
Molecular Diversity (2019) 23:443–452
https://doi.org/10.1007/s11030-018-9880-x

SHORT COMMUNICAT ION

An unusual synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2
-ones from ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-3
-carboxylate via benzopyran ring opening

Kotthireddy Kavitha1 · Devulapally Srikrishna1 · Balasubramanian Sridhar2 · Pasula Aparna1

Received: 30 June 2018 / Accepted: 25 September 2018 / Published online: 1 October 2018
© Springer Nature Switzerland AG 2018

Abstract
An unusual and unexpected synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones has been observed by the reaction
of ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate with various arylthioureas in ethanol under mild reaction
conditions with excellent yields. The ambiguity in the structure of the obtained products has been solved by recording its
single-crystal X-ray analysis. This protocol has been found to be a novel approach for the preparation of title compounds
via benzopyran ring opening. A systematic plausible mechanism has been proposed for the formation of the product. Also,
an efficient one-pot three-component method has been demonstrated for the formation of title compounds starting from
salicylaldehyde.

Keywords Coumarins · Ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate · Arylthioureas · X-ray crystallog-
raphy · 3-(2-(Arylamino)thiazol-4-yl)-2H-chromen-2-ones

Introduction

Coumarin and its related compounds have found to have
significant therapeutic, agricultural and material chemistry
importance which has been reviewed by us recently [1].
Coumarin and its derivatives exhibited potential biological
activities such as antimicrobial [2], anti-HIV [3], antioxidant
[4], anti-tubercular [5], anti-mutagenic [6] and antibiotic [7].
Coumarins are also found be active pharmacophores in var-
ious drugs.

Furthermore, thiazoles and its derivatives have been also
found to show various therapeutic activities such as anti-HIV
[8], anti-tumor [9], insulin releasing [10], anti-convulsant
[11], neuroprotective agent [12] and antimicrobial [13]
agents. Some of the commercially available thiazole-based
drugs are listed in Fig. 1.
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Different approaches have been reported in the recent lit-
erature for the synthesis of thiazoles bymaking use of various
substrates and reagents. A gist of some of the recent high-
lights for the thiazole synthesis is as follows. Sheldrake et al.
reported the synthesis of 5-arylthiazoles by the treatment
of N,N-diformylaminomethyl aryl ketones with phosphorus
pentasulfide and triethylamine in chloroform [14]. Tang et al.
reported the synthesis of thiazoles by a copper-catalyzed
[3+1+1]-type condensation of oximes, anhydrides and
potassium thiocyanate in toluene at 120 °C [15]. Lin-
garaju et al. reported a base-induced cyclization of active
methylene isocyanides such as tosylmethyl isocyanide, ethyl
isocyanoacetate and arylmethyl isocyanides with methyl
arene- and hetarenecarbodithioates to give 4,5-disubstituted
thiazoles [16]. Miura et al. reported the reaction of 1-
sulfonyl-1,2,3-triazoles with thionoesters in the presence of
a rhodium(II) catalyst providing 3-sulfonyl-4-thiazolines,
which subsequently aromatize into the corresponding of
2,5-disubstituted thiazoles [17]. Chen et al. reported the
palladium(II) acetate catalyzed highly selective synthesis
of 4-substituted 2-aminothiazoles from vinyl azides and
potassium thiocyanate, where iron(III) bromide promotes
the formation of 4-substituted 5-thiocyano-2-aminothiazoles
[18]. Tang et al. reported the synthesis of 4,5-disubstituted
2-aminothiazoles by a copper-catalyzed coupling of oxime
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Fig. 1 Various commercially available thiazole-based drugs

Scheme 1 Synthesis of ethyl
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acetates with isothiocyanates under mild reaction conditions
via copper-catalyzed N–O bond cleavage [19]. Castagnolo
et al. reported a domino alkylation-cyclization reaction of
propargyl bromideswith thioureas and thio-pyrimidinones to
give the 2-aminothiazoles [20]. Narender et al. outlined the
preparation of 2-amino-4-arylthiazole-5-carboxylates and by
α-halogenation of β-keto esters with N-bromosuccinimide,
followed by cyclization with thiourea [21].

One of the most commonly used procedures for the
synthesis of the thiazole ring that clubbed to coumarin is
based on the reaction of 3-(2-bromoacetyl)-2H-chromen-2-
one with thioureas. Siddiqui et al. reported the synthesis
of thiazoles by treating 3-(2-bromoacetyl)-2H-chromen-2-
one with thiourea and its derivatives in refluxing ethanol
[22]. Rao et al. reported the tandem synthesis of 3-(2-
(arylamino)thiazol-4-yl)-2H-chromen-2-ones by reacting 3-
(2-bromoacetyl)-2H-chromen-2-ones with potassium thio-
cyanate for 1 h followed by further addition of ary-
lamines at 60–65 °C for a period of 2 h [23]. Koti
et al. reported the reaction between 3-(2-bromoacetyl)-2H-
chromen-2-ones and substituted thiourea derivatives using
ethanol as a solvent under reflux conditions for 12 h to give
3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones [24].

However, there is no report available for the prepa-
ration of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones
by the reaction of ethyl 2-(chloromethyl)-2-hydroxy-2H-
chromene-3-carboxylate with arylthioureas. As part of our

ongoing research on synthesis of biologically important
oxygen containing heterocyclic compounds, in particular,
coumarins, this article describes an unexpected synthesis
of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones via a
benzopyran ring opening mechanism.

As shown in Scheme 1, reaction of salicylaldehyde (1)
with ethyl-4-chloroacetoacetate (2) in ethanol containing cat-
alytic amount ofl-proline resulted in the formationof ethyl 2-
(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate (3)
which has been reported earlier in literature [25].

Reaction of ethyl 2-(chloromethyl)-2-hydroxy-2H-
chromene-3-carboxylate (3) with 1-phenylthiourea (4a) in
refluxing ethanol resulted in the formation of a compound
which has been characterized on the basis of its spectral
and analytical data. Thus, its IR (KBr) spectrum showed a
strong, sharp peak at 1728 cm−1 due to a lactoneC�Ogroup
and broad, medium peak in the range 3390–3430 cm−1

assignable to NH group. Its 1H NMR (DMSO d6/TMS)
spectrum showed signals at δ 6.98 (d, 2H, Ar–H), 7.39–7.68
(complex, m, 6H, Ar–H), 7.72 (s, 1H, Ar–H), 7.96 (d,
1H, Ar–H), 8.67 (s, 1H, Ar–H), 10.15 (s, 1H, –NH). Its
13C NMR (DMSO d6/TMS) spectrum showed signals at
δ 110.3, 116.3, 117.5, 119.7, 120.7, 121.9, 125.1, 129.4,
129.6, 132.1, 139.0, 141.4, 144.0, 152.7, 159.2, 162.9. Its
HRMS showed the molecular ion (M++1) peak at m/z
321.0707 corresponding to its molecular weight of 320.
Based on the above spectral and analytical data, there is an
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Fig. 2 Possible products for the
reaction of 3 with
1-phenylthiourea (4a): an
ambiguity
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Both these structures will show same characterization data
with respect to IR, 1H-NMR, 13C-NMR and Mass spectra

Structure-1 Structure-2

ambiguity in the structure of the product and we assumed
there is possibility for the formation of two compounds and
proposed the structures as shown in Fig. 2. Furthermore, in
mechanistic way, structure 1 can be formed via an amide
bond formation between ester group of 3 and amine from
thioamide group of 1-phenylthiourea (4a) followed by inter-
nal cyclization and further dehydration to get a stabilized
structure. Structure 2 can be possible by the reaction of
1-phenylthiourea (4a) in its thiol form with chloromethyl
group of ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-
3-carboxylate (3) to give a condensed compound followed
by internal cyclization between ester group and amine from
its thioamide group which further undergoes dehydration to
obtain stability.

To resolve the ambiguity in the structure of the obtained
product, we have crystallized the compound in a mixture of
1:1 chloroform and acetonitrile for several days and recorded
its single-crystal X-ray crystallography (Fig. 3). Interest-
ingly, the obtained structure kept us in still confusion. The
structure is none of the above two possibilities but found to be
as 3-(2-(phenylamino)thiazol-4-yl)-2H-chromen-2-one (5a)
whose structure will also show same characterization data
(Scheme 2).

The mechanism for this unusual conversion from 3 to thi-
azole skeleton (5a) was postulated to occur via the series
of steps depicted in Scheme 3. To solve this mechanism,
we have gone through the literature carefully and proposed
a suitable mechanism which is quite closer to the ring
opening of a quinoxaline-pyran system which was reported
earlier [26]. In detail (Scheme 3), 1-phenylthiourea (4a) in
its thiol form reacts with chloromethyl group of ethyl 2-
(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate (3)
to give a condensed compoundAwith amole of hydrochloric
acid which will undergo internal cyclization via a nucle-
ophilic addition reaction to give an intermediateB. The latter
will undergobenzopyran ring openingwhich is similar to ring
opening of a quinoxaline-pyran system under acidic condi-
tions to give an intermediate C which will undergo internal

transesterification to give a stabilized structure, i.e., 3-(2-
(phenylamino)thiazol-4-yl)-2H-chromen-2-one (5a).

With a view to optimize the reaction conditions for the for-
mation of product in maximum yield, the reaction of 3 with
1-phenylthiourea (4a) was examined by treating equimolar
amounts of the reactants in different solvents under reflux
conditions to obtain 5a (i.e., 5, Ar�C6H5). Among all the
conditions used, ethanol was found to be the best solvent for
this synthesis in terms of reaction time and yield of the pure
product formed without the use of column chromatography.
Results of these studies are shown in Table 1.

Further, to evaluate the scope of this methodol-
ogy, various arylthioureas (4a–l) have been taken and
were treated with ethyl 2-(chloromethyl)-2-hydroxy-2H-
chromene-3-carboxylate (3) in refluxing ethanol to give the
desired products (5a–l) in good yields (Scheme 4).

Encouraged with the above results, having the optimiza-
tion data in hand, it was thought of interest to prepare these
compounds in a one-pot method and the best solvent i.e.,
ethanol as the solvent has been chosen. Thus, equimolar
quantities of salicylaldehyde (1), ethyl-4-chloroacetoacetate
(2), 1-phenylthiourea (4a) and catalytic amount of l-proline
were reacted together in ethanol under refluxing conditions
for 4–6 h. Interestingly, this reaction completed successfully
to give the product 5a in good yields (Scheme 5). Further, the
scope of this reaction has been extended to various arylth-
iourea derivatives (4a–l) to obtain the title compounds (5a–l)
in good to excellent yields.

The overall yield from the stepwise method for the for-
mation of products (5a–l) has been calculated (Table 2) and
compared with the yield obtained from the one-pot synthesis
(Fig. 4). From this comparison, it has been clearly observed
that one-pot synthesis is the most convenient and efficient
method for the preparation of title compounds.
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Fig. 3 ORTEP Diagram of compound 5a
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Scheme 2 An unusual synthesis of 5a

Experimental section

Melting points are uncorrected and were determined in open
capillary tubes using sulfuric acid bath. TLC analyses were
done on silica gel-G coated sheets supplied by Merck Com-
pany, and visualization was done using UV lamp and iodine.
1H NMR spectra were recorded on a Varian 400 MHz spec-
trometer in DMSO–d6 using TMS as an internal standard.
Mass spectra were recorded on Agilent 1100 LCMS instru-
ment.

X-ray crystallography

Data for the compound 5a was collected at room temper-
ature on a Bruker D8 QUEST instrument with an IμS Mo

microsource (λ�0.7107 A) and a PHOTON-100 detector.
The raw data frames were reduced and corrected for absorp-
tion effects using the Bruker Apex 3 software suite programs.
The structure was solved using intrinsic phasing method and
further refinedwith the SHELXL [27] program and expanded
using Fourier techniques. Anisotropic displacement param-
eters were included for all non-hydrogen atoms. N bound H
atomswere located in differenceFouriermaps, and their posi-
tions and isotropic displacement parameterswere refined.All
C bound H atoms were positioned geometrically and treated
as riding on their parent C atoms [C–H�0.93–0.97 Å and
Uiso(H)�1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H
atoms].
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Scheme 3 Plausible mechanism for the formation of 5a from 3 and 4a

Table 1 Optimization data for
the synthesis of 5a from 3 and
4a

S. no. Solvent Reaction condition Reaction time Yielda (%)

1 Ethanol Reflux 2 h 91

2 Methanol Reflux 2 h 89

3 Acetonitrile Reflux 3 h 84

4 Acetone Reflux 3½ h 79

5 Tetrahydrofuran Reflux 2 h 82

6 1,4-dioxane Reflux 4 h 68

7 Ethyl acetate Reflux 3½ h 57

8 Isopropyl alcohol Reflux 2½ h 76

9 Benzene Reflux 7 h 35

10 Water Reflux 8 h 21
aIsolated yield

5a: Ar=C6H5, 5b: Ar=(4)Cl-C6H5,
5c: Ar=(2)Cl-C6H5, 5d: Ar=(2)Cl,(4)F-C6H5,
5e: Ar=(4)F-C6H5, 5f: Ar=(4)OCH3-C6H5,
5g: Ar=(4)CH3-C6H5, 5h: Ar=(4)NO2-C6H5,

5i: Ar=(4)Br-C6H5, 5j: Ar=(2)NO2-C6H5,
5k: Ar=(2)Br,(4)F-C6H5, 5l: Ar=(2)Br-C6H5
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Scheme 4 Synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones (5a–l)

Preparation of 3 from 1 and 2

Amixture of 1 (20mmol), 2 (20mmol), l-proline (20mol%)
and ethanol (50 mL) was stirred at RT for 6 h. After the
completion of reaction, the mixture was poured into ice-cold

water (100 mL). The separated solid was filtered, washed
withwater (2×30mL) and air-dried atRT.The crude product
was recrystallized frommethanol to obtain pure 3white color
solid. Yield: 4.12 g (77%). mp: 114–116 °C. Lit mp [25]:
113–115 °C.

123



448 Molecular Diversity (2019) 23:443–452

5a: Ar=C6H5, 5b: Ar=(4)Cl-C6H5,
5c: Ar=(2)Cl-C6H5, 5d: Ar=(2)Cl,(4)F-C6H5,
5e: Ar=(4)F-C6H5, 5f: Ar=(4)OCH3-C6H5,
5g: Ar=(4)CH3-C6H5, 5h: Ar=(4)NO2-C6H5,

5i: Ar=(4)Br-C6H5, 5j: Ar=(2)NO2-C6H5,
5k: Ar=(2)Br,(4)F-C6H5, 5l: Ar=(2)Br-C6H5

O

O O
Cl+

Ethanol / L-proline

(1) (2)

OH

CHO

Reflux / 4-6 h
Ar

H
N

S

H2N

4 (a-l)

+
O O

S

N H
N

Ar
5 (a-l)

Scheme 5 One-pot synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones (5a–l)

Table 2 Comparison of yields of
5a–l obtained in stepwise and
one-pot methods

S. no. Stepwise method Yield of 5a–l obtained
in one-pot method

Yield of 3
from 1 and 2

Yield of 5a–l from
3

Overall yield of
5a–l

1 77 5a: 91 5a: 70 5a: 81

2 77 5b: 82 5b: 63 5b: 79

3 77 5c: 85 5c: 65 5c: 83

4 77 5d: 86 5d: 66 5d: 75

5 77 5e: 83 5e: 64 5e: 78

6 77 5f : 79 5f : 61 5f : 70

7 77 5g: 81 5g: 62 5g: 69

8 77 5h: 84 5h: 65 5h: 79

9 77 5i: 77 5i: 59 5i: 72

10 77 5j: 89 5j: 68 5j: 82

11 77 5k: 80 5k: 62 5k: 78

12 77 5l: 83 5l: 64 5l: 80

Fig. 4 Yield comparison of 5a–l obtained in stepwise and one-pot methods

General procedure for the synthesis of 5 from 3
and 4

Amixture of 3 (10 mmol), 4 (10 mmol) and ethanol (30 mL)
was refluxed for a period of 2–4 h. Progress of the reac-

tion was monitored by thin layer chromatography. After the
completion of the reaction, as shown by TLC analysis, the
mixture was poured into ice-cold water (100 mL). The sepa-
rated solid was filtered, washed with water (2×30 mL) and
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air-dried at RT. The crude product was recrystallized from
suitable solvent to obtain pure 5.

3-(2-(Phenylamino)thiazol-4-yl)-2H-chromen-2-one (5a)

Yellow solid. Yield: 2.90 g (91%); mp 244–246 °C
(Methanol); IR(KBr) νmax/cm−1: 1728 cm−1 (strong, sharp,
–CO of coumarin ring), 3390–3430 cm−1 (broad, medium,
–NH group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ �
6.98 (d, J �8.8 Hz, 2H, Ar–H) 7.39–7.68 (complex, m,
6H, Ar–H), 7.72 (s, 1H, Ar–H), 7.96 (d, J �6.8 Hz, 1H,
Ar–H), 8.67 (s, 1H, Ar–H), 10.15 (s, 1H, –NH); 13C-NMR
(100 MHz, DMSO-d6): 110.3, 116.3, 117.5, 119.7, 120.7,
121.9, 125.1, 129.4, 129.6, 132.1, 139.0, 141.4, 144.0, 152.7,
159.2, 162.9; HRMS calculated for C18H12O2N2S [M+H]+:
321.0697, Found: 321.0707.

Crystal data for 5a

C18H12N2O2S (M �320.36 g/mol): trigonal, space group
R-3 (no. 148), a �31.8600(3) Å, c �7.6100(3) Å, V
�6689.7(3) Å3, Z �18, T �293(2) K, μ(MoKα)�
0.229 mm−1, Dcalc �1.431 g/cm3, 59,150 reflections mea-
sured (4.428°≤2�≤61.276°), 4585 unique (Rint �0.0338,
Rsigma �0.0163) which were used in all calculations. The
final R1 was 0.0441 (I>2σ (I)), and wR2 was 0.1201 (all
data). CCDC 1844833 contains supplementary Crystallo-
graphic data for the structure. These data can be obtained free
of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or
from the Cambridge Crystallographic Data Centre (CCDC),
12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223
336 033; email: deposit@ccdc.cam.ac.uk].

3-(2-((4-Chlorophenyl)amino)thiazol-4-yl)-2H-chromen-2-
one (5b)

Yellow solid. Yield: 2.90 g (82%);mp 273–275 °C (Ethanol);
IR(KBr) νmax/cm−1: 1701 cm−1 (strong, sharp, –CO of
coumarin ring), 3380–3460 cm−1 (broad, medium, –NH
group); 1H-NMR (400MHz, DMSO-d6/TMS): δ �7.13 (t, J
�1.2 Hz, 1H, Ar–H), 7.36–7.66 (m, 5H, Ar–H), 7.82 (s, 1H,
Ar–H), 7.92 (d, J �1.2 Hz, 1H, Ar–H), 8.48 (d, J �1.2 Hz,
1H, Ar–H), 8.71 (s, 1H, Ar–H) and 9.79 (s, 1H, –NH); 13C-
NMR (100 MHz, DMSO-d6): 115.0, 115.3, 115.8, 118.8,
118.9, 119.2, 120.6, 124.2, 127.9, 130.8, 136.9, 138.2, 143.7,
152.3, 156.0, 159.1, 159.3, 163.0; HRMS calculated for
C18H11O2N2SCl [M+H]+: 355.0308, Found: 355.0321.

3-(2-((2-Chlorophenyl)amino)thiazol-4-yl)-2H-chromen-2-
one (5c)

Yellow solid. Yield: 3.00 g (85%);mp 154–156 °C (Ethanol);
IR(KBr) νmax/cm−1: 1720 cm−1 (strong, sharp, –CO of
coumarin ring), 3390–3450 cm−1 (broad, medium, –NH
group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ �7.11 (t,
J �7.6 Hz, 1H, Ar–H), 7.37–7.65 (complex, m, 5H, Ar–H),
7.82 (s, 1H, Ar–H), 7.91 (d, J �7.6 Hz, 1H, Ar–H), 8.48
(d, J �8.0 Hz, 1H, Ar–H), 8.61 (s, 1H, Ar–H) and 9.81 (s,
1H, –NH); 13C-NMR (100 MHz, DMSO-d6): 109.4, 115.5,
118.1, 119.0, 120.3, 124.0, 125.4, 127.8, 128.2, 130.7, 136.9,
137.0, 138.1, 139.3, 143.5, 152.1, 159.0, 162.1; HRMS cal-
culated for C18H11ClN2O2S [M+H]+: 355.0308, Found:
355.0310.

3-(2-((2-Chloro-4-fluorophenyl)amino)thiazol-4-yl)-2H-
chromen-2-one (5d)

Yellow solid. Yield: 3.19 g (86%);mp 124–126 °C (Ethanol);
IR(KBr) νmax/cm−1: 1713 cm−1 (strong, sharp, –CO of
coumarin ring), 3360–3450 cm−1 (broad, medium, –NH
group); 1H-NMR (400MHz,DMSO-d6/TMS): δ �6.98 (d, J
�9.2 Hz, 2H, Ar–H), 7.40 (t, J �7.6 Hz, 1H, Ar–H), 7.47 (s,
1H, Ar–H), 7.61–7.68 (complex, m, 3H, Ar–H), 7.72 (s, 1H,
Ar–H), 8.67 (s, 1H, Ar–H) and 10.15 (s, 1H, –NH); 13C-
NMR (100 MHz, DMSO-d6): 117.7, 118.5, 119.6, 120.6,
125.2, 129.2, 132.1, 138.6, 139.6, 139.8, 143.9, 151.2, 152.7,
153.6, 159.1, 162.6;HRMScalculated for C18H10ClFN2O2S
[M+H]+: 373.0213, Found: 373.0402.

3-(2-((4-Fluorophenyl)amino)thiazol-4-yl)-2H-chromen-2-
one (5e)

Yellow solid. Yield: 2.80 g (83%); mp 126–128 °C
(Methanol); IR(KBr) νmax/cm−1: 1717 cm−1 (strong, sharp,
–CO of coumarin ring), 3390–3450 cm−1 (broad, medium,
–NH group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ �
7.19–7.94 (complex, m, 8H, Ar–H), 7.96 (s, 1H, Ar–H), 8.69
(s, 1H, Ar–H) and 10.38 (s, 1H, –NH); 13C-NMR (100MHz,
DMSO-d6): 109.8, 115.4, 115.6, 115.8, 118.6, 118.6, 119.2,
120.2, 124.6, 128.9, 131.6, 137.4, 138.6, 143.5, 152.2, 155.7,
158.1, 158.7, 162.5; HRMS calculated for C18H11lFN2O2S
[M+H]+: 339.0603, Found: 339.0599.
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3-(2-((4-Methoxyphenyl)amino)thiazol-4-yl)-2H-chromen-
2-one (5f)

Yellow solid. Yield: 2.76 g (79%); mp 192–194 °C (Ace-
tonitrile); IR(KBr) νmax/cm−1: 1720 cm−1 (strong, sharp,
–CO of coumarin ring), 3395–3455 cm−1 (broad, medium,
–NH group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ �
3.75 (s, 3H, OCH3), 6.96–7.94 (complex, m, 8H, Ar–H),
7.96 (s, 1H, Ar–H), 8.67 (s, 1H, Ar–H) and 10.16 (s, 1H,
–NH); 13C-NMR (100MHz, DMSO-d6): 55.1, 109.2, 114.3,
115.8, 118.9, 119.2, 120.2, 124.6, 128.9, 131.6, 134.4, 138.4,
143.4, 152.2, 154.2, 158.7, 163.1; HRMS calculated for
C19H14N2O3S [M+H]+: 351.0803, Found: 351.0802.

3-(2-(4-Tolylamino)thiazol-4-yl)-2H-chromen-2-one (5g)

Yellow solid. Yield: 2.70 g (81%); mp 201–203 °C (Acetoni-
trile); IR(KBr) νmax/cm−1: 1716 cm−1 (strong, sharp, –CO
of coumarin ring), 3404–3450 cm−1 (broad, medium, –NH
group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ �2.15 (s,
3H, -CH3), 7.40–7.67 (m, 5H, Ar–H), 7.72 (s, 1H, Ar–H),
7.79–7.98 (complex, m, 3H, Ar–H), 8.71 (s, 1H, Ar–H) and
10.50 (s, 1H, –NH); 13C-NMR (100MHz, DMSO-d6): 21.2,
110.0, 115.3, 119.1, 119.8, 120.8, 125.0, 128.1, 128.4, 133.2,
139.2, 140.1, 144.0, 152.4, 159.5, 162.2; HRMS calculated
for C19H14N2O2S [M+H]+: 335.0855, Found: 335.0853.

3-(2-((4-Nitrophenyl)amino)thiazol-4-yl)-2H-chromen-2-
one (5h)

Yellow solid. Yield: 3.07 g (84%); mp 170–172 °C
(Methanol); IR(KBr) νmax/cm−1: 1728 cm−1 (strong, sharp,
–CO of coumarin ring), 3404–3430 cm−1 (broad, medium,
–NH group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ �
7.11 (t, J �8.0 Hz, 1H, Ar–H), 7.37–7.65 (complex, m,
5H, Ar–H), 7.82 (s, 1H, Ar–H), 7.91 (d, J �9.2 Hz, 1H,
Ar–H), 8.48 (d, J �7.6 Hz, 1H, Ar–H), 8.61 (s, 1H, Ar–H)
and 9.81 (s, 1H, –NH); 13C-NMR (100 MHz, DMSO-d6):
110.7, 116.3, 119.0, 119.7, 120.6, 125.1, 129.3, 129.4, 132.1,
139.2, 140.3, 144.0, 152.7, 159.2, 162.6; HRMS calculated
for C18H11N3O4S [M+H]+: 366.0549, Found: 366.0548.

3-(2-((4-Bromophenyl)amino)thiazol-4-yl)-2H-chromen-2-
one (5i)

Yellow solid. Yield: 3.07 g (77%); mp 177–179 °C (Chloro-
form); IR(KBr) νmax/cm−1: 1730 cm−1 (strong, sharp, –CO
of coumarin ring), 3380–3438 cm−1 (broad, medium, –NH
group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ 7.43–7.48
(complex, m, 4H, Ar–H),7.63 (d, J �6.8 Hz, 1H, Ar–H),
7.66 (s, 1H, Ar–H), 7.69 (d, J �7.6 Hz, 1H, Ar–H), 7.82 (t,
J �8.8 Hz, 1H, Ar–H), 7.98 (d, J �7.2 Hz, 1H, Ar–H), 8.73
(s, 1H, Ar–H) and 10.52 (s, 1H, –NH); 13C-NMR (100MHz,

DMSO-d6): 111.2, 115.5, 117.5, 118.0, 118.9, 119.3, 121.2,
124.7, 128.7, 130.9, 135.1, 139.0, 143.4, 151.8, 158.5, 163.6;
HRMScalculated forC18H11BrN2O2S [M+H]+ : 398.9807,
Found: 398.9802.

3-(2-((2-Nitrophenyl)amino)thiazol-4-yl)-2H-chromen-2-
one (5j)

Yellow solid. Yield: 3.24 g (89%);mp 214–216 °C (Ethanol);
IR(KBr) νmax/cm−1: 1726 cm−1 (strong, sharp, –CO of
coumarin ring), 3390–3440 cm−1 (broad, medium, –NH
group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ 7.12 (t, J
�7.2 Hz, 1H, Ar–H), 7.38–7.64 (complex, m, 5H, Ar–H),
7.84 (s, 1H, Ar–H), 7.93 (d, J �6.8 Hz, 1H, Ar–H), 8.49
(d, J �7.6 Hz, 1H, Ar–H), 8.61 (s, 1H, Ar–H) and 9.94 (s,
1H, –NH); 13C-NMR (100 MHz, DMSO-d6): 110.0, 115.2,
118.2, 119.1, 120.5, 123.9, 125.2, 128.0, 128.6, 130.9, 136.9,
137.2, 138.4, 139.4, 144.2, 152.2, 159.1, 162.2; HRMS
calculated for C18H11N3O4S [M+H]+ : 366.0545, Found:
366.0548.

3-(2-(2-Bromo-4-fluorophenylamino)thiazol-4-yl)-2H-
chromen-2-one (5k)

Yellow solid. Yield: 3.33 g (80%);mp 153–155 °C (Ethanol);
IR(KBr) νmax/cm−1: 1719 cm−1 (strong, sharp, –CO of
coumarin ring), 3345–3480 cm−1 (broad, medium, –NH
group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ 6.95 (d, J
�8.0 Hz, 2H, Ar–H), 7.44 (t, J �7.2 Hz, 1H, Ar–H), 7.49 (s,
1H, Ar–H), 7.64–7.69 (complex, m, 3H, Ar–H), 7.75 (s, 1H,
Ar–H), 8.68 (s, 1H, Ar–H) and 10.13 (s, 1H, –NH); 13C-
NMR (100 MHz, DMSO-d6): 116.9, 118.1, 119.4, 120.3,
125.1, 129.2, 131.9, 138.5, 139.5, 139.9, 144.0, 150.9, 152.6,
154.1, 159.2, 163.1;HRMScalculated forC18H10BrFN2O2S
[M+H]+: 418.0325, Found: 418.0302.

3-(2-((2-Bromophenyl)amino)thiazol-4-yl)-2H-chromen-2-
one (5l)

Yellow solid. Yield: 3.31 g (83%);mp 189–191 °C (Ethanol);
IR(KBr) νmax/cm−1: 1723 cm−1 (strong, sharp, –CO of
coumarin ring), 3382–3460 cm−1 (broad, medium, –NH
group); 1H-NMR (400 MHz, DMSO-d6/TMS): δ 7.14 (t, J
�8.2 Hz, 1H, Ar–H), 7.38–7.66 (complex, m, 5H, Ar–H),
7.83 (s, 1H, Ar–H), 7.91 (d, J �7.2 Hz, 1H, Ar–H), 8.46
(d, J �6.8 Hz, 1H, Ar–H), 8.60 (s, 1H, Ar–H) and 9.98 (s,
1H, –NH); 13C-NMR (100 MHz, DMSO-d6): 109.5, 115.6,
117.9, 119.1, 120.2, 123.9, 125.5, 128.0, 128.9, 131.5, 136.7,
137.1, 138.5, 139.8, 144.1, 152.8, 159.6, 162.5; HRMS cal-
culated for C18H11BrN2O2S [M+H]+ : 398.9805, Found:
398.9802.

123



Molecular Diversity (2019) 23:443–452 451

General procedure for the one-pot synthesis of 5
from 1, 2 and 4

A mixture of 1 (10 mmol), 2 (10 mmol), 4 (10 mmol), l-
proline (20 mol%) and ethanol (30 mL) was refluxed for
a period of 4–6 h. Progress of the reaction was monitored
by thin layer chromatography. After the completion of the
reaction, as shown by TLC analysis, the mixture was poured
into ice-cold water (100 mL). The separated solid was fil-
tered, washed with water (2×30 mL) and air-dried at RT.
The crude product was recrystallized from suitable solvent
to obtain pure 5.

Conclusion

In conclusion, we have demonstrated an unusual and
unexpected synthetic method for the preparation of var-
ious 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones (5)
from with ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-
3-carboxylate (3). The scope of this reaction has been
successfully extended to an efficient one-pot synthetic pro-
tocol for the synthesis of the same products and thus reduced
the two steps process to a one-step process. Apart from all of
these, a novel approach has been outlined for the synthesis
of title compounds via benzopyran ring opening under mild
reaction conditions with operational simplicity.
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