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Abstract
In this report, a facile, operationally, simple and highly efficient one-pot coupling of 2,6-diaminopyrimidin-4(3H)-one and
ethyl-2,4-dioxo-4-phenylbutanoate derivatives is reported. This method afforded a novel series of ethyl-2-amino-3,4-dihydro-
4-oxo-5-phenyl pyrido[2,3-d] pyrimidine-7-carboxylate heterocycle derivatives in high yields under refluxing AcOH.
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Introduction

Pyrimidines are an important class of nitrogen heterocyclic
compounds with a wide range of applications, and these
compounds have proven to be convenient building blocks
for the synthesis of various fused heterocycles [1–4]. One
of the most important fused heterocycles is pyrido[2,3-
d]pyrimidines. These compounds exhibit a wide range of
biological properties such as antiviral [5], anti-inflammatory
[6], antimicrobial [7], antifungal [8] and anticancer activ-
ity [9]. For example, compounds such as 2,4-diamino-
6-(thioarylmethyl)pyrido[2,3-d]pyrimidines were shown as
inhibitors of dihydrofolate reductases (Fig. 1) [10]. There-
fore, the synthesis of diverse structures belonging to this class
of compounds is very important.Also, these compounds exist
in purine bases of DNA and RNA [11]. There are several
synthetic procedures for the preparation of fused pyrimidine
systems under different conditions which have opened new
horizons in the synthesis of pyridopyrimidines. For example,
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Fig. 1 Bioactive compound on pyrido[2,3-d]pyrimidine derivative as
inhibitor of dihydrofolate reductases

they can be made with 3-cyano-2-aminopyridines via for-
mamidine formation followed by selective nucleophilic addi-
tion with different primary amines [12]. Cyclocondensation
of 4,6-dichloro-2-methylsulfanylpyrimidine-5-carbaldehyde
with beta-alkyl and beta-aryl-beta-aminoacrylic esters is
another route for their preparation [13]. TheMichael addition
and subsequent cyclodehydration of 2,6-diaminopyrimidin-
4-one and butynones provided anothermethod for the synthe-
sis of pyrido [2,3-d]pyrimidines [14]. The three-component
reaction of aldehydes, alkyl nitriles and aminopyrimidines
in water and in the presence of KF-Al2O3 as catalyst pro-
vided the aforementioned compounds in reasonable yields
[15]. Some of the reported methods suffer from one or
more disadvantages such as multi-step synthesis, use of toxic
chemicals, low yields and tedious workup. In addition, these
approaches only afford series of anticipated N-fused hetero-
cycle structures. The biological and medicinal character of
these compounds inspires us to examine a different and effec-
tive method for their preparation. Furthermore, in this paper,
we plan to present new pyrido[2,3-d]pyrimidines structures
which aims to synthesize tricyclic heterocycles and easily
methodologies for the preparation of compounds. Following
up on our interest in the synthesis of N-fused heterocycles
[16–22], herein we describe a novel and highly efficient tech-
nique for the preparation of new derivatives of pyrido[2,3-
d]pyrimidines from 2,6-diaminopyrimidin-4(3H)-one 1 and
ethyl-2,4-dioxo-4-phenylbutanoate derivatives2 (Scheme1).

Results and discussion

First, the desired starting materials, including
2,6-diaminopyrimidin-4(3H)-one 1 and ethyl-2,4-dioxo-4-
phenylbutanoate derivatives 2 (prepared from acetophenones
4 and diethyl oxalate 5), were synthesized by conventional
methods according to the literature (Scheme 2) [23, 24].

At first, we tested the reaction of starting materials (1
and 2a) in the presence of different solvents to optimize the
reaction conditions (Table 1). As shown in Table 1, the best
result (based on the yield of the reaction) was obtained in
refluxing AcOH (Table 1, entry 7).

With these results in hand, different ethyl-2-amino-
3,4-dihydro-4-oxo-5-phenyl pyrido[2,3-d] pyrimidine-7-
carboxylate derivatives 3a–l were prepared using various
ethyl-2,4-dioxo-4-arylbutanoates 2 (Table 2, entries 1–12).
For all substrates, the reaction could be completed in 5–6 h
in high yields.

It was observed that the desired products were obtained
in good to excellent yields in almost all cases and their
structures were verified by IR, 1H NMR and 13C NMR spec-
troscopy as well as mass spectrometry. A proposed mech-
anism for the synthesis of phenylpyrido[2,3-d] pyrimidine-
7-carboxylate derivative 3a is shown in Scheme 3. Initially,
the acid-catalyzed condensation of amine group from 2,6-
diaminopyrimidin-4(3H)-one 1 with the more active car-
bonyl group of ethyl-2,4-dioxo-4-phenylbutanoates 2a in the
presence of acetic acid as solvent gave intermediate 6. In
the end, compound 3a can be attained after tautomerization,
cyclization and water elimination sequences on interme-
diate 6 can lead to compound 3a (Scheme 3). We have
used acetic acid (50%, solution in water) in the reaction.
The acid catalyzes the condensation of an amino group in
2,6-diaminopyrimidin-4(3H)-one 1with the more active car-
bonyl group of ethyl-2,4-dioxo-4-phenylbutanoates 2a by
donating H+ to the more activated carbonyl group for obtain-
ing intermediate 6. pKa of acetic acid is 4.75 (at 25 °C) and
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Scheme 1 General route for the synthesis of novel pyrido[2,3-d]pyrimidines 3
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Scheme 2 Synthesis of starting materials 2 needed for the synthesis of pyrido[2,3-d]pyrimidine derivatives 3

Table 1 Solvent screening for
the synthesis of compound 3a

Entry Solvent Temperature
(°C)

Time (h) Yielda (%)

1 THF 68 10 35

2 MeOH 65 15 25

3 H2O 100 13 25

4 H2O,
CH3C6H4SO3Hb

100 13 15

5 H2O, HClb 100 15 40

6 H2O, AcOHb 100 17 45

7 AcOH 115 7 90

8 HCl 100 10 5

9 DMF 130 12 25
aIsolated yield
bCatalytic amount (1×10−4 mol%)
cReaction conditions: 1 (1 mmol), 2a (1 mmol), solvent (10 mL)

can give a positive proton to lone pair of oxygen atoms of
carbonyl compounds to activate them for nucleophilic attack.
Furthermore, acetic acid-catalyzed tautomerization, cycliza-
tion and water elimination sequences on intermediates 6 and
7 for converting them to target molecule 3a (Scheme 3).
Although theglacial acetic acid canbeused in this reaction, as
it is toxic, we used just acetic acid (50%, solution in water).
Furthermore, the acetic acid has higher boiling point than
water and can provide higher activation energy for reaction.
The temperature is important for providing the activation
energy for different steps (especially rate-determining step)
of the reaction. However, acetic acid can act as an efficient
catalyst and appropriate solvent for the synthesis of entitled
fused pyrido[2,3-d]pyrimidine structures.

The nature of the substituents on aromatic ring of com-
pound 2 has a significant effect on the yield of the reac-
tion (Table 2). Aromatic rings of compound 2 bearing
electron-withdrawing groups have less electron density than
unsubstituted rings or rings containing electron-donating
substituents. This electron deficiency renders carbonyl group
more susceptible toward nucleophilic attack in the cycliza-
tion step, resulting in the desired products in higher yields
(Table 2, entries 2–6). From this point of view, one can con-
clude that the cyclization step (conversion of compound 6 to
7) in Scheme 3 is rate-determining step.
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Table 2 Synthesis of
pyrido[2,3-d]pyrimidine
derivatives 3

Entry Ar- R1 on 2 a–l Product 3 a–l Yieldb (%)

1 Ph

HN

N N

O

H2N CO2Et

3a

90

2 4-F–C6H4

HN

N N

O

H2N CO2Et

F

3b

88

3 4-Cl–C6H4

N

HN

N CO2EtH2N

O

Cl

3c

85

4 4-Br–C6H4

N

HN

N CO2EtH2N

O

3d

Br 86

5 2-Cl–C6H4

3e
N

HN

N CO2EtH2N

O Cl

84

6 2,4-Cl2–C6H3

3f

N

HN

N CO2EtH2N

O Cl

Cl 81

7 4Me–C6H4

3g

HN

N N

O

H2N CO2Et

Me 80

8 3-Me–C6H4

HN

N N

O

H2N CO2Et

Me

3h

75
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Table 2 continued

9 4-OMe–C6H4

HN

N N

O

H2N CO2Et

OMe

3i

71

10 3,4-(OMe)2–C6H3

3j

HN

N N

O

H2N CO2Et

OMe
OMe

69

11

12

3-OMe–C6H4

3,4,5-(OMe)3–C6H2

3k

HN

N N

O

H2N CO2Et

OMe

3l

HN

N N

O

H2N CO2Et

OMe
OMeMeO

68

trace

Entry Ar- R1 on 2 a–l Product 3 a–l Yieldb (%)

aThe reaction time was prolonged to 7 h
bIsolated yield
cReaction conditions: 1 (1 mmol), 2a–l (1 mmol), solvent (10 mL)

Scheme 3 Plausible mechanism
for the formation of
pyrido[2,3-d]pyrimidine
derivative 3a in AcOH
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Conclusion

In conclusion, we developed an efficient process for the syn-
thesis of pyrido[2,3-d]pyrimidine-fused heterocycles in good

yields (68–90%) in AcOH medium. Prominent among the
advantages of this new method are novelty, an easy workup,
the absence of a catalyst and operational simplicity.
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Experimental

General remarks

All commercially available chemicals and reagents were pur-
chased from Merck and Fluka Chemical Company and were
used without further purification. Melting points were mea-
sured on a Kofler hot-stage apparatus and are uncorrected.
1H and 13C NMR spectra were recorded on a Bruker FT-
500, using TMS as an internal standard. The abbreviations
used are as follows: s, singlet; d, doublet; and m, multi-
plet. IR spectra were recorded on a Nicolet Magna FTIR
550 spectrophotometer (KBr disks). MS were recorded with
an Agilent Technology (HP) mass spectrometer operating
at an ionization potential of 70 eV. Elemental analysis was
Elemental Analysensystem GmbH VarioEL.

General procedure for the synthesis
of oxopyrido[2,3-d]pyrimidine derivatives 3

A mixture of 6-diaminopyrimidin-4(3H)-one 1 (1 mmol),
ethyl 2,4-dioxo-4-arylbutanoates 2 (1 mmol) in refluxing
AcOH (10 mL) was stirred at 115 °C for 7 h. The progress of
the reaction was monitored by TLC (ethyl acetate/n-hexane:
1/2). After the completion of the reaction, the mixture was
cooled to room temperature, and the precipitate was filtered,
washed with ethanol (20 mL) and purified by crystallization
or column chromatography to afford pure products 3a–l.

Ethyl-2-amino-3,4-dihydro-4-oxo-5-phenylpyrido[2,3-d]
pyrimidine-7-carboxylate (3a) Yield: 90%; yellow crys-
tals; mp 119–121 °C; IR (KBr): 1685, 1725, 2990, 3019,
3127, 3389 cm−1. 1H NMR (500 MHz, DMSO): δH �1.3
(t, J �7 Hz, 3H, CH3), 4.26 (q, J �7 Hz, 2H, OCH2), 6.850
(s, 2H, NH2), 7.51–7.53 (m, 3H, Ar), 7.67 (s, 1H, pyridine),
8.17–8.19 (m, 2H, Ar). 13C NMR (125 MHz, DMSO): 13.7,
61.3, 106.0, 115.4, 127.3, 129.9, 130.6, 130.9, 131.3, 137.9,
142.4, 154.9, 161.2, 167.0. Anal. Calcd for C16H14N4O3:
C, 61.93; H, 4.55; N, 18.06. Found: C, 61.63; H, 4.25; N,
17.76.

Ethyl-2-amino-5-(4-fluorophenyl)-3,4-dihydro-4-
oxopyrido [2,3-d]pyrimidine-7-carboxylate (3b) Yield:
88%; yellow crystals; mp 210–212 °C; IR (KBr): 1668,
1737, 3227, 3253, 3347 cm−1. 1HNMR (500MHz, DMSO):
δH �1.33 (t, J=7 Hz, 3H, CH3), 4.24 (q, J �7 Hz, 2H,
OCH2), 6.84 (s, 2H, NH2), 7.33 (t, J �8.5 Hz, 2H, Ar),
7.68 (s, 1H, pyridine), 8.24 (t, J=8.5 Hz, 2H, Ar). 13C NMR
(125 MHz, DMSO): 13.7, 61.3, 105.8, 111.3, 115.4, 115.8
(d, JC–F �22 Hz), 129.6 (d, J C–F �8.7 Hz), 133.7, 135.1,
143.4, 154.8, 159.6, 163.6 (d, JC–F �247 Hz), 167.2. Anal.
Calcd for C16H13FN4O3: C, 58.5; H, 3.99; N, 17.7. Found:
C, 58.2; H, 3.49; N, 17.4.

Ethyl-2-amino-5-(4-chlorophenyl)-3,4-dihydro-4-
oxopyrido [2,3-d]pyrimidine-7-carboxylate (3c) Yield:
85%; yellow crystals; mp 215–217 °C; IR (KBr): 1679,
1731, 2994, 3278, 3358 cm−1. 1HNMR (500MHz, DMSO):
δH �1.32 (t, J �7 Hz, 3H, CH3), 4.36 (q, J �7 Hz, 2H,
OCH2), 6.95 (s, 2H, NH2), 7.57 (d, J �8.5 Hz, 2H, Ar),
7.72 (s, 1H, pyridine), 8.21 (d, J �8.5 Hz, 2H, Ar). 13C
NMR (125 MHz, DMSO): 13.7, 61.2, 105.4, 106.1, 111.6,
128.8, 1128.9, 135.3, 136.0, 143.4, 154.7, 159.4, 161.8,
167.1. Anal. Calcd for C16H13ClN4O3: C, 55.7; H, 3.8; N,
16.2. Found: C, 55.4; H, 3.5; N, 15.9.

Ethyl-2-amino-5-(4-bromophenyl)-3,4-dihydro-4-
oxopyrido [2,3-d] pyrimidine-7-carboxylate (3d) Yield:
86%; yellow crystals; mp: 218–220 °C; IR (KBr): 1693,
1780, 3210, 3245, 3375 cm−1. 1HNMR (500MHz, DMSO):
δH �1.32 (t, J=7 Hz, 3H, CH3), 4.34 (q, J �7 Hz, 2H,
OCH2), 6.83 (S, 2H, NH2), 7.13 (s, 1 H, Pyridine), 7.68
(t, J=8 Hz, 2H, Ar), 8.13 (d, J=8 Hz, 2H, Ar).13C NMR
(125 MHz, DMSO): 13.7, 61.2, 95.37, 106.01, 111.9,
112.05, 115.2, 121.3, 129.2, 131.7, 132.3, 143.8, 162.6,
167.5. m/z (%)�389 [M+] (100), 318.0 (50), 237 (30), 165
(20). Anal. Calcd for C16H13BrN4O3: C, 42.38; H, 3.37, N;
14.4. Found: C, 42.33; H, 3.41; N; 13.9.

Ethyl-2-amino-5-(2-chlorophenyl)-3,4-dihydro-4-
oxopyrido [2,3-d]pyrimidine-7-carboxylate (3e) Yield:
84%; yellow crystals; mp: 215–217 °C; IR (KBr): 1680,
1752, 2983, 3333, 3326 cm−1. 1HNMR (500MHz, DMSO):
δH �1.30 (t, J �7 Hz, 3H, CH3), 4.34 (q, J �7 Hz, 2H,
OCH2), 6.97 (S, 2H, NH2), 7.28 (S, 1H, Pyridine), 7.47–7.55
(m, 2H, Ar), 7.57–7.63 (m, 2H, Ar), 11.4 (s, NH). 13C NMR
(125 MHz, DMSO): 13.7, 61.2, 105.1, 106.04, 127.2, 127.4,
129.9, 130.6, 130.7, 130.9, 131.3, 137.9, 142.4, 154.8,
161.4, 167.0. Anal. Calcd for C16H13ClN4O3: C, 55.7; H,
3.80; N, 16.25; Found: C, 55.2; H, 3.30; N, 15.95.

Ethyl-2-amino-5-(2,4-dichlorophenyl)-3,4-dihydro-4-
oxopyrido [2,3-d]pyrimidine-7-carboxylate (3f) Yield:
81%; yellow crystals; mp: 210–212 °C; IR (KBr): 1679,
1756, 3143, 3292 cm−1. 1H NMR (500 MHz, DMSO):
δH �1.30 (t, J �7 Hz, 3H, CH3), 4.34 (q, J �7 Hz, 2H,
OCH2), 7.04 (s, 2H, NH2), 7.31 (S, 1H, Pyridine), 7.56 (d, J
�8 Hz, Ar, 1H), 7.64 (d, J �8 Hz, Ar, 1H), 7.75 (s, 1H, Ar).
13C NMR (125 MHz, DMSO): 13.8, 61.52, 106.35, 115.75,
130.3, 132.17, 132.75, 134.6, 142.6, 155.01, 159.4, 160.4,
167.0, 172. Anal. Calcd for C16H12Cl2N4O3: C, 50.6; H,
3.19; N, 14.78. Found: C, 50.1; H, 2.79; N; 14.26.

Ethyl-2-amino-3,4-dihydro-4-oxo-5-p-tolylpyrido[2,3-d]
pyrimidine-7-carboxylate (3g) Yield: 80%; yellow crys-
tals; mp: 214–217 °C; IR (KBr): 1698, 1738, 3040, 3230,
3330 cm−1. 1H NMR (500 MHz, DMSO): δH �1.32 (t, J
�7 Hz, 3H, CH3), 1.3 (S, 3H, CH3), 4.3 (q, J �7 Hz, 2H,
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OCH2), 6.89 (s, 2H, NH2), 7.52 (d, J �6 Hz, 2H, Ar), 7.69
(s, 1H, Pyridine), 8.18 (d, J �6 Hz, 2H, Ar). 13C NMR
(125 MHz, DMSO): 14.30, 16.30, 62.01, 114.3, 114.6,
121.3, 125.6, 128.9, 130.9, 134.2, 139.5, 142.5, 152.2,
156.3, 165.7. Anal. Calcd for C17H16N4O3: C, 62.95; H,
4.97; N, 17.27. Found: C, 62.65; H, 4.77; N, 16.77.

Ethyl-2-amino-3,4-dihydro-4-oxo-5-m-tolylpyrido[2,3-
d] pyrimidine-7-carboxylate (3h) Yield: 75%; yellow
crystals; mp: 218–220 °C; IR (KBr): 1676, 1727, 3277,
3376, 3346 cm−1. 1H NMR (500 MHz, DMSO): δH �1.32
(t, J �7 Hz, 3H, CH3), 2.5 (S, 3H, CH3), 4.35 (q, J �7 Hz,
2H, OCH2), 6.83 (s, 2H, NH2), 7.32 (d, J �7 Hz, 2H, Ar),
7.40 (t, J �7 Hz, 1H, Ar), 7.66 (S, 1H, Pyridine), 7.98 d,
J�7 Hz, 1H, Ar), 8.02 (1H, NH). 13C NMR (125 MHz,
DMSO): 14.3, 16.2, 62.0, 115.2, 121.3, 124.7, 125.6, 128.1,
128.8, 128.9, 130.6, 138.4, 138.5, 139.4, 142.5, 156.8,
165.7. Anal. Calcd for C17H16N4O3: C, 62.95; H, 4.97; N,
17.27. Found: C, 62.45; H, 4.67; N, 16. 77.

Ethyl-2-amino-3,4-dihydro-5-(4-methoxyphenyl)-4-
oxopyrido[2,3-d]pyrimidine-7-carboxylate (3i) Yield:
71%; yellow crystals; mp: 214–16 °C; IR (KBr): 1682,
1738, 2984, 3270, 3335, 3417 cm−1. 1H NMR (500 MHz,
DMSO): δH �1.32 (t, J=7 Hz, 3H, CH3), 3.4 (s, 3H,
OCH3), 4.35 (q, J=7 Hz, 2H, OCH2), 6.89 (s, 2H, NH2), 7.5
(d, J=6 Hz, 2H, Ar), 7.6 (s, 1H, Pyridine), 8.1 (d, J=6 Hz,
2H, Ar), 11.3 (s, 1H, NH). 13C NMR (125 MHz, DMSO):
13.7, 60.0, 61.2, 111.6, 127.1, 127.2, 128.7, 128.8, 129.6,
130.5, 137.2, 143.3, 154.8, 160.7, 167.3. Anal. Calcd for:
C17H16N4O4: C, 59.99; H, 4.74; N, 16.46. Found: C, 59.69;
H, 4.44; N, 16.16.

Ethyl-2-amino-3,4-dihydro-5-(3,4-dimethoxyphenyl)-4-
oxopyrido[2,3-d]pyrimidine-7-carboxylate (3j) Yield:
69%; yellow crystals; mp: 217–219 °C; IR (KBr): 1667,
1734, 2887, 2915, 3253, 3360 cm−1. 1H NMR (500 MHz,
DMSO): δH �1.32 (t, J=7 Hz, 3H, CH3), 3.84 (s, OCH3),
3.87 (OCH3), 4.35 (q, J=7 Hz, 2H, OCH2), 7.07 (d, J=8 Hz,
1H, Ar), 7.68 (s, 1H, Pyridine), 7.79 (d, J=8 Hz, 2H, Ar),
7.80 (s,1H, NH). 13C NMR (125 MHz, DMSO): 13.7, 51.6,
55.56, 61.2, 105.2, 110.3, 111.1, 111.54, 111.7, 120.5,
129.8, 143.1, 148.9, 151.0, 154.8, 160.4, 167.4, 171.8. Anal.
Calcd for: C18H18N4O5: C, 58.37; H, 4.90; N, 15.13. Found:
C, 58.07; H, 4.70; N, 14.93.

Ethyl-2-amino-3,4-dihydro-5-(3-methoxyphenyl)-4-
oxopyrido[2,3-d]pyrimidine-7-carboxylate (3k) Yield:
68%; yellow crystals; mp: 220–222 °C; IR (KBr):1689,
1735, 2995, 3220, 3295 cm−1. 1H NMR (500 MHz,
DMSO): δH �1.3 (t, J=7 Hz, 3H, CH3), 2.4 (s, 3H, OMe),
4.3 (q, J=7 Hz, 2H, OCH2), 6.8 (s, 1H, Pyridine), 7.32
(d, J=7.5 Hz, 1H, Ar), 7.4 (t, J=7.5 Hz, 1H, Ar), 7.66 (s,
1H, NH) 7.97 (d, J=7.5 Hz, 1H, Ar), 8.02 (s, 1H, Ar). 13C

NMR (125 MHz, DMSO): 13.7, 55.5, 61.2, 105.2, 106.1,
111.9, 112.5, 119.5, 120.5, 129.7, 138.7, 143.2, 154.8,
159.6, 160.4, 167.2, 171.8. Anal. Calcd for: C17H16N4O4:
C, 59.99; H, 4.74; N, 16.46; Found: C, 59.69; H, 4.44; N,
16.26.
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