 5
Inhibitors = 19

1. TP
PL-Complexes = 2
Inhibitors = 19

Total enzymes = 16
Total Inhibitors = 3705
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respective enzymes (16)
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Scheme 1 Diagrammatic representation of the workflow adopted to conduct the current study (PL-complex is protein–ligand complex)

of Accelrys-DS [29]. This method generates 255 conform-
ers from each molecule within a threshold of 20 kcal/mol
of energy above the global minima and eliminates the struc-
tural duplicates tomaintain the consistency in the dataset. The
quality of all the constructed pharmacophores was evaluated
by using the prepared database. Each model was mapped at
default parameters by employing the Search 3D Database
module of Accelrys-DS [29]. The statistical parameters viz.
Ht (total number of hits retrieved),Ha (total number of actives
retrieved), %A (recall of actives), %RA (precision), sensitiv-
ity, specificity, area under curve of the receiver operating
characteristic plot (AUC-ROC), enrichment factor (EF) and

Güner Henry scores (GH) were calculated. To accomplish
these parameters for the hypotheses of a particular target, all
the molecules in the database were presumed to be inactives
except its own inhibitors.

Pooling, pharmacophore-clustering
and ligand-similarity search

All the constructed hypotheses of the selectedPf targetswere
pooled on the basis of pharmacophore features. The pooling
was carried out to avoid the possibility of the repetition of fea-
tures for a particular target. The pooled-hypotheses fromeach
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Fig. 1 Pictorial representation of the selected sixteen enzymes of five protein classes of Plasmodium falciparum viz. Oxidoreductases, Hydrolases,
Transferases, Lyases and Isomerases

target were then subjected to clustering by using the web-
interface toolCIMminer [33]. Euclideandistancemethod and
complete linkage algorithm were selected during clustering.
The equal width binning algorithm was applied to color the
distribution of the resultant clusters. However, to generate
feature-based 2D-clustered image map (CIM), the descrip-
tors (D, A, H, Z, Y, P, N and R) of the pooled-hypotheses
alongwith their frequencywere compiled in a [8×56]matrix
as an input (Supplement Table 3). The rationale behind the
clustering of was to analyze the pharmacophore similarity
across the developed models.

On the other hand, the ligand-similarity searchwas carried
out to check the proximity and similarity between the actives
and presumed inactives retrieved by a particular hypothesis.
To accomplish this, fingerprint-based Tanimoto Similarity
Coefficient was calculated by using Find Similar Molecules
by Fingerprints protocol of Accelrys-DS [29]. The combined
clustering and ligand-similarity approach demonstrates the
effectiveness to identify and analyze the interesting pattern
of the arrangement of the pharmacophores and elucidates
the reason accountable for the random distribution of the
inhibitors across the generated models.

Results

Common feature pharmacophore construction

Multicomplex-based pharmacophore models for sixteen Pf
enzymes crystallized with different inhibitors from five pro-
tein classes were generated by employing the Common

Feature Pharmacophore Generation protocol of Accelrys-
DS [29]. However, prior to the generation of pharmacophore
models, all the protein–ligand complexes of a particular
enzyme were superimposed keeping a representative protein
as the reference (Table 1). The rationale behind the super-
imposition was to transform the 3D coordinates of different
protein–ligand complexes to a common frame (Fig. 2). Sub-
sequently, the pharmacophores were constructed by exploit-
ing the bioactive conformations of the crystallized ligands
of each enzyme. A total of 153 multicomplex-based phar-
macophore models were generated (Supplement Table 4 and
Supplement Fig. 1) and subsequently subjected to screening
by using the prepared focused database. The main objective
was to analyze the distribution pattern of the inhibitors across
the Pf enzymatic proteome. From the screening pattern, it
was observed that the molecules have shown affinity for the
off-targets (Fig. 3, Supplement Table 5). As stated, it seems
nearly impossible for a model to screen its own experimen-
tal actives without mapping the large number of presumed
inactives.

For instance, hypothesis-3 of l-lactate-dehydrogenase
(LD) and all the hypotheses of Orotidine-5′-phosphate-
decarboxylase (OPD) retrieved 100% of its actives as well
as 88.58% and≤1.95% of presumed inactives, respectively
(Supplement Table 6). However, few models like model-2 of
1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR),
all models of M17-leucyl aminopeptidase (MLA), cell divi-
sion control protein (CCP), triosephosphate isomerase (TP)
and five models of purine nucleotide phosphorylase (PNP)
were unsuccessful in retrieving even a single active molecule
from the database. One of the potential ways to overcome this
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Table 1 List of the selected druggable proteins of five enzymatic classes of Plasmodium falciparum along with their abbreviation, EC number,
PDB IDs and crystallographic resolution

S. No Druggable targets
(EC number)

PDBs [Resolution (Å)]

1 Oxidoreductases

1a Bifunctional dihydrofolate reductase-thymidylate
synthase (DHFR, 1.5.1.3)

1J3J (2.30), 1J3K (2.10)a, 3DG8 (2.58), 3DGA (2.70),
3JSU (2.70), 3UM8 (2.60), 4DP3 (2.40), 4DPH (2.38)

1b Dihydroorotate dehydrogenase (DHODH, 1.3.5.2) 5FI8 (2.32), 5TBO (2.15), 5DEL (2.20), 4RX0 (2.25),
4CQ9 (2.72), 4CQ8 (1.98)a,4CQA (2.82), 4ORM
(2.07), 3SFK (2.95), 3O8A (2.30), 3I65 (2.00), 3I68
(2.40), 3I6R (2.50), 1TV5 (2.40)

1c 1-Deoxy-d-xylulose 5-phosphate reductoisomerase
(DXR, 1.1.1.267)

5JAZ (1.40)a, 5JBI (1.70), 5JC1 (1.65), 5JMP (1.70),
5JMW (1.55), 5JNL (1.60), 5JO0 (1.80), 4Y67 (1.60),
4Y6P (1.90), 4Y6R (1.90), 4Y6S (2.10), 3WQQ
(2.25), 3WQR (1.97), 3WQS (2.35), 4KP7 (2.00),
4GAE (2.30)

1d Enoyl-acyl carrier reductase (ENR, 1.3.1.9) 4IGE (2.15), 4IGF (2.30), 2OP0 (2.80), 2OP1 (2.60),
2FOI (2.50), 2OL4 (2.26), 2OOS (2.10), 1ZW1 (2.90),
1NHW (2.35), 1NNU (2.50), 3AM5 (2.05), 3LSY
(2.85), 3LT0 (1.96)a, 3LT1 (2.20), 3LT2 (2.50), 3LT4
(2.25), 1ZXB (2.68), 1ZXL (3.00), 1ZSN (2.99)

1e l-lactate dehydrogenase
(LD, 1.1.1.27)

4PLZ (1.05)a, 1U4O (1.70), 1U4S (2.00), 1U5A (1.80),
1T24 (1.70), 1T25 (1.90), 1T26 (1.80), 1CET (2.05)

2 Hydrolases

2a M1 family aminopeptidase
(AM1, 3.4.11)

4ZW3 (1.80), 4ZW5 (1.80), 4ZW6 (1.90), 4ZW7 (1.95),
4ZW8 (2.00), 4ZX3 (2.00), 4ZX4 (1.90), 4ZX5 (1.95),
4ZX6 (2.05), 4R5T (1.98), 4R5V (2.10), 4R5X (1.85),
3T8V (1.80), 4K5L (1.91), 4K5M (1.75), 4K5N
(1.91), 4K5O (1.90), 4K5P (1.85), 3Q43 (1.80), 3Q44
(1.80), 3EBH (1.65)a, 3EBI (2.00)

2b Deoxyuridine 5′-triphosphate nucleotidohydrolase
(DUTPase, 3.6.1.23)

3T60 (2.40), 3T6Y (2.60), 3T70 (1.80)a, 2Y8C (2.10),
1VYQ (2.40)

2c M17 leucyl aminopeptidase (MLA, 3.4.11.1) 3KR4 (2.00)a, 3KR5 (2.56)

2d Plasmepsin-2
(PL-2, 3.4.23.39)

4Z22 (2.62), 4CKU (1.85), 1W6H (2.24), 2BJU (1.56)a,
1LF2 (1.80), 1LF3 (2.70), 1LEE (1.90), 4YA8 (3.30),
4Y6M (2.27)

3 Transferases

3a Cell division control protein (CCP, 2.7.11.22) 1V0O (1.90)a, 1V0P (2.00)

3b Purine nucleotide phosphorylase (PNP, 2.4.2.1) 1NW4 (2.20), 1Q1G (2.02)a

3c Spermidine synthase
(SS, 2.5.1.16)

4CXM (1.75), 2PT9 (2.20), 2I7C (1.71)a

3d Thymidylate kinase
(TK, 2.7.4.9)

2YOF (1.82), 2YOG (1.50)a, 2YOH (1.60)

4 Lyases

4a Fatty acid synthesis protein
(FAS, 4.2.1)

3AZ8 (3.10), 3AZ9 (2.75), 3AZA (2.70), 3AZB (2.60)a

4b Orotidine 5′-phosphate decarboxylase
(OPD, 4.1.1.23)

3VI2 (2.10), 3S9Y (1.70), 3N3M (1.47)a, 2Q8Z (1.80),
3BAR (1.90)

5 Isomerases

5a Triosephosphate isomerase
(TP, 5.3.1.1)

2VFI (2.25), 1LYX (1.90)a

aReference selected for superimposition
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1.5.1.3 (DHFR) 1.1.1.267 (DXR)1.3.5.2 (DHODH) 1.3.1.9 (ENR) 1.1.1.27 (LD)

Oxidoreductases

3.4.11 (AM1) 3.6.1.23 (DUTPase) 3.4.11.1 (MLA) 3.4.23.39 (PL)

Hydrolases

2.7.11.22 (CCP) 2.4.2.1 (PNP) 2.5.1.16 (SS) 2.7.4.9 (TK)

Transferases

5.3.1.1 (TP)

Isomerases

4.2.1 (FAS) 4.1.1.23 (OPD)

Lyases

Fig. 2 Superimposed protein–ligand complexes of selected druggable proteins of five enzymatic classes of Plasmodium falciparum

problem is to impose necessary constraints to the generated
stringent-pharmacophore models. Keeping this in view, the
current study was accomplished by exploiting Pf enzymatic
proteome and thus expands the application domain of the
pharmacophore modeling.

Validationmetrics

The main objective of the pharmacophore-based virtual
screening is to increase the probability of retrieving such
molecules from the database which are likely to be active
in the experimental findings. Accordingly, virtual screening
(VS) is considered as a promising technique for the filter-
ing of large set of molecules in the database. Thus, selection

of the model for conducting the VS becomes an essential
step. However, to evaluate the quality of the hypothesis,
various quality metrics such as EF, %A, %RA, specificity,
sensitivity, GH and AUC-ROC were used. To obtain these
parameters, the common practice is to use a validation set
comprising of experimentally confirmed inhibitors (actives)
and experimentally reported non-inhibitors (inactives) of the
particular target. In contrast, the present work exploited a
focussed dataset made up of the experimental actives of the
16 selected enzymes. The aspiration was not to statistically
validate the pharmacophores rather to check the real-world
distribution of the inhibitors and their affinity for the off-
targets. Thus, all the pharmacophores (153) were initially
assessed by employing a test set comprising of the actives

123



460 Molecular Diversity (2019) 23:453–470

0

100

200

300

400

500

600
A

M
1

C
C

P
D

H
FR

D
H

O
D

H
D

U
TP

as
e

D
X

R
EN

R
FA

S
LD

M
LA

O
PD

PL
-2

PN
P SS TK TP

DHFR Model-01

DHFR Model-02

DHFR Model-03

DHFR Model-04

DHFR Model-05

DHFR Model-06

DHFR Model-07

DHFR Model-08

DHFR Model-09

DHFR Model-10

0
100
200
300
400
500
600
700
800

A
M

1
C

C
P

D
H

FR
D

H
O

D
H

D
U

TP
as

e
D

X
R

EN
R

FA
S

LD
M

LA
O

PD
PL

-2
PN

P SS TK TP

DHODH Model-01

DHODH Model-02

DHODH Model-03

DHODH Model-04

DHODH Model-05

DHODH Model-06

DHODH Model-07

DHODH Model-08

DHODH Model-09

DHODH Model-10

0
50

100
150
200
250
300
350
400
450
500

A
M

1
C

C
P

D
H

FR
D

H
O

D
H

D
U

TP
as

e
D

X
R

EN
R

FA
S

LD
M

LA
O

PD
PL

-2
PN

P SS TK TP

DXR Model-01

DXR Model-02

DXR Model-03

DXR Model-04

DXR Model-05

DXR Model-06

DXR Model-07

DXR Model-08

DXR Model-09

DXR Model-10

0

100

200

300

400

500

600

700

800

A
M

1
C

C
P

D
H

FR
D

H
O

D
H

D
U

TP
as

e
D

X
R

EN
R

FA
S

LD
M

LA
O

PD
PL

-2
PN

P SS TK TP

ENR Model-01

ENR Model-02

ENR Model-03

ENR Model-04

ENR Model-05

ENR Model-06

ENR Model-07

ENR Model-08

ENR Model-09

ENR Model-10

0
100
200
300
400
500
600
700
800
900

A
M

1
C

C
P

D
H

FR
D

H
O

D
H

D
U

TP
as

e
D

X
R

EN
R

FA
S

LD
M

LA
O

PD
PL

-2
PN

P SS TK TP

LD Model-01

LD Model-02

LD Model-03

LD Model-04

0
100
200
300
400
500
600
700
800
900

A
M

1
C

C
P

D
H

FR
D

H
O

D
H

D
U

TP
as

e
D

X
R

EN
R

FA
S

LD
M

LA
O

PD
PL

-2
PN

P SS TK TP

AM1 Model-01

AM1 Model-02

AM1 Model-03

AM1 Model-04

AM1 Model-05

AM1 Model-06

AM1 Model-07

AM1 Model-08

AM1 Model-09

0

50

100

150

200

250

300

350

400

AM
1

CC
P

DH
FR

DH
O

DH
DU

TP
as

e
DX

R
EN

R
FA

S LD
M

LA
O

PD PL
-2

PN
P SS TK TP

DUTPase Model-01

DUTPase Model-02

DUTPase Model-03

DUTPase Model-04

DUTPase Model-05

DUTPase Model-06

DUTPase Model-07

DUTPase Model-08

DUTPase Model-09

DUTPase Model-10

0

1

A
M

1
C

C
P

D
H

FR
D

H
O

D
H

D
U

TP
as

e
D

X
R

EN
R

FA
S

LD
M

LA
O

PD
PL

-2
PN

P SS TK TP

MLA Model-01

MLA Model-02

MLA Model-03

MLA Model-04

MLA Model-05

MLA Model-06

MLA Model-07

MLA Model-08

MLA Model-09

MLA Model-10

0

100

200

300

400

500

A
M

1
C

C
P

D
H

FR
D

H
O

D
H

D
U

TP
as

e
D

X
R

EN
R

FA
S

LD
M

LA
O

PD
PL

-2
PN

P SS TK TP

PL-2 Model-01

PL-2 Model-02

PL-2 Model-03

PL-2 Model-04

PL-2 Model-05

PL-2 Model-06

PL-2 Model-07

PL-2 Model-08

PL-2 Model-09

PL-2 Model-10

0

1

A
M

1
C

C
P

D
H

FR
D

H
O

D
H

D
U

TP
as

e
D

X
R

EN
R

FA
S

LD
M

LA
O

PD
PL

-2
PN

P SS TK TP

CCP Model-01

CCP Model-02

CCP Model-03

CCP Model-04

CCP Model-05

CCP Model-06

CCP Model-07

CCP Model-08

CCP Model-09

CCP Model-10

Fig. 3 Graphical representation of the number of inhibitors mapped by a particular pharmacophore model from the focussed dataset
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Fig. 3 continued

and presumed inactives. This method was used to estimate
the sensitivity, specificity and AUC-ROC plots of all the
hypotheses. In general, sensitivity and specificity indicates
the ability of the model to identify the actives and to exclude
the inactives froma dataset, respectively,whereasAUC-ROC
predict the accuracy of the model to pick actives prior to pre-
sumed inactives. From the Supplement Table 6, it is obvious
that a wide range of values were obtained for the above-
mentioned parameters. Except the hypotheses obtained for
enzymes Plasmepsin-2 (PL-2) and OPD, all have displayed
discrepancies in terms of sensitivity, specificity and AUC.

In addition, the EF and its descriptors (%A and %RA)
were also calculated.Generally, EF quantifies the recognition
of the actives explicitly compared to the presumed inactives
and its higher value corresponds to the better performance
and reliability of the model. It is evident from the Supple-
ment Table 6 that the diverse range (0–48.85) of EF values
was shown by the hypotheses of the selected targets. How-
ever, a significantly good EF values were obtained for all

the hypotheses of PL-2 (4.16–4.54) and OPD (40.26–48.85)
enzymes. This behavior was in one-to-one correlation with
the sensitivity, specificity and AUC values of the hypothe-
ses of PL-2 and OPD. In general, the criteria for the ideal
model are to display sensitivity and specificity≈1, high EF
and AUC value with a steep slope of ROC curve. It is imper-
ative to mention that the models obtained from the OPD fits
well within the ideal model criteria and thus can be used
for the VS (Supplement Table 6 and Supplement Fig. 2).
However, the rest of hypotheses from other targets have
shown affinity for the diverse inhibitors thus necessitates
the use of stringent-pharmacophore models. To accomplish
this, pharmacophore-clustering and Tanimoto-based ligand-
similarity studies were conducted.

Cluster and similarity analysis

The similarity between the pharmacophore models of the
selected protein targets was provided by carrying out phar-
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Fig. 4 Dendrogram representing the feature-based 2D-clustered image map of pooled-pharmacophores based on the composition of the features

macophore clustering. The key objective was to study the
distinct patterns and their relation with the specificity of
the developed models. However, instead of comparing 3D-
coordinates of the feature types, the composition of features
was chosen. The genesis of this postulate stems in the
literature where 3D-pharmacophore-based clustering was
performed to understand the intermolecular interactions [34].

Starting from the lower hierarchy of the dendrogram
(Fig. 4), the pooled-hypotheses of PL (5 pools) were found
to form two clusters, comprising of two and three hypothe-
ses, respectively. None of the hypotheses were observed to
cluster with the hypotheses of other targets, thus displaying

the distinct pattern of feature types. Essentially, all the clus-
tered hypotheses comprise of six features; however, the lower
hierarchical cluster differs with respect to one feature, while
the higher hierarchical cluster differs by two features. It is
imperative to mention that 71.33–75.08% of PL-2 inhibitors
were retrieved from the database via clustered hypothe-
ses (Table 2). This clearly indicates the selectivity of these
models toward its own inhibitors. Despite the significant
specificity, these six-feature pharmacophore models were
found to extract the small number of the inhibitor molecules
from the off-targets such as aminopeptidase (AM1), dihy-
drofolate reductase (DHFR), dihydroorotate dehydrogenase
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(DHODH), enoyl-acyl carrier reductase (ENR), DXR, CCP,
LD, MLA and TP (Table 2). This concern of non-specificity
can be resolved by incorporating either P or N to the six-
feature hypothesis. The next lower hierarchical clustered
target seen in the cladogram was fatty acid synthesis pro-
tein (FAS). All the hypotheses pertaining to this target were
pooled into two pools, and the hypothesis from each pool
was observed to cluster with DHODH and DHFR, respec-
tively. Owing to the simple pharmacophoric requirements
(3-feature), these clustered hypotheses were able to retrieve
the inhibitors from all the targets except OPD (Table 2).
The demonstration of pharmacophore specificity/sensitivity
using 3-feature hypotheses may not be the sufficient indica-
tor to recognize the molecules from pharmacophore-based
VS [25]. Traversing forward from FAS, the four pooled-
hypotheses of DHODH were found to assemble into three
clusters with FAS, DHFR and ENR. The hypotheses clus-
tered with FAS consist of 3 (RHA) and 4 features (RHHA)
of DHODH differing with respect to H feature. However, the
pooled-hypotheses clustered with DHFR and ENR comprise
of AHHH and AHY features, respectively. All the clustered
hypotheses were successful in retrieving 78.12–96.50% of
its own inhibitors along with the significant contribution
from all chosen targets except OPD (Table 2). The lack of
sensitivity can be attributed to the simple pharmacophoric
requirements. From the cladogram (Fig. 4), it is expected
that the removal of A and addition of R to the clustered
hypotheses may increase both the specificity and sensitivity.
Recently, a study has shown the importance of such fea-
tures in enhancing the specificity of the pharmacophores of
PfDHODH [24]. Similarly, the pooled-hypotheses of DHFR
were found to clusterwithDHODH,FAS,ENRandAM1and
thereby formed four clusters (Fig. 4). The retrieved 5- and
4-feature hypotheses showed difference of H feature. Akin to
DHODH, the high specificity (76.43–84.08%) and low sensi-
tivity were prevalent in all the pooled-hypotheses of DHFR.
However, it is clear from the dendrogram that the presence
of N/P in conjunction with R may enhance the sensitivity of
the clustered-pharmacophore models.

For the sake of brevity, the discussion pertaining to non-
meaningful pooled-hypotheses was not made. These include
all the pooled-hypotheses ofAM1,CCP, spermidine synthase
(SS), pooled-hypothesis-3 of LD and 1, 2, 3 of deoxyuridine-
5′-triphosphate nucleotidohydrolase (DUTPase). For such
targets, it is imperative to prioritize the limited number of
chemical features (typically 3–7) to construct a practical
hypothesis for the VS experiments [14]. All the meaningful
hypotheses of LDwere seen to be grouped in the same cluster
and differed by one feature type. It is obvious from the results
that the N feature has shown dramatic effect on both sensi-
tivity and specificity of the models (Table 2). However, due
to simple pharmacophoric entailments, the sensitivity was
very low as compared to specificity. We expect the inser-

tion of H and donor features to the existing features may
balance the sensitivity and specificity of the models for this
target. The adjoining clusters target ENR dwells one, 4 fea-
tures and three, 3 feature pooled-hypotheseswere observed to
be grouped into three different clusters. The two lower hierar-
chical pooled-hypotheses were clustered with DHODH, FAS
and DHFR, whereas the upper hierarchical hypotheses were
not found to be clustered with any of the hypotheses. Akin
to the above-mentioned targets, the models of ENR were not
able to discriminate between the actives and inactives thus
resulted in insignificant specificity and sensitivity (Table 2).
However, clustering analysis suggests that the addition of
H and N to the obtained pharmacophores may enhance the
sensitivity of the ENR models.

Likewise, the clustering of pharmacophores displayed a
single cluster of the pooled-hypotheses of PNP. Each hypoth-
esis comprises of 7-feature types. Despite the significant
specificity, these models have shown insignificant sensitivity
ranging from 0 to 17.33%. The obvious reason seems to be
the complexity of 7-feature hypotheses and the removal of
either A, D or R feature may increase the sensitivity. In con-
trast, the 7-feature pooled-hypotheses of TK were found to
cluster into three small clusters with SS only. The sheer dom-
inance of A and D features has made these hypotheses highly
specific. Correspondingly, these features were also account-
able for low sensitivity ranging from 13.64 to 19.70%. The
removal of additional D/A features may lead to augment the
sensitivity of these models.

All the significant pooled-hypotheses of DUTPase com-
prise of 7 features and were found to form three clusters.
The first two clusters from the lower hierarchy solely con-
sist of the significant and non-significant pharmacophores of
the same target, whereas the last cluster comprises of one
significant hypothesis each of DUTPase and DXR. The sig-
nificant hypotheses have notably excluded the inactives and
actives (Table 2). The obtained clustering pattern suggests
the omission of excessive D/A features in order to increase
the sensitivity of the significant pharmacophores. Adjacent
to this cluster, the six-feature pharmacophores of DXR were
found to form two clusters, one with the aforementioned
target and the other with OPD. The simple pharmacophore
requirement of the lower hierarchical clustered hypothesis
was accountable for insignificant sensitivity and specificity.
However, the presence of N feature has drastically increased
the specificity of these models (Table 2). It is therefore
expected that the insertion of R feature instead of A may
balance the sensitivity and specificity of these models.

Similarly, all the pooled-hypotheses of MLA were found
to form a single cluster with each other only. Owing to the
presence of a group of complicated features, none of the
clustered hypotheses were able to extract any molecule from
the focused database. Thus, we expect the removal of sin-
gle N and P features from the clustered hypotheses may
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Table 3 Table representing the
percentage similarity between
the mapped inhibitors of the
same and different enzymatic
proteins from the generated
pooled-hypotheses of
Plasmodium falciparum
proteome

Pharmacophore
cluster

Mapped
molecules

Mapped form
same inhibitors

Mapped from
other

Similar ligands % Similaritya

search

Oxidoreductases

Bifunctional dihydrofolate reductase-thymidylate synthase
(DHFR, 1.5.1.3)

1 1475 132 1343 1217 90.618

2 1650 121 1529 1436 93.918

3 1734 121 1613 1524 94.482

4 1500 120 1380 1230 89.130

Dihydroorotate dehydrogenase (DHODH, 1.3.5.2)

1 2532 357 2175 2164 99.494

2 3037 441 2596 2583 99.499

3 2947 418 2529 2507 99.130

4 2872 427 2445 2436 99.632

1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR,
1.1.1.267)

1 50 1 49 28 57.143

2 59 2 57 34 59.649

3 1134 88 1046 1021 97.610

Enoyl-acyl carrier reductase (ENR, 1.3.1.9)

1 2095 111 1984 1969 99.244

2 2027 117 1910 1866 97.696

3 2506 140 2366 2359 99.704

4 2221 124 2097 2058 98.140

L-lactate dehydrogenase (LD, 1.1.1.27)

1 555 34 521 434 83.301

2 3290 69 3221 3029 94.039

3 3279 41 3238 2866 88.511

Hydrolases

M1 family aminopeptidase (AM1, 3.4.11)

1 3331 790 2541 2484 97.757

2 3595 881 2714 2652 97.716

Deoxyuridine 5′-triphosphate nucleotidohydrolase (DUTPase,
3.6.1.23)

1 219 13 206 203 98.544

2 160 13 147 144 97.959

3 346 16 330 324 98.181

4 483 28 455 452 99.341

5 582 25 557 540 96.948

6 327 28 299 295 98.662

M17 leucyl aminopeptidase (MLA, 3.4.11.1)

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

Plasmepsin-2 (PL, 3.4.23.39)

1 640 547 93 92 98.925

2 625 543 82 81 98.780
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Table 3 continued Pharmacophore
cluster

Mapped
molecules

Mapped form
same inhibitors

Mapped from
other

Similar ligands % Similaritya

search

3 586 520 66 65 98.485

4 645 538 107 104 97.196

5 574 523 51 51 100.000

Transferases

Cell division control protein (CCP, 2.7.11.22)

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

Purine nucleotide phosphorylase (PNP, 2.4.2.1)

1 18 0 18 0 0

2 22 13 9 0 0

3 41 5 36 0 0

Spermidine synthase (SS, 2.5.1.16)

1 14 1 13 2 15.385

2 168 1 167 1 0.599

3 51 1 50 2 4.000

Thymidylate kinase (TK, 2.7.4.9)

1 160 11 149 90 60.403

2 131 9 122 54 44.262

3 138 13 125 71 56.800

4 216 12 204 102 50.000

Lyases

Fatty acid synthesis protein (FAS, 4.2.1)

1 2742 23 2719 2126 78.191

2 3135 32 3103 2489 80.213

Orotidine 5′-phosphate decarboxylase (OPD, 4.1.1.23)
1 82 19 63 6 01.587

Isomerases

Triosephosphate isomerase (TP, 5.3.1.1)

1 1 0 1 0 0

2 1 0 1 0 0

3 6 0 6 0 0

a%Similarity search� Similar ligands
Mapped from other

enhance the sensitivity of the models. However, the increase
in sensitivity may be at the cost of decrease in specificity of
these pharmacophores. Traversing forward, a single pooled-
hypothesis obtained for OPDwas found to cluster with DXR.
The hypothesis consists of NDAAA features and showed the
momentous discrimination between the experimental actives
and inactives. Therefore, this hypothesis can be employed
for the VS experiments. The last hierarchical cluster com-
prises of three 7-feature pooled-hypotheses of TP, and all the
hypotheses were not able to retrieve a single active molecule
from the database. The obvious reason seems to be the pres-

ence of excessive N features. Thus, we expect the omission
of excess N may enhance the sensitivity of the models.

Beyond the pharmacophore similarity, the other reason
that may be accountable for low sensitivity and specificity of
the pooled-hypotheses is the similarity among the inhibitors.
It is obvious from the results (Table 3) that the fingerprint
similarity between the actives and inactives recognized by
the pooled-hypotheses ranges from 0 to 100%. Most of
the pooled-hypotheses of the chosen targets showed>50%
similarity between the mapped actives and inactives. This
necessitates the identification of structurally diverse candi-
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Fig. 5 Graphical representation of the number of inhibitors and number of crystallized protein–ligand complexes of the respective enzymes of
Plasmodium falciparum. Green, blue and red colors represent highly, moderately and least explored targets, respectively

dates for the effective inhibition. However, the inhibitors of
some targets like MLA, CCP, PNP, SS, OPD and TP have
not shown the considerable similarity (0–15%) between the
mapped actives and inactives. The primary reason seems to
be the inability of the pooled-hypotheses to retrieve its own
inhibitors which in turn can be related to the intricacy in
the pharmacophoric features of the generated models. On
the other hand, the pooled-hypotheses of PNP and SS were
able to retrieve extremely fewer corresponding inhibitors and
therefore displayed very low similarity between the actives
and inactives.

Discussion

Distribution of Pf structural data

The reliability of a pharmacophore model on the basis of
statistical parameters can only be achieved, if there is a
balance in the pharmacophoric requirements, adequate num-
ber of inhibitors in the dataset and satisfactory number of
co-crystallized protein targets for the model construction
[25]. Therefore, the selected Pf targets were classified into
three groups viz. highly explored, moderately explore and
least explored, based on the number of inhibitors and the
crystallized protein–ligand complexes. The threshold for the
categorization wasmanually chosen based on the overall dis-
tribution.

Classification on the basis of number of inhibitors

All those targets for which more than 500 inhibitors were
reported in the literature were categorized into highly
explored targets (AM1, MLA and PL-2). Similarly, the tar-
gets for which 100–500 and less than 100 inhibitors were
reported were categorized into moderately explored (DHFR,
DHODH, DXR and ENR) and least explored (most of the
targets), respectively (Fig. 5). For the last two categories

attention has to be paid toward the synthesis of diverse
inhibitors.

Classification on the basis of number of crystallized
protein–ligand complexes

The targets which possess more than 10 crystallized pro-
tein–ligand complexes were classified as highly explored,
whereas the targets crystallized with 5–9 and less than 5
were classified into moderately explored and least explored,
respectively (Fig. 5). Majority of the targets have been crys-
tallized with more than 10 different inhibitors thus belong to
the highly explored category. On the other hand the targets
viz. PNP, TK, FAS and DUTPase, MLA, CCP, fall within the
domain of moderately explored and least explored category,
respectively.

Overall, the targets viz. PL-2 and AM1 qualified both
in terms of number of inhibitors and the crystallized pro-
tein–ligand complexes. However, owing to the simple phar-
macophoric requirement AM1 was not able to discriminate
between actives and inactives. On the other hand the sys-
tems of concern include DUTPase and CCP due to their
protein–ligand and inhibitor deficiency. The resolution of
these deficiencies is a challenge and utmost concern for the
generation ofmulticomplex-based pharmacophoremodels in
order to reflect quantative structure–activity relationship.

Conclusions

In summary, the multicomplex-based pharmacophore mod-
eling approachwas exercised to construct the pharmacophore
models of the 16 selected Pf targets. A total of 158 hypothe-
ses were generated and subsequently screened against a
focussed database made up of experimental actives and
inactives. It was observed that most of the inhibitors have
shown affinity for the off-targets. Therefore, various sta-
tistical parameters were calculated and correlated with the
robustness of the generated models. Subsequently, all the

123



Molecular Diversity (2019) 23:453–470 469

generated models were pooled and then clustered to ana-
lyze the pharmacophore similarity across the selected Pf
targets. The essential features accountable for the specificity
were prioritized, and the rationale behind the non-specificity
was highlighted. Both pharmacophore and ligand similari-
ties were found to be accountable for the present distribution
of actives and inactives with the dominance of later. Based
on pharmacophore clustering and ligand similarities, the
solutions were offered to reduce the off-target affinities.
Additionally, the promising targets and the valid pharma-
cophores that can be employed for the virtual screening were
highlighted. Overall, the study emphasized the need for the
construction of stringent pharmacophoremodels and the syn-
thesis of structurally diverse inhibitor molecules. Despite the
advances in recent past for the combat ofmalaria, still limited
wet lab and molecular modeling efforts have been endeav-
ored for the development of efficient inhibitors. We expect
that the present contribution will be helpful for the construc-
tion of stringent pharmacophore hypotheses of the selected
targets which can be exploited as an efficient pharmaceutical
filter and a coherent inhibitor strategy.
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