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Abstract
Four-component reaction between primary amines, dialkylacetylendicarboxylates, tetrazolo[1,5-a] quinoline-4-carbaldehyde
and ethyl-2-cyanoacetate in the presence of 1,4-diaza-bicyclo[2.2.2]octane and zinc oxide nanoparticles results to the regios-
elective production of new tetrazolo[1,5-a]quinoline-based 2-amino-1,4-dihydropyridine or pyridin-2(1H)-one derivatives in
good to high yields. The selectivity of the catalyzed reaction toward the generation of the dihydropyridine or pyridin-2(1H)-
one derivatives was found to be strongly dependent on the size of the alkyl groups in the ester moieties of the acetylenic
esters. According to single-crystal X-ray diffraction and NMR studies, the pyridin-2(1H)-one derivatives involve a restricted
rotation around the C–C bond connecting the tetrazoloquinoline and dihydropyridinone cyclic systems.

Graphical abstract
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Introduction

Quinoline derivatives are members of an important class
of heterocyclic compounds that exhibit different biolog-
ical and pharmacological activities [1]. Another class of
bioactive compounds is related to tetrazole and its deriva-
tives [2]. Since the fusion of quinoline and tetrazole can
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improve the biological activity of quinolone [3–5], fused
tetrazole and quinoline structures, e.g., substituted tetrazolo-
quinoline rings, have been used for diverse pharmacological
purposes, such as anti-inflammatory [6], antimicrobial [7,
8], antitubercular [9], antifungal [10], antitumor [11] and
pregnancy-interceptive [12] activities. Conversely, pyridin-
2(1H)-one and 1,4-dihydropyridine derivatives are members
of an important class of nitrogen-containing heterocycles
and they have a wide variety of biological and pharmaco-
logical properties. For example, milrinone (I, Fig. 1) and
perampanel (II, Fig. 1), which are two pyridine-2(1H)-
one derivatives, are used as a cardiotonic agent and for
the treatment of Parkinson’s disease, respectively. Also, the
1,4-dihydropyridine derivatives that are shown in Fig. 1,
III and IV, are reported as anticancer and calcium chan-
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Fig. 1 Examples of pyridin-2(1H)-one and 1,4-dihydropyridine-based bioactive compounds

Fig. 2 Structures of the reported and target polysubstituted dihydropyridine and 2-pyridinone compounds

nel blocker agents, respectively. As a result of the wide
range of biological activities of 2-aminohydropyridines and
2-pyridinones, various methods have been suggested for the
synthesis of these structures [13–16]. Yan et al. [17] reported
a four-component reaction between aromatic aldehydes,mal-
ononitrile, arylamines and dimethyl acetylenedicarboxylate
(DMAD) for the synthesis of polysubstituted dihydropy-
ridines 1 (R�CO2Me; Fig. 2). Later,whenmethyl propiolate
was used insteadofDMAD, compounds1 (R�H)and 2were
produced [18].

In continuation of our research on heterocyclic syn-
thesis using enaminones [19–22], we decided to use the
approach of Yan et al. for the synthesis of compounds
3 and 4 (Fig. 2). Unfortunately, we found that Yan’s
methodology cannot efficiently proceed with tetrazolo[1,5-
a]quinoline-4-carbaldehyde and aliphatic primary amines.
To find a solution, we reviewed the literature and found
that zinc oxide nanoparticles (ZnO NPs) can interact with
carbonyl and nitrile groups and accelerate various Michael
addition reactions, condensation reactions between alde-
hydes and CH-acids and intramolecular cyclization reac-
tions [23–31]. Therefore, we considered ZnO NPs as cat-
alyst for the synthesis of tetrazolo[1,5-a]quinolone-based
2-amino-1,4-dihydropyridine and pyridin-2(1H)-one deriva-
tives (Fig. 2; 3 and/or 4) via the one-pot regioselective
four-component reaction of primary amines with dialky-
lacetylendicarboxylates (DAAD), tetrazolo[1,5-a]quinoline-
4-carbaldehyde and ethyl-2-cyanoacetate. During this study,

we found that the regioselectivity of the reaction depends
on the size of the alkyl groups in the ester moieties of the
acetylenic esters and the dihydropyridines 3 or 2-pyridinones
4 can be obtained by applying an appropriate acetylenic ester.

Results and discussion

The one-pot reaction between benzyl amine, DMAD,
ethyl-2-cyanoacetate and tetrazolo[1,5-a]quinoline-4-
carbaldehyde was selected as amodel reaction. As illustrated
in Scheme 1, compounds 3 and 4 are the products expected
from this reaction [17, 18]. To optimize the regioselectivity
of the reaction, the influence of various solvents, bases, base
to ZnO ratios and reaction times was studied on our model
reaction. Table 1 presents a summary of the optimization
results. As presented in Table 1, the reaction does not
proceed in the absence of any catalyst under the solvent-free
condition or in the presence of the ethanol solvent, within
48 h reaction time (entries 1 and 2). A comparison of the
results of entries 1 and 2 with those of entries 3–6, which
were performed in the presence of K2CO3, Et3N, ZnO NPs
and 1,4-diaza-bicyclo [2.2.2]octane (DABCO), revealed that
the highest reaction yield was obtained in the presence of
DABCO. Also, it was observed that the reaction is solvent
sensitive and the best yield can be obtained by carrying out
the reaction in ethanol (entries 6–12). However, as shown in
Table 1 (entries 6–9), solvent selection does not determine
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Scheme 1 Reaction between benzylamine, DMAD, tetrazolo[1,5-a]quinoline-4-carbaldehydes and ethyl-2-cyanoacetate

Table 1 Screening of solvent,
catalyst and catalyst amount for
the model reaction

Entry Catalyst (mol%) Solvent Time (h) Yield of 3a
(%)a

Yield of 4a
(%)a

1 – –b 48 – –

2 – Ethanol 48 – –

3 K2CO3 (100) Ethanol 4 Trace –

4 Et3N (100) Ethanol 10 Trace Trace

5 ZnO NPs (20) Ethanol 4 Trace Trace

6 DABCO (100) Ethanol 4 40 35

7 DABCO (100) DMSO 4 40 30

8 DABCO (100) TBABc 4 35 35

9 DABCO (100) Methanol 4 37 22

10 DABCO (100) THF 24 – –

11 DABCO (100) CH2Cl2 24 – –

12 DABCO (100) H2O 24 – –

13 DABCO (100)/ZnO
NPs (10)

Ethanol 1 70 15

14 DABCO (100)/ZnO
NPs (20)

Ethanol 1 80 10

15 DABCO (100)/ZnO
NPs (30)

Ethanol 1 80 10

16 DABCO (25)/ZnO
NPs (20)

Ethanol 1.5 60 20

17 DABCO (50)/ZnO
NPs (20)

Ethanol 1 70 20

18 DABCO (200)/ZnO
NPs (20)

Ethanol 1 80 10

aIsolated yields
bRoom temperature reaction
cReaction in 100 mol% of tetra-n-butylammonium bromide at 90 °C

which of the two products, i.e., 3a or 4a, is more likely to
be produced. Conversely, compared with 4a, the production
of 3a can be greatly improved with the use of ZnO NPs
and DABCO combined (entries 13–15). Finally, changing
the ratio of DABCO to ZnO NPs revealed that the highest
efficiency can be achieved when the reaction is performed
in the presence of an equimolar amount of DABCO and
20 mol% ZnO NPs (entries 13–18).

Surprisingly, further investigation showed that selectivity
toward products 3 or 4 strongly depends on the size of the
alkyl groups in the ester moieties of the acetylenic esters
when the reaction occurs in the presence of DABCO and

ZnO NPs. Table 2 shows that the maximum yield of 3 can be
obtained when the acetylenic esters contain methyl groups
while the highest yield of 4 corresponds to the acetylenic
esters that contain ethyl groups. The application of di-tert-
butyl acetylenedicarboxylate does not give 3 or 4 products.
These observations imply that the size of the alkyl groups on
the acetylenic esters play a key role in the performance and
regioselectivity of the studied reaction (see Table 2).

On the basis of the above findings, several regiose-
lective four-component reactions between primary amines,
DAAD, ethyl-2-cyanoacetate and tetrazolo[1,5-a]quinoline-
4-carbaldehydes were examined in the presence of an
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Table 2 Regioselective reaction between benzylamine, DAAD, tetrazolo[1,5-a]quinoline-4-carbaldehyde and ethyl-2-cyanoacetate

Entry R Compd 3 Yield (%) Compd 4 Yield (%)

1 Me 3a 80 4a 10

2 Et 3b 30 4b 60

3 t-Bu 3c – 4c –

Table 3 Regioselective synthesis of tetrazolo[1,5-a]quinine-based 2-amino-1,4-dihydropyridine and pyridin-2(1H)-one derivatives

Entry R R′ R′′ Compd 3 Yield (%)a Compd 4 Yield (%)a

1 Bnzyl Me H 3a 80 4a 10

2 Bnzyl Et H 3b 30 4b 60

3 Bnzyl Me Me 3d 60 4d –b

4 Phenethyl Me H 3e 70 4e –b

5 4-Methoxyphenethyl Me H 3f 75 4f –b

6 Propyl Me H 3g 50 4g –b

7 Phenethyl Et H 3h –b 4h 75

8 4-Methoxyphenethyl Et H 3i –b 4i 60

9 4-Methoxyphenethyl Et Me 3j –b 4j 60

10 i-Pr Et H 3k –b 4k 70

11 i-Bu Et H 3l –b 4l 55
aIsolated yields
bNo product isolated due to the lack of product formation

equimolar amount of DABCO and 20 mol% of ZnO NPs
in ethanol. The results are presented in Table 3. Based
on Table 3, 2-amino-1,4-dihydropyridine derivatives are
the major products when the reactions are carried out
using DMAD (Table 3, entries 1 and 3–6) while the 2-
pyridinone derivatives are the major products when using
DEAD (Table 3, entries 2 and 7–11).

The structures of the produced 2-amino-1,4-
dihydropyridine derivatives were determined based on
their CHN, IR, 1H NMR, 13C NMR and mass spectroscopic
data. For example, the 1H NMR spectrum of 3g showed two
triplets (δ=1.00 ppm with 3JHH �7.5 Hz, and δ=1.12 ppm

with 3JHH �7.3 Hz) for the two methyl protons of the
propyl and ethyl moieties. The methylene protons of the
propyl moiety (CH3CH2CH2) showed a multiplet at δ �
1.88–2.04 ppm and the methoxy groups of 3g appeared
as two singlets at δ=3.59 and 3.88 ppm. The NCH2 and
OCH2 protons were revealed as two multiplets at δ �
3.56–3.66 ppm and δ �3.96–4.05 ppm, respectively. The
methine proton of 3g exhibited a sharp singlet at δ �
5.49 ppm. The NH2 protons of 3g resulted in a broad singlet
at δ �6.64 ppm and the CH-6 aromatic proton displayed
a triplet (δ �7.64 ppm with 3JHH �8.3 Hz). The CH-4
aromatic proton gave a singlet at δ �7.75 ppm and the CH-7
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aromatic proton exhibited a triplet (δ �7.78 ppm with 3JHH
�8.3 Hz). Also, the CH-5 and CH-8 protons of 3g produced
two doublets (δ �7.9 ppm with 3JHH �8.3 Hz and δ �
8.63 ppm with 3JHH �8.5 Hz, respectively). In addition, the
13CNMR spectrum of 3g showed 24 distinct resonances that
corroborate the proposed structure (see the “Experimental”
section) and the mass spectrum of 3g, illustrated a molecular
ion peak at the expected m/z value, i.e., 498.

The IR, 1H and 13C NMR, MS and elemental analysis
techniques were used to characterize the structures of the
highly functionalized 4a, 4b and 4h to 4l 2-pyridinones. The
structure of 4i was also confirmed by single-crystal X-ray
diffraction. In the 1H NMR spectrum of 4b, the benzylic
protons clearly exhibited an AB quartet system (δA �5.28
and δB �5.54 with JAB �15.2 Hz). In the meantime, in the
1HNMR spectrum of 4i, the NCH2 protons were found to be
diatereotopic, which means that they appeared as two mul-
tiplets at two different chemical shifts (δ �4.10 ppm and
δ �4.25 ppm). Diastereotopicity was also observed in the
case of the NCH2 protons of 4b due to the restricted rota-
tion around the C–C bond connecting the tetrazoloquinoline
and dihydropyridinone cyclic systems. Moreover, the 13C
NMR spectra of 4b and 4i showed 28 and 30 distinct signals,
respectively. These 1H and 13C NMR results are consistent
with the nonplanar structures of these pyridinones. Figure 3
shows the ORTEP representation of 4i in which it can be
observed that the pyridinone ring is forced out of the plane
of the tetrazoloquinoline ring by twisting about 58°.

In this study, the mechanism proposed for generation of
the 2-amino-1,4-dihydropyridine and 2-pyridinone deriva-
tives (Scheme 2) is similar to the mechanism suggested by
Yan et al. [17, 18]. The difference is that our proposedmecha-
nism considers the presence of ZnONPs.As aforementioned,
the application of ZnO NPs can accelerate Michael addi-
tion and cyclization of the intermediates [23–28]. The
reaction starts with the addition of primary amines to
the electron-deficient acetylenic ester to form enaminocar-
bonyl compound 5 [32]. In parallel, Knoevenagel condensa-
tion of tetrazolo[1,5-a]quinoline-4-carbaldehyde with ethyl
cyanoacetate occurs under the catalytic effect ofDABCOand
ZnO to generate intermediate 6 [29]. Then, Michael addi-
tion of the enaminone (5) to the condensed intermediate, i.e.,
compound 6, produces intermediate 7 [30]. In intermediate
7, when the alkyl groups of the acetylenic ester are methyl
(7a), intramolecular nucleophilic addition of the imino group
to the triple bond of the nitrile in the presence of Zno forms
a cyclic intermediate 8 [31]. Finally, tautomerization of the
imino group to the amino form results in the production of
2-amino-1,4-dihydropyridine 3. On the other hand, in inter-
mediate 7, when the alkyl groups of the acetylenic ester are
ethyl (7b), the imino group attacks the ester group to produce
a cyclic intermediate 9. Dehydrogenation of intermediate 9
in air gives 2-pyridinone (4), as the final product [18].

Conclusions

In summary, we have described a convenient route for
the synthesis of new tetrazolo[1,5-a]quinolone-based 2-
amino-1,4-dihydropyridine and pyridin-2(1H)-one deriva-
tives through one-pot regioselective four-component reac-
tions between tetrazolo[1,5-a]quinoline-4-carbaldehydese,
ethyl-2-cyanoacetate, primary amines and DAAD, in the
presence of DABCO and a catalytic amount of ZnO NPs.
This approach provides good to high yields within 1 h of
reaction time.

Experimental

Tetrazolo[1,5-a]quinoline-4-carbaldehyde was prepared
according to the literature [33, 34]. Zinc oxide nanopowder
(99%, 10–30 nm, CAS: 1314-13-2) was obtained from
US Research Nanomaterials, Inc. Other starting materials
and solvents were obtained from Merck (Germany) and
Fluka (Switzerl) and were used without further purification.
Melting points (uncorrected) were measured using a Stuart
SMP-3 apparatus. Elemental analyses for C, H and N were
performed using a Eager 300 for EA1112. IR spectra were
recorded using a FT-IR Perkin Elmer RXI. NMR spectra
were recorded on a Bruker DRX-250 AVANCE instrument
(250.1 MHz for 1H and 62.9 MHz for 13C) using CDCl3
as solvent. Abbreviation of NMR signals: s� singlet, d�
doublet, t� triplet, q�quartet, m�multiplet, bs�broad
singlet. Coupling constant (J) is expressed in Hz. Mass
spectra were recorded on an Agilent-5975C VL mass
spectrometer operating at an ionization potential of 70 eV.

General procedure

To a magnetically stirred solution of 2 mmol tetrazolo[1,5-
a]quinoline-4-carbaldehyde in 5 mL ethanol was added
2mmol ethyl-2-cyanoacetate and 2mmolDABCO.The reac-
tion mixture was stirred for 5 min at reflux temperature, then
0.4 mmol of ZnONPs was add to the reaction mixture. Then,
a solution of a primary amine (2 mmol) and DAAD (2mmol)
in 2 mL of ethanol was added to the reaction mixture. The
reaction mixture was then allowed to reflux for 1 h. After
completion, the solvent was removed under reduce pressure.
Then, 10 mL of chloroform followed by 10 mL of water
were added to the reaction mixture and the organic layer was
separated using a separatory funnel. The organic phase was
dried over calcium chloride, filtered, the solvent removed
under reduced pressure and the resulting crude product was
purified by column chromatography.
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Fig. 3 ORTEP representation of 4i

Scheme 2 Proposed mechanism for formation of the 2-amino-1,4-dihydropyridine and 2-pyridinone derivatives in the presence of DABCO/ZnO
NPs
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5-Ethyl 2,3-dimethyl 6-amino-1-benzyl-1,4-dihydro
-4-(tetrazolo[1,5-a]quinolin-4-yl)pyridine-2,3,5-
tricarboxylate (3a)

Yellow powder; mp: 215–217 °C; 0.867 g, yield: 80%. IR
(KBr) (vmax/cm−1): 3469, 3271, 3033, 2981, 1735, 1707,
1656, 1500, 1210, 761. Ms: m/z (%)�542 (M+, 14), 469
(25), 441 (12), 373 (10), 105 (25), 83 (100), 97 (73), 57
(10). Anal. Calcd for C28H26N6O6 (542.3): C, 61.99; H,
4.83; N, 15.49. Found C, 61.74; H, 5.02; N, 15.02. 1H NMR
(250.1 MHz, CDCl3): δ (ppm)�1.16 (t, 3H, 3JHH �7.0 Hz,
CH3), 3.63 and 3.64 (2 s, 6H, 2OCH3), 4.01 (q, 2H, 3JHH
�7.0 Hz, OCH2), 5.13 (AB quartet, δA �5.00, δB �5.25,
JAB �18.3 Hz, NCH2), 5.46 (s, H, CH), 6.41 (bs, 2H, NH2),
7.34–7.52 (m, 5H, 5CH, Ar), 7.64 (t, 1H, 3JHH �8.0 Hz,
CH-6, Ar), 7.78–7.84 (m, 2H, 2CH, Ar), 7.92 (d, 1H, 3JHH
�8.0 Hz, CH-5, Ar), 8.64 (d, 1H, 3JHH �8.0 Hz, CH-8, Ar);
13C NMR (62.9 MHz, CDCl3): δ (ppm)�14.3 (CH3), 36.6
(CH), 52.0 (NCH2 and OCH3), 52.9 (OCH3), 59.4 (OCH2),
78.2 (NH2–C=C), 104.7 (N–C=C), 116.7 (CH-6), 124.2 (C),
126.3 (2CH), 127.7 (CH-5), 128.1 and 128.7 (2CH), 129.2
(2CH), 129.6 and 129.9 (2C), 130.1 (CH-8), 130.2 (CH-4),
136.0, 144.6, 147.3, and 155.1 (4C), 165.0, 166.1, and 169.0
(3 C=O).

Triethyl 6-amino-1-benzyl-1,4-dihydro-4
-(tetrazolo[1,5-a]quinolin-4-yl)pyridine-2,3,5-
tricarboxylate (3b)

Yellow powder; mp: 187–190 °C; 0.342 g, yield: 30%. IR
(KBr) (vmax/cm−1): 3486, 3252, 3032, 2984, 1733, 1702,
1653, 1499, 1206, 758. Ms: m/z (%)�497 (M+ - CO2Et,
19), 459 (17), 430 (10), 401 (7), 309 (8), 204 (12), 91 (100),
65 (10). Anal. Calcd for C30H30N6O6 (570.2): C, 63.15;
H, 5.30; N, 14.73. Found C, 62.45; H, 5.42; N, 14.85. 1H
NMR (250.1 MHz, CDCl3): δ (ppm)�1.06 (t, 3H, 3JHH �
7.0 Hz, CH3), 1.52 (t, 6H, 3JHH �7.0 Hz, 2CH3), 3.40–4.14
(m, 6H, 3OCH2), 5.14 (AB quartet, δA �5.04, δB �5.25,
2JHH �18.5 Hz, NCH2), 5.47 (s, H, CH), 6.42 (bs, 2H,
NH2), 7.33–7.52 (m, 5H, 5CH, Ar), 7.66 (t, 1H, 3JHH �
7.5 Hz, CH-6, Ar), 7.78, (t, 1H, 3JHH �7.5 Hz, CH-7, Ar),
7.79 (s, 1H, CH-4, Ar), 7.91 (d, 1H, 3JHH �7.8 Hz, CH-
5, Ar), 8.65 (d, 1H, 3JHH �8.3 Hz, CH-8, Ar); 13C NMR
(62.9 MHz, CDCl3): δ (ppm)�13.4, 14.0, and 14.4 (3CH3),
36.8 (CH), 51.6 (NCH2), 59.3, 60.7, and 62.2 (3OCH2),
78.0 (NH2–C=C), 104.8 (N–C=C), 116.7 (CH-6), 124.1 (C),
126.2 (2CH), 127.7 (CH-5), 128.0 (CH-7), 128.6 (CH), 129.1
(2CH), 129.7 and 129.9 (2C), 130.0 (CH-8), 130.3 (CH-4),
136.2, 144.4, 147.4, and 155.3 (4C), 164.4, 166.5, and 169.1
(3 C=O).

5-Ethyl 2,3-dimethyl 6-amino-1-benzyl-1,
4-dihydro-4-(7-methyltetrazolo[1,5-a]quinolin-4-
yl)pyridine-2,3,5 tricarboxylate (3d)

Yellow powder; mp: 233–236 °C; 0.667 g, yield: 60%. IR
(KBr) (vmax/cm−1): 3422, 3277, 3031, 2982, 1747, 1708,
1656, 1496, 1211, 806. Ms: m/z (%)�483 (M+ - CO2Et, 7),
455 (5), 415 (5), 310 (11), 254 (20), 223 (20), 196 (20),
91 (100), 65 (17). Anal. Calcd for C29H28N6O6 (556.2):
C, 62.58; H, 5.07; N, 15.10. Found C, 62.32; H, 5.18; N,
14.88. 1H NMR (250.1 MHz, CDCl3): δ (ppm)�1.19 (t,
3H, 3JHH �7.0 Hz, CH3), 2.56 (s, 3H, CH3), 3.62 and 3.64
(2 s, 6H, 2OCH3), 4.01 (q, 2H, 3JHH �7.0 Hz, OCH2),
5.12 (AB quartet, δA �5.00, δB �5.25, JAB �18.8 Hz,
NCH2), 5.45 (s, H, CH), 6.41 (bs, 2H, NH2), 7.33–7.71
(m, 8H, 8CH, Ar), 8.50 (d, 1H, 3JHH �8.5 Hz, CH-8, Ar);
13C NMR (62.9 MHz, CDCl3): δ (ppm)�14.5 and 21.4
(2CH3), 36.6 (CH), 51.9 (NCH2 and OCH3), 52.8 (OCH3),
59.3 (OCH2), 78.3 (NH2–C=C), 104.9 (N–C=C), 116.4 (CH-
6), 124.2 (C), 126.3 (2CH), 128.1 and 128.2 (2CH), 129.1
(2CH), 129.5 (C), 130.0 (CH-8), 131.5 (CH-4), 136.1, 137.8,
140.01, 144.5, 147.1, and 155.1 (6C), 164.9, 166.0, and 169.0
(3 C=O).

5-Ethyl 2,3-dimethyl 6-amino-1,4-dihydro-
1-phenethyl-4-(tetrazolo[1,5-a]quinolin-4-
yl)pyridine-2,3,5-tricarboxylate (3e)

Yellow powder; mp: 234.7–235.6 °C; 0.778 g, yield: 70%.
IR (KBr) (vmax/cm−1): 3450, 3218, 3035, 2972, 1733, 1707,
1658, 1505, 1210, 752.Ms:m/z (%)�483 (M+ - CO2Et, 23),
455 (19), 365 (19), 319 (28), 206 (16), 172 (47), 140 (38),
105 (100), 77 (24). Anal. Calcd for C29H28N6O6 (556.2): C,
62.58; H, 5.07; N, 15.10. Found C, 62.30; H, 5.16; N, 14.92.
1H NMR (250.1 MHz, CDCl3): δ (ppm)�1.13 (t, 3H, 3JHH
�7.0 Hz, CH3), 3.15–3.22 (m, 2H, CH2Ph), 3.62 and 3.93
(2 s, 6H, 2OCH3), 3.98–4.06 (m, 4H, 2CH2), 5.45 (s, 1H,
CH), 6.29 (bs, 2H, NH2), 7.26–7.38 (m, 5H, 5CH, Ar), 7.64
(t, 1H, 3JHH �7.8 Hz, CH-6, Ar), 7.76 (s, 1H, CH-4, Ar),
7.78 (t, 1H, 3JHH �7.5 Hz, CH-7, Ar), 7.91 (d, 1H, 3JHH �
8.0 Hz, CH-5, Ar), 8.62 (d, 1H, 3JHH �8.2 Hz, CH-8, Ar);
13C NMR (62.9 MHz, CDCl3): δ (ppm)�14.4 (CH3), 36.1
(CH), 36.5 (CH2Ph), 49.8 (NCH2), 51.9 and 53.2 (2OCH3),
59.4 (OCH2), 78.5 (NH2–C=C), 104.8 (N–C=C), 116.7 (CH-
6), 124.1 (C), 127.2 (CH-5), 127.6 (CH-7), 128.6 (CH), 128.9
(2CH), 129.1 (2CH), 129.3 and 129.9 (2C), 130.0 and 130.2
(2CH), 137.8, 144.3, 147.2, and 154.4 (4C), 165.2, 166.0,
and 169.2 (3 C=O).
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5-Ethyl 2,3-dimethyl 1-(4-methoxyphenethyl)-6-
amino-1,4-dihydro-4-(tetrazolo[1,5-a]quinolin-4-
yl)pyridine-2,3,5-tricarboxylate (3f)

Yellow powder; mp: 218–220 °C; 0.879 g, yield: 75%. IR
(KBr) (vmax/cm−1): 3401, 3199, 2980, 2950, 1751, 1710,
1652, 1500, 1225, 789.Ms:m/z (%)�513 (M+ - CO2Et, 15),
379 (10), 319 (13), 292 (66), 238 (73), 194 (18), 134 (100),
91 (61), 55 (43). Anal. Calcd for C30H30N6O6 (586.2): C,
61.43; H, 5.15; N, 14.33. Found C, 61.19; H, 5.26; N, 14.55.
1H NMR (250.1 MHz, CDCl3): δ (ppm)�1.12 (t, 3H, 3JHH
�7.0 Hz, CH3), 3.09–3.13 (m, 2H, CH2Ph), 3.61, 379, and
3.92 (3 s, 9H, 3OCH3), 4.00–4.13 (m, 4H,NCH2 andOCH2),
5.44 (s, 1H, CH), 6.28 (bs, 2H, NH2), 6.87 (d, 2H, 3JHH �
8.0 Hz, 2CH, Ar), 7.19 (d, 2H,3JHH �8.0 Hz, 2CH, Ar), 7.64
(t, 1H, 3JHH �7.5 Hz, CH-6, Ar), 7.75 (s, 1H, CH-4, Ar),
7.75 (t, 1H, 3JHH �7.8 Hz, CH-7, Ar), 7.90 (d, 1H, 3JHH
�7.8 Hz, CH-5, Ar), 8.61 (d, 1H, 3JHH �8.2 Hz, CH-8,
Ar); 13C NMR (62.9 MHz, CDCl3): δ(ppm)�14.4 (CH3),
35.1 (CH), 36.5 (CH2Ph), 50.1 (NCH2), 51.9, 53.1, and 55.2
(3OCH3), 59.3 (OCH2), 78.4 (NH2–C=C), 104.9 (N–C=C),
114.5 (2CH), 116.7 (CH-6), 124.1 (C), 127.7 (CH-5), 128.7
(CH-7), 129.7 (C) 129.8 (2C), 129.9 (2CH), 130.0 and 130.2
(2CH), 144.2, 147.3, 154.6, and 158.7 (4C), 165.3, 166.0,
and 169.1 (3 C=O).

5-Ethyl 2,3-dimethyl
6-amino-1,4-dihydro-1-propyl-4-(tetrazolo[1,5-
a]quinolin-4-yl)pyridine-2,3,5-tricarboxylate (3g)

Yellow powder; mp: 189–203 °C; 0.494 g, yield: 50%. IR
(KBr) (vmax/cm−1): 3450, 3216, 2973, 1733, 1707, 1658,
1505, 1210, 752. Ms: m/z (%)�494 (M+, 38), 421 (100),
393 (81), 319 (71), 194 (76), 149 (81), 97 (73), 57 (99). Anal.
Calcd for C24H26N6O6 (494.2): C, 58.29; H, 5.30; N, 16.99.
Found C, 58.05; H, 5.42; N, 16.33. 1H NMR (250.1 MHz,
CDCl3): δ (ppm)�1.00 (t, 3H, 3JHH �7.5 Hz, CH3), 1.12 (t,
3H, 3JHH �7.3 Hz, CH3), 1.88–2.04 (m, 2H, CH2), 3.59 (s,
3H, OCH3), 3.56–3.66 (m, 2H, NCH2), 3.88 (s, 3H, OCH3),
3.96–4.05 (m, 2H, OCH2), 5.49 (s, 1H, CH), 6.64 (bs, 2H,
NH2), 7.64 (t, 1H, 3JHH �8.3 Hz, CH-6, Ar), 7.75 (s, 1H,
CH-4, Ar), 7.78 (t, 1H, 3JHH �8.3 Hz, CH-7, Ar), 7.90 (d,
1H, 3JHH �8.3 Hz, CH-5, Ar), 8.63 (d, 1H, 3JHH �8.5 Hz,
CH-8, Ar); 13C NMR (62.9 MHz, CDCl3): δ (ppm)�11.5
and 14.4 (2CH3), 23.4 (CH2), 36.2 (CH), 49.3 (NCH2), 51.9
and 53.0 (2OCH3), 59.4 (OCH2), 78.3 (NH2–C=C), 104.2
(N-C=C), 116.7 (CH-6), 124.2 (C), 127.7 (CH-5), 128.6
(CH-7), 129.9 (C), 130.0 (CH-8), 130.2 (CH-4), 130.5, 144.1,
147.3, and 154.0 (4C), 165.1, 166.1, and 169.3 (3 C=O).

Diethyl 1-benzyl-5-cyano-1,6-dihydro-6-oxo-4-
(tetrazolo[1,5-a]quinolin-4-yl)pyridine-2,3-
dicarboxylate (4b)

White crystals;mp: 150–153 °C; 0.626, yield: 60%. IR (KBr)
(vmax/cm−1): 3058, 2231, 1736, 1727, 1673, 1281, 1241,
1021, 764. Ms: m/z (%)�522 (M+, 2), 419 (4), 359 (2), 315
(2), 288 (3), 260 (2), 231 (2), 204 (2), 177 (3), 134 (100), 91
(23), 65 (5). Anal. Calcd for C28H22N6O5 (522.1): C, 64.36;
H, 4.24; N, 16.08. Found C, 63.75; H, 4.37; N, 15.82. 1H
NMR (250.1 MHz, CDCl3): δ (ppm)�0.68 (t, 3H, 3JHH �
6.7 Hz, CH3), 1.12 (t, 3H, 3JHH �6.7 Hz, CH3), 3.75–3.81
(m, 2H, OCH2), 4.22 (q, 2H, 3JHH �7 Hz, OCH2), 5.41
(ABq, δA �5.28, δB �5.54, JAB �15.2 Hz, NCH2), 7.32
(m, 5H, 5CH, Ar), 7.78 (t, 1H, 3JHH �7.7 Hz, CH-6, Ar),
7.97 (t, 1H, 3JHH �7.7 Hz, CH-7, Ar), 8.09 (d, 1H, 3JHH
�11.5 Hz, CH-5, Ar), 8.12 (s, 1H, CH-4, Ar), 8.7(d, 1H,
3JHH �8.2 Hz, CH-8, Ar); 13C NMR (62.9 MHz, CDCl3):
δ (ppm)�13.1, 13.3 (2CH3), 50.5 (NCH2), 62.3 and 63.7
(2OCH2), 107.5, 109.1, and 113.6 (3C), 117.0 (CH), 120.9
and 123.2 (2C), 127.8 (2CH), 128.5 and 128.6 (2CH), 128.8
(2CH), 129.9 (CH), 130.8 (C), 132.6, 133.0(2CH), 133.7,
146.0, 148.5, and 151.9 (4C), 158.4, 160.9, and 162.4 (3
C=O).

Diethyl 5-cyano-1,6-dihydro-6-oxo-1-phenethyl-4-
(tetrazolo[1,5-a]quinolin-4-yl)pyridine-2,3-
dicarboxylate (4h)

White crystals; mp: 177–180 °C; 0804 g, yield: 75%. IR
(KBr) (vmax/cm−1): 3028, 2229, 1735, 1717, 1689, 1308,
1243, 1190, 1016, 766. Ms: m/z (%)�536 (M+, 6), 492 (3),
464 (3), 404 (3), 360 (4), 316 (15), 288 (36), 260 (15), 177
(6), 134 (100), 104 (75), 77 (17), 51 (6). Anal. Calcd for
C29H24N6O5 (536.1): C, 64.92; H, 4.51; N, 15.66. Found C,
64.30; H, 4.76; N, 14.97. 1H NMR (250.1 MHz, CDCl3): δ

(ppm)�0.65 (t, 3H, 3JHH �7 Hz, CH3), 1.44 (t, 3H, 3JHH �
7 Hz, CH3), 3.15 (t, 2H, 3JHH �8.5 Hz, CH2Ph), 3.80–3.82
(m, 2H, OCH2), 4.12 and 4.30 (2 m, 2H, NCH2), 4.51 (q,
2H, 3JHH �7.0 Hz, OCH2), 7.25–7.36 (m, 5H, 5CH, Ar),
7.79 (t, 1H, 3JHH �7.7 Hz, CH-6, Ar), 7.98 (t, 1H, 3JHH �
8.0 Hz, CH-7, Ar), 8.09 (s, 1H, CH-4, Ar), 8.11 (d, 1H, 3JHH
�8 Hz CH-5, Ar), 8.74 (d, 1H, 3JHH �8.2 Hz, CH-8, Ar);
13CNMR(62.9MHz,CDCl3): δ (ppm)�13.1, 13.8, (2CH3),
34.7 (CH2Ph), 50.6 (NCH2), 62.2 and 64.0 (2OCH2), 107.2,
109.3 and 113.6 (3C), 117.0 (CH), 121.2 and 123.3 (2C),
127.2 and 128.6 (2CH), 128.8, (2CH), 128.9 (2CH), 129.9
(CH), 130.8 (C), 132.6 and 132.7 (2CH), 136.8, 146.1, 149.0,
and 151.9 (4C), 158.1, 161.1, and 162.2 (3 C=O).
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Diethyl 1-(4-methoxyphenethyl)-5-cyano-1,6-
dihydro-6-oxo-4-(tetrazolo[1,5-a]quinolin-4-
yl)pyridine-2,3-dicarboxylate (4i)

White crystals; mp: 192–197 °C; 0.679 g, yield: 60%.
IR (KBr) (vmax/cm−1): 3053, 1739, 1673, 1314, 1242,
1182,765. MS: m/z (%)�566 (M+, 2), 521 (2), 231 (2), 204
(2), 177 (3), 134 (100), 122 (14), 91 (7), 89 (5), 65 (2). Anal.
Calcd for C30H26N6O6 (566.1): C, 63.60; H, 4.63; N, 14.83.
Found C, 62.98; H, 4.72; N, 14.32. 1H NMR (250.1 MHz,
CDCl3): δ (ppm)�0.657 (t, 3H, 3JHH �7 Hz, CH3), 1.44 (t,
3H, 3JHH �7Hz, CH3), 3.08 (t, 2H, 3JHH �7.5Hz, CH2Ph),
3.81 (bs, 5H,OCH3,OCH2,), 4.10 and 4.25 (2m, 2H,NCH2),
4.49–4.52 (m, 2H, OCH2), 6.89 (d, 2H, 3JHH �8.0 Hz, 2CH,
Ar), 7.22 (d, 2H, 3JHH �8.2 Hz, 2CH, Ar), 7.80 (t, 1H, 3JHH
�6.5 Hz, CH-6, Ar), 7.99 (t, 1H, 3JHH �6.7 Hz, CH-7, Ar),
8.09 (s, 2H, 2CH-4, 5,Ar), 8.75 (d, 1H, 3JHH �8.2Hz, CH-8,
Ar); 13C NMR (62.9 MHz, CDCl3): δ (ppm)�13.1 and 13.8
(2CH3), 33.8 (CH2Ph), 50.5 (NCH2), 55.3 (OCH3), 62.2 and
64.0 (2OCH2), 107.2, 109.3 and 113.6 (3C), 114.3 (2CH),
117.0 (CH), 121.2 and 123.2 (2C), 128.6 (CH), 128.6 (C),
129.8 (3CH), 130.8 (C), 132.6 (2CH), 146.1, 149.0, 151.8,
and 158.1 (4C), 158.8, 161.1, and 162.2 (3 C=O).

X-ray crystal-structure of 4i. Structure-determination and
refinement of data Formula (C30H26N6O6): Fw�566.57,
monoclinic, space group P21/n, Z�4, a �9.5087 (19) Å,
b �21.965 (4) Å, c �14.004 (3) Å, α �90°, β �105.74
(3)°, γ �90°, V �2815.2 (10) Å3, Dcalcd �1.337 g cm−3,
R (reflections)�0.0635(4208), wR2 (reflections)�0.1626
(4897), Mo (λ �0.71073 Å), T �293 K. The crystallo-
graphic data of 4j have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication
number CCDC-1560095. Copies of the data can be obtained
free of charge (http://www.ccdc.cam.ac.uk/data_request/cif,
deposit@ccdc.cam.ac.uk).

Diethyl 1-(4-methoxyphenethyl)-5-cyano-1,6-
dihydro-4-(7-methyltetrazolo[1,5-a]quinolin-4-yl)-6-
oxopyridine-2,3-dicarboxylate (4j)

White crystals; mp: 199–200 °C; 0.696 g, yield: 60%. IR
(KBr) (vmax/cm−1): 3045, 2231, 1734, 1717, 1687, 1304,
1246, 1188, 1021, 828. Ms: m/z (%)�580 (M+, 2), 535 (2),
507 (2), 431 (2), 274 (4), 245 (4), 177 (10), 134 (100), 122
(35), 91 (20), 51 (12).Anal. Calcd for C31H28N6O6 (580.2):
C, 64.13; H, 4.86; N, 14.47. Found C, 63.52; H, 5.04; N,
14.15. 1H NMR (250.1 MHz, CDCl3): δ (ppm)�0.63 (t,
3H, 3JHH �7 Hz, CH3), 1.43 (t, 3H, 3JHH �7 Hz, CH3),
2.51 (s, 3H, CH3), 3.08 (t, 2H, 3JHH �8 Hz, CH2Ph), 3.79
(bs, 5H, OCH3, OCH2), 4.07 and 4.26 (2m, 2H, NCH2), 4.50
(q, 2H, 3JHH �7.0 Hz, OCH2), 6.89 (d, 2H, 3JHH �8 Hz,
2CH,Ar), 7.22 (d, 2H, 3JHH �8.2Hz, 2CH,Ar), 7.80 (d, 1H,
3JHH �8.5 Hz, CH-7, Ar), 7.86 (s, 1H, CH, Ar), 8.02 (s, 1H,

CH-4, Ar), 8.61 (d, 1H, 3JHH �8.5 Hz, CH-8, Ar); 13CNMR
(62.9 MHz, CDCl3): δ (ppm)�13.1, 13.8, and 21.4 (3CH3),
33.8 (CH2Ph), 50.8 (NCH2), 55.3 (OCH3), 62.1 and 64.0
(2OCH2), 107.2, 109.3 and 113.6 (3C), 114.3 (2CH), 116.7
(CH), 121.0 and 123.3 (2C), 128.7 (CH), 128.8 (C), 129.4
(CH), 129.8 (2CH), 132.5, 134.0 (2CH), 139.1, 145.9, 148.9,
152.0, and 158.1 (5C), 158.8, 161.1, and 162.3 (3 C=O).

Diethyl 5-cyano-1,6-dihydro-1-isopropyl-6-oxo-4-
(tetrazolo[1,5-a]quinolin-4-yl)pyridine-2,3-
dicarboxylate (4k)

White crystals; mp: 191–192 °C; 0.663 g, yield: 70%. IR
(KBr) (vmax/cm−1): 3043, 2230, 1743, 1726, 1675, 1309,
1230, 1184, 763. Ms: m/z (%)�474 (M+, 18), 446 (9), 404
(55), 331 (100), 287 (28), 260 (85), 231 (88), 204 (31),
177 (38), 151 (10), 115 (6), 89 (5), 63 (3).Anal. Calcd for
C24H22N6O5 (474.1): C, 60.75; H, 4.67; N, 17.71. Found C,
60.17; H, 4.83; N, 17.35. 1H NMR (250.1 MHz, CDCl3): δ

(ppm)�0.59 (t, 3H, 3JHH �7.2 Hz, CH3), 1.43 (t, 3H, 3JHH
�7 Hz, CH3), 1.71 (d, 3H, 3JHH �6.5 Hz, CH3), 1.74 (d,
3H, 3JHH �5.2 Hz, CH3), 3.75–3.80 (m, 2H, OCH2), 4.27
(m, 1H, NCH), 4.46–4.52 (m, 2H, OCH2), 7.81 (t, 1H, 3JHH
�8.7 Hz, CH-6, Ar), 7.97 (t, 1H, 3JHH �8.2 Hz,CH-7, Ar),
8.05 (s, 1H, CH-4, Ar), 8.07 (d, 1H, 3JHH �9 Hz, CH-5, Ar),
8.73 (d, 1H, 3JHH �8.2Hz,CH-8,Ar); 13CNMR(62.9MHz,
CDCl3): δ (ppm)�13.0, 13.8, 19.2, and 19.3 (4CH3), 59.0
(NCH), 62.0 and 63.7 (2OCH2), 107.1, 109.9, and 113.7 (C),
116.9 (CH), 121.2 and 123.3 (2C), 128.6 and 129.8 (2CH),
130.7 (C), 132.5 (2CH), 146.1, 149.5, and 151.3 (3C), 158.4,
161.5, and 162.4 (3 C=O).

Diethyl 5-cyano-1,6-dihydro-1-isobutyl-6-oxo-4-
(tetrazolo[1,5-a]quinolin-4-yl)pyridine-2,3-
dicarboxylate (4l)

White crystals; mp: 170–172 °C; 0.537 g, yield: 55%. IR
(KBr) (vmax/cm−1): 3048, 2232, 1751, 1728, 1672, 1315,
1280, 1241, 77. Ms: m/z (%)�488 (M+, 6), 433 (100),
404 (49), 359 (15), 331 (52), 287 (20), 260 (40), 231 (46),
204 (15), 177 (18), 134 (6), 91 (2), 57 (9). Anal. Calcd for
C25H24N6O5 (488.2): C, 61.47; H, 4.95; N, 17.20. Found C,
60.89; H, 5.14; N, 16.93. 1H NMR (250.1 MHz, CDCl3):
δ (ppm)�0.64 (t, 3H, 3JHH �6.5 Hz, CH3), 098 (d, 6H,
3JHH �3.5 Hz, 2CH3), 1.40 (t, 3H, 3JHH �6.7 Hz, CH3),
2.27 (m, 1H, CH), 3.74–3.80 (m, 2H, OCH2), 3.88–4.11 (m,
2H, NCH2), 4.45 (q, 2H, 3JHH �6.5 Hz, OCH2), 7.77 (t,
1H, 3JHH �7.5 Hz, CH-6, Ar), 7.96 (t, 1H, 3JHH �7.7 Hz,
CH-7, Ar), 8.08 (d, 1H, 3JHH �8.5 Hz, CH5, Ar), 8.10 (s,
1H, CH-4, Ar), 8.72 (d, 1H, 3JHH �8.2 Hz, CH-8, Ar); 13C
NMR (62.9 MHz, CDCl3): δ (ppm)�13.1, 13.8, 20.0, and
20.1 (4CH3), 28.1 (CH), 54.8 (NCH2), 62.2, 63.8 (2OCH2),
107.3, 109.9, and 113.8 (3C), 116.9 (CH), 121.1, 123.2 (2C),
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128.6 and 129.9 (2CH), 130.7 (C), 132.6 and 132.8 (2CH),
146.1, 149.0, and 151.6 (3C), 158.6, 161.0, and 162.4 (3
C=O).
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