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Abstract
An efficient, mild and environmentally benign protocol has been developed for the synthesis of aminouracil-
tethered tri-substituted methane derivatives. The three-component reaction of 2-hydroxy-1,4-naphthaquinone, 6-amino-
1,3-dimethyluracil and aldehydes in the presence of molecular iodine as catalyst under reflux conditions resulted in
aminouracil-tethered tri-substituted methane derivatives 4 in aqueous medium. Similarly, the four-component reaction of
2-hydroxy-1,4-naphthaquinone, o-phenylenediamine, aldehydes and aminouracil derivatives resulted in aminouracil-tethered
tri-substituted methane derivatives 6 under the same reaction conditions. The notable features of this protocol are simple
experimental procedure, cheap catalyst, readily available starting materials, moderate-to-good yields of the products having
biologically active important moieties such as aminouracil, hydroxy-naphthaquinone/benzophenazine.
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Introduction

Uracil, one of the nucleobases of pyrimidine family, is
very well-known structural motif of several bioactive nat-
ural products [1, 2]. Uracil derivatives play important roles
in our life cycle [3, 4] and exhibit wide range of biological
properties [5, 6]. Amino uracils are useful starting mate-
rial for the synthesis of xanthenes and theophylline-related
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Fig. 1 Bioactive tri-substituted methanes tethered with hydroxy-
naphthaquinone/benzophenazine/pyrimidine moieties

compounds [7, 8] which are now routinely used as phos-
phodiesterase inhibitors for the treatment of asthma [9, 10].
Synthesis of aminouracil-tethered tri-substituted methanes
[11–15] has gained more attention in multicomponent reac-
tions due to their diverse biological and pharmaceutical
activities. From the literature, it is well known that hydrox-
ynaphthaquinone [16, 17], benzo[a]phenazine [18, 19] and
aminouracil [20, 21] are pharmacologically active cores of
diverse synthetic as well as natural bioactive compounds.
Some representative examples of bioactive molecules having
aminouracil/hydroxynaphthaquinone/benzophenazine moi-
eties are shown in Fig. 1 [14, 22, 23].

In view of the prominent pharmaceutical significance
of tri-substituted methane derivatives, considerable atten-
tion has been paid in recent times by organic as well as
medicinal chemists for the design and development of newer
and greener methodologies for their efficient synthesis. In
this regard, multicomponent reactions (MCRs) [24–31] have
emerged as a powerful strategy in organic, combinatorial and
medicinal chemistry due to their facileness, efficiency and
also for atom economy. The development of novel synthetic
routes for the synthesis of privileged heterocyclic scaffolds
of medicinal relevance, which combine the benefits of mul-

ticomponent protocols with the environmental benefits of
using nontoxic reagents and green solvents, remains a con-
tinuing challenge at the forefront of modern chemistry. In
addition to this, replacement of hazardous solvents with envi-
ronmentally benign solvents [32, 33] is one of themajor focus
areas of green chemistry.

Further, molecular iodine is an inexpensive, nontoxic,
nonmetallic and commercially available catalyst which has
attracted considerable interest in recent times. It has the abil-
ity to substitute hazardous, toxic, hygroscopic and expensive
Lewis acid catalysts [34, 35]. One of the major advantages
of iodine is its compatibility with a broad range of sensitive
functional groups, which may not be compatible with the
strongly acidic catalysts. Moreover, its high catalytic activ-
ity has enhanced its use in various organic transformations
[36–38].

Very recently, we have published a review article on
the recent advances of aminopyrimidines in multicompo-
nent reactions [39] and also have been engaged in the
development of novel green methodologies for the synthe-
sis of diverse heterocyclic scaffolds using amino uracil as
substrate [40, 41]. In continuation of our work in multi-
component reactions [42–46], we have demonstrated here an
efficient greenmethodology for the synthesis of aminouracil-
tethered tri-substituted methane derivatives in water under
reflux conditions in the presence of molecular iodine cata-
lyst (Scheme 1).

Results and discussion

Initially, the three-component reaction of 2-hydroxy-1,4-
naphthaquinone 1, 1,3-dimethyl-6-aminouracil 2 and 3-
chlorobenzaldehyde 3a in water was selected as the model
reaction. When the reaction was done in the absence of
any catalyst in reflux condition, we ended with aminouracil-
tethered tri-substituted methane 4a in 6 h (Table 1, entry
1). After confirming the structure of 4a by spectroscopic
analysis, we focused our attention to optimize the reaction
conditionbyvaryingdifferent parameters such as catalyst and
solvent. The same model reaction was tested in the presence
of various catalysts such as CAN, CuCl2, LaCl3, CeCl3 and
I2 in water (Table 1, entries 2–6). Next, the same reactionwas
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Scheme 1 Molecular I2-catalyzed MCRs for the synthesis of amino uracil-tethered tri-substituted methanes
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Table 1 Optimization of reaction conditionsa

Entry Catalysts
(10 mol%)

Solvent Time (Hrs) Yieldb (%)

1 – H2O 6 34

2 CAN H2O 4.5 70

3 CuCl2 H2O 4 52

4 LaCl3 H2O 4.5 67

5 CeCl3 H2O 5.5 80

6 I2 H2O 1 60

7 I2 H2O 2 81

8 I2 H2O 2.5 92

9 I2 H2O 4 89

10 I2 H2O 6 86

11 I2 CH3CN 8 47

12 I2 EtOH 6 72

13 I2 Toluene 7 61

14 I2 DMF 6 49

15 I2 Et2O 8 78

16 I2 DMSO 5 73
aAll the reactionswere performedusing 2-hydroxy-1,4-naphthaquinone
(1.0 mmol), 1,3-dimethyl-6-aminouracil (1.0 mmol) and
3-chlorobenzaldehyde (1.0 mmol) under reflux conditions. bIsolated
yield

performed under different time using 10 mol% I2 in water
(Table 1, entries 6–10). The best result was obtained in the
presence ofmolecular I2 inwater in 2.5 h (Table 1, entry 8).

Then, the same model reaction was done in various sol-
vents such as acetonitrile, ethanol, toluene, DMF, Et2O,
DMSO (Table 1, entries 7–12) usingmolecular I2 as catalyst,
but water was found to be the best solvent for the reaction
(Table 1, entry 8).

In order to explore the generality of this multicom-
ponent reaction, a wide variety of aldehydes were tested
under the optimized reaction conditions and the results are
demonstrated in Table 2. Aromatic aldehydes having both
electron-donating and electron-withdrawing groups pro-
duced corresponding tri-substituted methanes in very good
yields (Table 2, entries 1–8).

Aromatic aldehydes such as benzaldehyde and naph-
thaldehyde were also tested, and we observed good-to-
moderate yields of products (Table 2, entry 9–10). Aliphatic
aldehydes such as butyraldehyde and cyclohexanecarbox-
aldehyde were also tested, and the corresponding products
were obtained in good yields (Table 2, entries 11–12).

Encouraged by this three-component reaction, and con-
sidering the biological activity of aminouracil-tethered
tri-substituted methanes having benzophenazine moiety,
we did the four-component reaction of 2-hydroxy-1,4-
naphthaquinone 1, o-phenylenediamine 5, 1,3-dimethyl-6-
aminouracil 2 and aldehydes 3 under the same reaction
conditions which resulted in good-to-moderate yields of
our expected tri-substituted methane derivatives 6. A wide
variety of aldehydes were tested, and we obtained good-to-
moderate yields of corresponding products (Table 3 entries
1–12).

Theproposedmechanism for the synthesis of aminouracil-
tethered tri-substituted methane derivatives has been pre-
sented in Scheme 2. We believe that molecular iodine
plays an important role in this reaction. Firstly, iodine
activates the carbonyl group of aldehyde as it acts as
a mild Lewis acid by forming aldehyde–iodine com-
plex and increases the electrophilicity of carbonyl car-
bon. The aldol condensation of aldehyde and 2-hydroxy-
1,4-naphthaquinone or 5-hydroxybenzophenazine (formed
from the reaction of 2-hydroxy-1,4-naphthaquinone and
o-phenylenediamine) followed by dehydration resulted
in A. Then, molecular iodine also activates carbonyl
group of A and facilitates the Michael addition with
1,3-dimethyl-6-aminouracil and provided B. Next, tau-
tomerization of B resulted in the final product 4 or
6.

Conclusions

In conclusion, an efficient synthesis of aminouracil-tethered
tri-substituted methane derivatives has been developed
using molecular I2 as catalyst in aqueous medium under
reflux conditions. This protocol is environmentally benign
and offers notable features such as operational simplic-
ity, cheap catalyst, no need of column chromatographic
separation, good-to-moderate yields of the products, water
as reaction medium. These features make our method-
ology a useful and attractive strategy in organic synthe-
sis. The presence of bioactive moieties like aminouracil,
hydroxynaphthaquinone/benzophenazine in our synthesized
products is expected to exhibit potent biological activi-
ties.

Experimental section

General

Commercially available reagents were used without addi-
tional purification. The progress of the reactions was mon-
itored by TLC. The melting points were measured in a
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Table 2 Synthesis of aminouracil-tethered tri-substituted methanes (4a–l)a

Entry R Product Time
(Hrs)

Yieldb M.P (°C)

1. 3-ClC6H4 4a 2.5 92 249–250

2. 4-CH3C6H4 4b 4 77 218–220 [41]

3. 4-OCH3C6H4 4c 6 85 245–247 [41]

4. 2-OCH3C6H4 4d 3 72 257–258

5. 3-OHC6H4 4e 3 86 252–253

6. 4-BrC6H4 4f 6 72 251–253 [41]

7. 4-NO2C6H4 4g 5 70 278–279 [41]

8. 2-FC6H4 4h 4 91 243–244

9. C6H5 4i 3 80 248–250 [41]

10. 2-Naphthyl 4j 5 55 265–267

11. n-C4H9 4k 10 60 245–246 [41]

12. Cyclohexyl 4l 8 59 202–203 [41]
aReaction conditions: 2-hydroxy-1,4-naphthaquinone (1.0mmol), 1,3-dimethyl-6-aminouracil (1.0mmol) and aldehyde (1.0mmol) usingmolecular
I2 (10 mol%) as catalyst in water (3.0 ml). bIsolated yield

digital melting point apparatus. Shimadzu FTIR spectropho-
tometer was used to record IR spectra of products. Bruker
400 MHz spectrometer was used to record 1H NMR and
13C NMR spectra in DMSO-d6 and CDCl3 solvent using
Me4Si as an internal standard. HRMS analysis was recorded
in Bruker Impact HD mass spectrometer. The data of known
compounds were compared with the literature data, and the
characterization data of unknown compounds are demon-
strated below.

General procedure for the synthesis of compounds
4a–4l

2-Hydroxy-1,4-naphthaquinone (1.0 mmol) and aldehyde
(1.0 mmol) were taken in water (3.0 ml) in a round-bottom
flask. Then, molecular iodine (10 mol%) was added in the
reaction mixture and refluxed for 15 min. After that, 1,3-
dimethyl-6-aminouracil (1.0mmol)was added to themixture
and refluxed till the completion of the reaction as indicated
by TLC. After cooling the reaction mixture to room tem-
perature, the solid precipitate was filtered off and washed
with water to afford the crude product. Finally, the crude
product was recrystallized in ethanol to afford the pure prod-
uct.

6-Amino-5-((3-chlorophenyl)(1,4-dihydro-2-hydroxy-1,4-
dioxonaphthalen-3-yl)methyl)1,3-dimethylpyrimidine-
2,4(1H,3H)-dione (4a)

Maroon solid. mp 249–250 °C. IR (KBr): 3387, 3224,
3127, 2957, 1697, 1654, 1604, 1578, 1253, 1045, 852,
775 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 3.16 (s, 3H),
3.37 (s, 3H), 5.88 (s, 1H), 7.18 (s, 2H), 7.20 (s, 1H), 7.23
(d, J=8.0 Hz, 1H), 7.27 (d, J=8.0 Hz, 1H), 7.30 (s, 1H),
7.80–7.87 (m, 2H), 8.01 (t, J=8.0Hz, 2H), 13.14 (s, 1H)ppm;
13C NMR (100 MHz, DMSO-d6): δ 27.7, 29.7, 35.2, 89.2,
119.1, 121.5, 125.9, 126.0, 127.1, 129.5, 130.1, 130.2, 130.7,
131.6, 133.5, 134.9, 138.0, 143.6, 147.0, 150.4, 160.5, 178.7,
181.6 ppm; HRMS (ESI-TOF) calcd for C23H19ClN3O5

[M+H]+ 452.1008, found 452.1004.

6-Amino-5-((1,4-dihydro-2-hydroxy-1,4-dioxonaphthalen-
3-yl)(2-methoxyphenyl)methyl)-1,3-dimethylpyrimidine-2,
4(1H,3H)-dione (4d)

Maroon solid. mp 257–258 °C. IR (KBr): 3394, 3228, 3174,
2958, 1697, 1654, 1604, 1577, 1257, 1022, 856, 763 cm1; 1H
NMR (400 MHz, DMSO-d6): δ 3.20 (s, 3H), 3.37 (s, 3H),
3.59 (s, 3H), 5.94 (s, 1H), 6.76 (s, 2H), 6.86 (t, J=8.0Hz, 2H),
7.13 (d, J=8.0Hz, 1H), 7.18 (t, J=8.0Hz, 1H), 7.73–7.81 (m,
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Table 3 Synthesis of tri-substituted methane derivatives 6 having aminouracil and benzophenazine moietiesa

Entry R Product Time
(Hrs)

Yieldb M.P (°C)

1. C6H5 6a 5 80 269–271 [15]

2. 4-CHMe2C6H4 6b 3 90 262–263

3. 4-OCH3C6H4 6c 6 83 274–277 [15]

4. 4-OHC6H4 6d 5.5 72 213–215 [15]

5. 3-NO2C6H4 6e 5 66 325–327

6. 4-FC6H4 6f 6 75 242–243

7. 2-FC6H4 6g 4 79 256–258

8. 3-ClC6H4 6h 5 50 249–250

9. 4-BrC6H4 6i 6 68 265–267

10. 3-BrC6H4 6j 4.5 83 209–211

11. 4-CNC6H4 6k 8 80 295–298

12 2-Naphthyl 6l 4 90 302–304
aReaction conditions: 2-hydroxy-1,4-naphthaquinone (1.0 mmol), o-phenylenediamine (1.0 mmol), 1,3-dimethyl-6-aminouracil (1.0 mmol) and
aldehyde (1.0 mmol) using molecular I2 (10 mol%) as catalyst in water (3.0 ml). bIsolated yield
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2H), 7.99 (d, J=8.0 Hz, 2H), 12.05 (s, 1H) ppm; 13C NMR
(100 MHz, CDCl3 +DMSO-d6): δ 28.0, 30.0, 32.0, 55.3,
85.3, 110.6, 119.9, 125.0, 125.5, 126.0, 127.2, 127.3, 127.8,

130.1, 132.0, 133.1, 134.2, 150.4, 153.2, 156.0, 157.2, 162.7,
181.0, 185.0 ppm; HRMS (ESI-TOF) calcd for C24H22N3O6

[M+H]+ 448.1503, found 448.1505.
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6-Amino-5-((1,4-dihydro-2-hydroxy-1,4-dioxonaphthalen-
3-yl)(3-hydroxyphenyl)methyl)-1,3-dimethylpyrimidine-2,4
(1H,3H)-dione (4e)

Red solid. mp 252–253 °C. IR (KBr): 3379, 3251, 3134,
2958, 1697, 1658, 1635, 1608, 1585, 1296, 1014, 867,
748 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 3.18 (s,
3H), 3.40 (s, 3H), 5.77 (s, 1H), 6.56 (d, J=8.0 Hz, 1H),
6.63 (d, J=8.0 Hz, 2H), 7.02 (t, J �8.0 Hz, 1H), 7.18
(s, 2H), 7.78–7.86 (m, 2H), 8.01 (d, J=8.0 Hz, 1H), 8.04
(d, J=8.0 Hz, 1H), 9.07 (s, 1H), 13.30 (s, 1H) ppm; 13C
NMR (100 MHz, DMSO-d6): δ 28.2, 30.4, 34.7, 85.8,
112.7, 113.5, 117.4, 123.5, 125.7, 126.1, 129.0, 130.5, 131.7,
133.5, 134.4, 139.9, 150.2, 154.3, 157.3, 158.5, 163.6, 181.1,
185.8 ppm; HRMS (ESI-TOF) calcd for C23H20N3O6 [M+
H]+ 434.1347, found 434.1356.

6-Amino-5-((2-fluorophenyl)(1,4-dihydro-2-hydroxy-1,4-
dioxonaphthalen-3-yl)methyl)-1,3-dimethylpyrimidine-
2,4(1H,3H)-dione (4h)

Orange solid. mp 243–244 °C. IR (KBr): 3406, 3360, 3236,
2962, 1697, 1654, 1608, 1597, 1489, 1253, 933, 752 cm−1;
1HNMR(400MHz,CDCl3): δ3.32 (s, 3H), 3.51 (s, 3H), 5.93
(s, 1H), 6.14 (s, 2H), 6.94–6.99 (m, 1H), 7.05–7.08 (m, 1H),
7.09–7.20 (m, 1H), 7.22–7.30 (m, 1H), 7.68–7.70 (m, 1H),
7.71–7.74 (m, 1H), 8.06–8.08 (m, 1H), 8.12–8.14 (m, 1H),
13.15 (s, 1H) ppm; 13C NMR (100 MHz, CDCl3 +DMSO-
d6): δ 28.0, 30.1, 31.0, 84.4, 114.7, 123.6, 125.5, 126.1,
126.3, 127.7, 129.0, 130.1, 131.8, 133.1, 134.2, 150.2, 153.4,
156.9, 159.5, 161.9, 162.9, 180.9, 184.9 ppm; HRMS (ESI-
TOF) calcd for C23H19FN3O5 [M+H]+ 436.1303, found
436.1308.

6-Amino-5-((1,4-dihydro-2-hydroxy-1,4-dioxonaphthalen-
3-yl)(naphthalen-2-yl)methyl)-1,3-dimethylpyrimidine-2,4
(1H,3H)-dione (4j)

Orange solid, mp 265–267 °C. IR (KBr): 3383, 3240, 3142,
2920, 1728, 1701, 1655, 1604, 1577, 1257, 1045, 852,
729 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 3.17 (s, 3H),
3.40 (s, 3H), 6.06 (s, 1H), 7.19 (s, 2H), 7.40 (d, J=8.0 Hz,
1H), 7.43–7.45 (m, 2H), 7.72 (s, 1H), 7.78 (d, J=8.0Hz, 1H),
7.81–7.86 (m, 4H), 8.03 (t, J=8.0Hz, 2H), 13.10 (s, 1H)ppm;
13C NMR (100 MHz, CDCl3 +DMSO-d6): δ 28.1, 30.4,
35.0, 85.9, 123.3, 124.4, 125.2, 125.6, 125.8, 126.1, 127.1,
127.4, 127.5, 130.7, 131.5, 131.8, 133.1, 133.3, 134.1, 136.0,
150.2, 154.5, 158.8, 163.8, 170.1, 181.0, 186.0 ppm; HRMS
(ESI-TOF) calcd for C27H22N3O5 [M+H]+ 468.1554, found
468.1538.

General procedure for the synthesis of compounds
6a–6l

2-Hydroxy-1,4-naphthaquinone (1.0 mmol) and o-
phenylenediamine (1.0 mmol) were taken in water (3.0 ml)
in a round-bottom flask and refluxed for 10 min. Afterward,
to this mixture, aldehyde (1.0 mmol) and 1,3-dimethyl-6-
aminouracils (1.0 mmol) were added followed by 10 mol%
molecular iodine. The reaction mixture was refluxed till
the completion of the reaction as indicated by TLC. After
cooling the reaction mixture to room temperature, the
solid precipitate was filtered off and washed with water to
afford the crude product. Finally, the crude product was
recrystallized in ethanol to afford the pure product.

6-Amino-5-((5-hydroxybenzo[a]phenazin-6-yl)(4-
isopropylphenyl)methyl)-1,3-dimethylpyrimidine-
2,4(1H,3H)-dione (6b)

Brown solid. mp 262–263 °C. IR (KBr): 3383, 3237, 3187,
2954, 2870, 1689, 1650, 1613, 1593, 1442, 1053, 810,
698 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 1.09 (d, J
�8.0 Hz, 6H), 2.73–2.76 (m, 1H), 3.18 (s, 3H), 3.35 (s, 3H),
6.83 (s, 1H), 6.95–7.00 (m, 2H), 7.04 (d, J=8.0 Hz, 2H),
7.74–7.79 (m, 3H), 7.83 (t, J=8.0 Hz, 1H), 8.11–8.13 (m,
1H), 8.15 (s, 2H), 8.24 (d, J=8.0Hz, 1H), 8.29–8.32 (m, 1H),
9.23–9.20 (m, 1H), 13.19 (s, 1H) ppm; 13C NMR (100MHz,
DMSO-d6): δ 23.8, 23.9, 28.0, 30.3, 32.9, 35.2, 87.3, 114.0,
123.5, 124.5, 125.7, 126.4, 127.2, 128.2, 128.3, 129.1, 129.8,
129.9, 130.1, 130.2, 136.7, 139.2, 140.0, 140.5, 144.6, 145.2,
150.2, 155.4, 156.4, 164.0 ppm; HRMS (ESI-TOF) calcd for
C32H30N5O3 [M+H]+ 532.2343, found 532.2344.

6-Amino-5-((5-hydroxybenzo[a]phenazin-6-yl)(3-
nitrophenyl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-
dione (6e)

Red solid. mp 325–327 °C. IR (KBr): 3441, 3076, 1705,
1660, 1620, 1597, 1558, 1506, 1471, 1340, 1199, 1028, 956,
804, 671 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 3.21 (s,
3H), 3.45 (s, 3H), 7.01 (s, 1H), 7.55 (t, J=8.0 Hz, 1H), 7.72
(d, J=8.0 Hz, 1H), 7.93–7.94 (m, 3H), 7.99 (s, 2H), 8.06
(d, J=8.0 Hz, 1H), 8.25–8.28 (m, 3H), 8.38–8.39 (m, 2H),
9.30–9.32 (m, 1H), 13.29 (s, 1H) ppm; 13C NMR (100MHz,
DMSO-d6): δ 28.7, 31.0, 36.2, 86.7, 114.1, 121.2, 121.9,
124.2, 125.1, 128.0, 129.4, 129.5, 129.6, 130.0, 130.1, 130.7,
131.0, 131.3, 134.4, 139.9, 140.4, 141.0, 143.0, 144.7, 148.5,
150.7, 156.1, 156.7, 164.6 ppm; HRMS (ESI-TOF) calcd for
C29H23N6O5 [M+H]+ 535.1724, found 535.1718.
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6-Amino-5-((4-fluorophenyl)(5-hydroxybenzo[a]phenazin-
6-yl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (6f)

Brown solid. mp 242–243 °C. IR (KBr): 3390, 3267, 3142,
2920, 1693, 1558, 1612, 1593, 1285, 1049, 817, 767 cm−1;
1H NMR (400 MHz, DMSO-d6): δ 3.22 (s, 3H), 3.39 (s,
3H), 6.88 (s, 1H), 7.14–7.20 (m, 4H), 7.83–7.87 (m, 3H),
7.91 (t, J=8.0 Hz, 1H), 8.18–8.21 (m, 1H), 8.25 (s, 2H), 8.33
(d, J=8.0 Hz, 1H), 8.35–8.37 (m, 1H), 9.27–9.29 (m, 1H),
13.22 (s, 1H) ppm; 13C NMR (100MHz, DMSO-d6): δ 28.7,
29.6, 31.4, 89.9, 123.5, 125.7, 125.8, 125.9, 126.0, 126.2,
126.3, 128.3, 128.4, 129.3, 129.7, 129.9, 130.1, 131.6, 132.2,
133.4, 133.7, 134.6, 134.9, 135.8, 137.3, 143.0, 144.9, 150.3,
164.6 ppm; HRMS (ESI-TOF) calcd for C29H23FN5O3 [M+
H]+ 508.1779, found 508.1774.

6-Amino-5-((2-fluorophenyl)(5-hydroxybenzo[a]phenazin-
6-yl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (6g)

Red solid. mp 256–258 °C. IR (KBr): 3064, 2918, 2850,
1708, 1672, 1595, 1560, 1498, 1448, 1419, 1363, 1278,
1220, 1139, 1055, 852, 748, 582 cm−1; 1H NMR (400MHz,
DMSO-d6): δ 3.19 (s, 3H), 3.43 (s, 3H), 6.99 (s, 1H), 7.53
(t, J=8.0 Hz, 1H), 7.70 (d, J=8.0 Hz, 1H), 7.88–7.92 (m,
2H), 7.95–7.98 (m, 2H), 8.04 (d, J=8.0 Hz, 2H), 8.23 (d,
J=8.0 Hz, 1H), 8.29–8.35 (m, 2H), 8.37 (s, 2H), 9.25–9.27
(m, 1H), 13.29 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-
d6): δ 28.2, 30.5, 35.7, 86.2, 113.6, 120.7, 121.4, 123.7,
124.6, 127.4, 128.9, 129.0, 129.1, 129.5, 129.6, 130.1,
130.4, 130.7, 133.9, 139.3, 139.9, 140.4, 142.5, 144.2, 147.9,
150.2, 155.6, 156.2, 164.1 ppm; HRMS (ESI-TOF) calcd for
C29H23FN5O3 [M+H]+ 508.1779, found 508.1776.

6-Amino-5-((3-chlorophenyl)(5-hydroxybenzo[a]phenazin-
6-yl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (6h)

Maroon solid. mp 249–250 °C. IR (KBr): 3317, 3136, 2900,
1705, 1674, 1620, 1593, 1462, 1280, 1053, 862, 756 cm−1;
1H NMR (400 MHz, DMSO-d6): δ 3.17 (s, 3H), 3.34 (s,
3H), 6.86 (s, 1H), 7.09 (s, 2H), 7.13 (t, J=8.0 Hz, 1H),
7.17 (t, J=8.0 Hz, 1H), 7.81–7.84 (m, 2H), 7.87–7.90 (m,
2H), 8.16–8.17 (m, 3H), 8.28 (d, J=8.0 Hz, 1H), 8.31–8.33
(m, 1H), 9.22–9.25 (m, 1H), 13.19 (s, 1H) ppm; 13C NMR
(100 MHz, DMSO-d6): δ 28.7, 30.9, 36.1, 87.0, 114.4,
124.2, 125.1, 125.9, 126.0, 127.0, 127.9, 129.3, 129.4, 129.6,
130.2, 130.3, 130.6, 130.9, 131.1, 133.4, 139.8, 140.4, 141.0,
143.1, 144.8, 150.7, 156.0, 156.7, 164.5 ppm; HRMS (ESI-
TOF) calcd for C29H23ClN5O3 [M+H]+ 524.1484, found
524.1483.

6-Amino-5-((4-bromophenyl)(5-hydroxybenzo[a]phenazin-
6-yl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (6i)

Maroon solid. mp 265–267 °C. IR (KBr): 3468, 3325, 3136,
2924, 1685, 1654, 1618, 1597, 1492, 1280, 1057, 848,
767 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 3.22 (s,
3H), 3.40 (s, 3H), 6.87 (s, 1H), 7.16 (d, J=8.0 Hz, 2H),
7.38–7.39 (m, 2H), 7.88–7.89 (m, 1H), 7.92 (t, J=8.0 Hz,
2H), 7.97 (d, J=8.0 Hz, 1H), 8.24 (s, 1H), 8.25 (s, 2H), 8.35
(d, J=8.0 Hz, 1H), 8.37–8.38 (m, 1H), 9.29–9.31 (m, 1H),
13.25 (s, 1H) ppm; 13C NMR (100MHz, DMSO-d6): δ 28.7,
31.0, 35.9, 87.1, 114.4, 118.9, 124.2, 125.1, 127.9, 129.1,
129.3, 129.5, 129.6, 129.8, 130.2, 130.6, 130.9, 131.2, 131.3,
132.5, 134.6, 139.7, 140.4, 141.0, 144.9, 150.7, 155.9, 156.7,
164.5 ppm; HRMS (ESI-TOF) calcd for C29H23BrN5O3

[M+H]+ 568.0979, found 568.0959.

6-Amino-5-((3-bromophenyl)(5-hydroxybenzo[a]phenazin-
6-yl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (6j)

White crystalline solid. mp 209–211 °C. IR (KBr): 3445,
3358, 3241, 3063, 2964, 1695, 1660, 1651, 1570, 1509, 1489,
1446, 1095, 1043, 856, 760 cm−1; 1H NMR (400 MHz,
DMSO-d6): δ 3.20 (s, 3H), 3.38 (s, 3H), 6.86 (s, 1H), 7.16
(d, J=8.0 Hz, 2H), 7.41 (d, J=8.0 Hz, 2H), 7.91–7.92 (m,
2H), 7.93–7.95 (m, 2H), 7.99 (t, J=8.0 Hz, 1H), 8.23 (s, 2H),
8.36–8.38 (m, 2H), 9.27–9.30 (m, 1H), 13.32 (s, 1H) ppm;
13C NMR (100 MHz, DMSO-d6): δ 28.1, 30.4, 35.5, 86.7,
113.6, 121.7, 123.6, 124.5, 124.7, 125.8, 127.3, 128.3, 128.5,
128.6, 129.1, 129.3, 129.7, 129.9, 130.1, 130.4, 139.3, 139.9,
140.4, 142.7, 144.3, 150.2, 155.5, 156.3, 164.0 ppm; HRMS
(ESI-TOF) calcd for C29H23BrN5O3 [M+H]+ 568.0979,
found 568.0962.

4-((6-Amino-1,2,3,4-tetrahydro-1,3-dimethyl-2,4-
dioxopyrimidin-5-yl)(5-hydroxybenzo[a]phenazin-6-
yl)methyl)benzonitrile (6k)

Maroon solid. mp 295–298 °C. IR (KBr): 3385, 2922, 2850,
2364, 1653, 1647, 1593, 1558, 1498, 1070, 887, 781 cm−1;
1H NMR (400 MHz, DMSO-d6): δ 3.19 (s, 3H), 3.38 (s,
3H), 6.93 (s, 1H), 7.42 (d, J �8.0 Hz, 2H), 7.69 (d, J �
8.0 Hz, 2H), 7.88–7.95 (m, 5H), 8.25 (s, 2H), 8.32 (d, J �
8.0 Hz, 2H), 9.23 (s, 1H), 13.29 (s, 1H) ppm; 13C NMR
(100 MHz, DMSO-d6): 29.0, 31.2, 36.6, 87.1, 108.7, 114.2,
119.6, 124.1, 125.0, 127.9, 128.4, 129.3, 129.4, 129.6, 130.1,
130.6, 130.8, 131.1, 132.4, 139.8, 140.4, 140.9, 144.7, 146.7,
150.7, 156.0, 156.7, 164.6 ppm; HRMS (ESI-TOF) calcd for
C30H23N6O3 [M+H]+ 515.1826, found 515.1821.
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6-Amino-5-((5-hydroxybenzo[a]phenazin-6-yl)(naphthalen-
2-yl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (6l)

Orange solid. mp 302–304 °C. IR (KBr): 3346, 3157, 1699,
1595, 1568, 1498, 1361, 1276, 1199, 1051, 819, 759 cm−1;
1HNMR (400MHz, DMSO-d6): δ 3.25 (s, 3H), 3.45 (s, 3H),
7.12 (s, 1H), 7.37–7.39 (m, 2H), 7.42 (d, J �8.0 Hz, 1H),
7.64 (s, 1H), 7.67 (d, J �8.0 Hz, 1H), 7.74 (d, J �8.0 Hz,
1H), 7.79 (d, J �8.0 Hz, 1H), 7.87–7.92 (m, 4H), 8.17 (s,
1H), 8.25 (s, 2H), 8.35 (d, J �8.0 Hz, 1H), 8.39–8.41 (m,
1H), 9.34 (d, J �8.0 Hz, 1H), 13.22 (s, 1H) ppm; 13C NMR
(100 MHz, DMSO-d6): 29.6, 30.4, 36.2, 88.8, 113.5, 116.9,
124.2, 124.8, 124.9, 125.1, 125.6, 125.7, 125.8, 127.2, 127.3,
127.4, 127.8, 128.2, 128.5, 129.7, 130.1, 131.9, 133.5, 137.1,
139.9, 140.9, 145.1, 150.9, 155.6, 157.3, 164.6 ppm; HRMS
(ESI-TOF) calcd for C33H26N5O3 [M+H]+ 540.2030, found
540.2021.
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