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Abstract
This study is focused on the identification of thiazole-based inhibitors for the α-glucosidase enzyme. For that purpose,
(E)-2-(2-(arylmethylene)hydrazinyl)-4-arylthiazole derivatives were synthesized in two steps and characterized by various
spectroscopic techniques. All derivatives and intermediates were evaluated for their in vitro α-glucosidase inhibitory activity.
Thiosemicarbazones 20 and 35, and cyclized thiazole derivatives 2, 5–11, 13, 15, 21–24, 27–31, and 36–37 showed significant
inhibitory potential in the range of IC50 = 6.2 ± 0.19–43.6 ± 0.23 µM as compared to standard acarbose (IC50 = 37.7 ±
0.19 µM). A molecular modeling study was carried out to understand the binding interactions of compounds with the active
site of enzyme.

Keywords Synthesis · In vitro · α-glucosidase · Structure–activity relationship (SAR) · In silico

Introduction

Diabetes mellitus is a serious metabolic disorder of modern
era and severe interminable health complications are asso-
ciated with it, and type-2 diabetes is widely spread kind
of this disorder [1]. The α-glucosidase enzyme is neces-
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sary for human physiological function, but its overexpression
increases glucose level in plasma [2] after a meal. This
enzyme is present in the cell membrane of the small intestine
[3,4] and it is responsible for the digestion of carbohydrates
(polysaccharides) into simple absorbable monosaccharides
[5,6]. The inhibition ofα-glucosidase restricts the production
of glucose which is helpful in the treatment of diabetes [7].
Since 1980, the number of people in the world with diabetes
increased from 153 to 347 million in 2008 [8]. According
to WHO, it is expected that diabetes would be the seventh
driving reason for death universally by 2030 [9].

Acarbose,miglitol, andvoglibose are clinically useddrugs
and these all areα-glucosidase inhibitors [10].Unfortunately,
gastrointestinal tract side effects such as diarrhea, flatu-
lence, and abdominal discomfort are associated with them.
Moreover, these are 50% less effective than other classes
of antidiabetic agents such as metformin and sulfonylurea
[11,12] and frequently used in combinationwith other antidi-
abetic drugs to improve efficacy. Therefore, it is a crucial
need to develop new, safe, and efficient therapeutic agents to
control the optimal glycemic index for curing type-2 diabetic
patients.

Thiazole, or 1,3-thiazole, is a heterocyclic compound that
possesses both sulfur and nitrogen atoms [13]. Thiazole is an
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Fig. 1 Rationale of current
study

aromatic compound that obeys theHückel rule [14]. The thia-
zole heterocycle can exist in two isomeric forms, 1,3-thiazole
often considered as thiazole or 1,2-thiazole also known as
isothiazole [15]. Thiazole-containing molecules are used in
CNS disorders [16], and showed anticancer, antimalarial
[17], as well as antiviral activities against four viruses such
as polio, influenza A (H1N1), hepatitis B and hepatitis C
[18]. In addition to these biological activities, thiazole deriva-
tives such as thiamethoxam and clothianidin play a pivotal
role as insecticides in many crop-protecting agrochemicals
[19].

Our research group has identified a number of lead
candidates based on heterocyclic nucleus for their use in
medicinal chemistry research [20–25] and found thiazole-
based compounds as potential α-glucosidase inhibitors (Fig.
1) [13,26].

In the current study, we intended to further evaluate this
class for α-glucosidase inhibitory activity. Thus, this report
presents the synthesis of (E)-2-(2-(arylmethylene)hydrazinyl)-
4-arylthiazole derivatives along with the thiosemicarbazone
intermediates (1–38), structural characterization, their α-
glucosidase inhibitory activity, and in silico studies.

Results and discussion

Chemistry

(E)-2-(2-(Arylmethylene)hydrazinyl)-4-arylthiazole deriva-
tiveswere synthesizedby a two-step reaction route. In thefirst
step, different aryl aldehydes were reacted with thiosemicar-
bazide in the presence of few drops of glacial acetic acid
to form the thiosemicarbazones 1, 4, 12, 20, 28, and 35. In
second step, these thiosemicarbazones were treated with a
variety of phenacyl bromides in the presence of triethyl amine
to afford hydrazinyl thiazoles 2, 3, 5–11, 13–19, 21–27, 29–
34, and 36–38. Progress of both steps was monitored by thin
layer chromatography (TLC) (Scheme 1).

The identity of all compounds was confirmed by EI-MS,
HREI-MS, 1H- and 13C-NMR spectroscopic techniques. 2D-
NMR experiments such as COSY, HSQC, and HMBC were
performed on intermediate 1 and cyclized derivative 6 to fur-
ther confirm the exact framework of the compounds. The
stereochemistry of the iminic double bond was confirmed
by the NOESY analysis on intermediate 1 and cyclized
derivative 6. In both cases, NOESY interaction was observed
between NH and iminic carbon of the compounds which can
only be observed in an E-configuration (Fig. 2).
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Scheme 1 Synthesis of (E)-2-(2-(arylmethylene)hydrazinyl)-4-arylthiazole derivatives

Fig. 2 NOESY interaction between NH and iminic carbon

In vitro˛-glucosidase inhibitory activity

(E)-2-(2-(Arylmethylene)hydrazinyl)-4-arylthiazole deriva-
tives alongwith intervening thiosemicarbazones (1–38) were
subjected to in vitro α-glucosidase inhibitory activity test-
ing. Compounds 2, 5–11, 13, 15, 20–24, 27–31, and 35–37
showed inhibitory activity in the range of IC50 = 6.2±0.19–
43.6 ± 0.23 µM versus that of standard acarbose (IC50 =
37.7 ± 0.19 µM) (Table 1).

Structure–activity relationship (SAR)

Allmolecules possess biologically important pharmacophores
such as hydrazine and thiazolemoieties thosemight be partic-
ipating in the inhibitory activity. But molecules also possess
varying groups such as R1 and R2 (Fig. 3). Thus, a limited
SAR was rationalized by examining the effects of varying
features (R1 and R2) on inhibitory potential.

Thiosemicarbazone 1 did not show α-glucosidase inhibi-
tion; however, its cyclized products compound 2 (IC50 =
37.3 ± 0.17 µM) with p-methoxy substitution displayed
α-glucosidase inhibitory activity comparable to standard
acarbose (IC50 = 37.7 ± 0.19 µM). Interestingly, m-nitro
containing analog 3 was found to be completely inactive. Its
inactivity is might be due to not fulfilling the conformational
requirement to fitwell in the active site of the enzyme (Fig. 4).

1-Naphthyl-substituted thiosemicarbazone 4 was found
to be inactive. The inactivity of this compound might be
due to the presence of naphthyl ring which may create
steric hindrance while binding into the active site of α-
glucosidase enzyme.All cyclized analogs6–11were found to

be inhibitors for theα-glucosidase enzyme except compound
5 with unsubstituted phenyl ring as R2. Among them, com-
pound8 (IC50 = 6.2± 0.19µM)with a biphenyl group asR2

was found to be the most potent molecule. Its activity might
be due to the extended π -system which can interact with
active site of α-glucosidase enzyme. Replacement of phenyl
ring with bromo group at the para position of R2 as in com-
pound 10 (IC50 = 7.9 ± 0.19 µM) showed slight decreased
α-glucosidase inhibitory activity. Nonetheless, replacement
with p-methoxy and m-nitro groups as in compounds 7
(IC50 = 12.2 ± 0.20 µM) and 9 (IC50 = 13.6 ± 0.20 µM),
respectively, also showed decrease inhibitory potential as
compared to compound 8. Compound 11 (IC50 = 26.1 ±
0.20 µM) with m,p-dichloro substitution showed better
activity when compared to standard acarbose, but activity
was lower than compounds 7–10. Relatively decreased activ-
ity might be attributed due to two chloro atoms adjacent to
each other which may create steric hindrance while bind-
ing into the active site of enzyme. Similarly, compound
6 (IC50 = 38.5 ± 0.18 µM) with p-methyl substitution
showed comparable activity to standard acarbose. The pat-
tern for α-glucosidase inhibitory activity on the basis of
R2 was observed in the order of p-Ph > unsubstituted >

p-Br > p-OMe > p-NO2 > m, p-diCl > p-Me (Fig.
5).

2-Naphthyl-substituted thiosemicarbazone 12 along with
cyclized derivatives 14, and 16–19 were found to be inactive
for α-glucosidase inhibitory activity; however, compounds
13 (IC50 = 28.4 ± 0.23 µM) with no substitution and 15
(IC50 = 37.2 ± 0.22 µM) with p-methoxy substitutions
on R2 were found to be good inhibitors for α-glucosidase
enzyme (Fig. 6).

Naphthol-substituted thiosemicarbazone 20 (IC50 = 21.5
± 0.21 µM) and its cyclized hydrazinyl thiazoles 21–
27 demonstrated α-glucosidase inhibitory activity. Among
them, compound 21 (IC50 = 7.3 ± 0.19 µM) with no
substitution on R2, was found to be the most potent deriva-
tive. Incorporation of groups such as methyl, methoxy, and
phenyl at the para position of R2 as in compounds 22
(IC50 = 27.5 ± 0.21 µM), 23 (IC50 = 18.2 ± 0.21 µM),
and 24 (IC50 = 35.4±0.22 µM) led to decreased activity. It
showed thatparaposition is not participating in the inhibitory
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Table 1 In vitro α-glucosidase inhibitory activity and calculated docking scores of synthesized compounds (1-38)

Compounds R1 R2

α-Glucosidase inhibitory 
activity

IC50 ± SEMa

(μM)

Docking 
Score 

(kcal/mol)
Category “A”

1 - NAb -6.47

2 37.3 ± 0.17 -12.02

3 NAb -8.85

Category “B”

4 - NAb -7.71

5 7.4 ± 0.19 -15.59

6 38.5 ± 0.18 -11.46

7 12.2 ± 0.20 -14.11

8 6.2 ± 0.19 -16.05

9 13.6 ± 0.20 -13.72

10 7.9 ± 0.19 -15.38

11 26.1 ± 0.22 -12.70
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Table 1 continued

Category “C”

12 - NAb -8.43

13 28.4 ± 0.23 -12.23

14 NAb -7.37

15 37.2 ± 0.22 -11.64

16 NAb -7.77

17 NAb -6.42

18 NAb -7.46

19 NAb -7.71

Category “D”

20 - 21.5 ± 0.21 -12.86

21 7.3 ± 0.19 -15.48

22 27.5 ± 0.21 -12.13

23 18.2 ± 0.21 -13.33
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Table 1 continued

24 35.4 ± 0.22 -11.72

25 NAb -10.52

26 NAb -11.01

27 18.6 ± 0.24 -12.93

Category “E”

28 - 39.6 ± 0.23 -11.43

29 27.7 ± 0.21 -12.03

30 16.3 ± 0.21 -13.60

31 38.2 ± 0.23 -11.68

32 NAb -7.33

33 NAb -7.02

34 NAb -8.01

Category “F”

35 - 17.9 ± 0.26 -13.08

36 41.6 ± 0.23 -10.38

37 43.6 ± 0.23 -10.11

38 NAb -6.63

Standards Acarbosec 37.7 ± 0.19

a SEM (Standard error mean); b NA (Not active; compounds demonstrated < 50% inhibition); Acarbosec (Standard inhibitor for α-glucosidase
inhibitory activity)
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Fig. 3 General features of synthesized compounds

Fig. 4 Structure–activity
relationship of compounds 1–3

Fig. 5 Structure–activity relationship of compounds 4–11
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Fig. 6 Structure–activity relationship of compounds 12–19

Fig. 7 Structure–activity relationship of compounds 20–27

potential. Similarly, compound 27 (IC50 = 18.6±0.24 µM)
with m,p-dichloro atoms was also found to be less active
than unsubstituted analog 21. The pattern of α-glucosidase

inhibitory activity was found in the order of unsubstituted >

p-OMe > m,p-diCl > p-Me > p-Ph > p-Br ∼ p-NO2

(Fig. 7).
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Fig. 8 Structure–activity relationship of compounds 28–34

Fig. 9 Structure–activity relationship of compounds 35–40

Biphenyl thiosemicarbazone 28 and its cyclized com-
pounds 29–31 showed potential toward the inhibition of
α-glucosidase enzyme. Compound 30 (IC50 = 16.3 ±
0.21 µM) with p-methoxy substitution was found to be the
most potent analog when compared to unsubstituted deriva-
tive 29 (IC50 = 27.7±0.21 µM). Comparison of compound
30 with 31 revealed that replacing the methoxy group with

the phenyl ring in compound 31 (IC50 = 38.2 ± 0.23 µM),
leads to further decreased inhibitory activity which shows
that methoxy group is playing an important role in the activ-
ity (Fig. 8).

4-Benzyloxy benzylidene thiosemicarbazone 35 (IC50 =
17.9±0.26 µM) and its cyclized hydrazinyl thiazole deriva-
tive 36 (IC50 = 41.6 ± 0.23 µM) with p-methoxy and 37
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(IC50 = 43.6 ± 0.23 µM) with p-Ph substitutions showed
α-glucosidase inhibitory activity comparable to standard
acarbose (Fig. 9).

Overall, most of the thiosemicarbazones, except for 20
and 35, were failed to show α-glucosidase enzyme. It is
worth mentioning that most of the cyclized hydrazinyl thi-
azole derivatives showed α-glucosidase inhibitory activity.
However, in order to further evaluate the participation of var-
ious structural features in the interactions with the active site
of enzyme, a molecular docking study was conducted as dis-
cussed below.

Molecular docking study

Preparation of the synthesized derivatives

To predict the binding mode of the synthesized (E)-2-(2-
(arylmethylene)hydrazinyl)-4-arylthiazole derivatives with
α-glucosidase enzyme, a molecular docking study was car-
ried out using MOE (Molecular Operating Environment)
software package [29]. The three-dimensional structures of
the synthesized derivatives were generated by using the
builder tool in MOE. The generated compounds were 3D
protonated and energy minimized using the default parame-
ters of MOE (gradient: 0.05, Force Field: MMFF94X). All
the compounds were then saved into an mdb file for further
evaluation.

Preparation of˛-glucosidase 3D structure

The 3D structure for α-glucosidase of Saccharomyces cere-
visiae has not been solved yet; however, several homologies
models of α-glucosidase have been reported [30–33]. In
this study, we used our reported 3D homology model of α-
glucosidase of Saccharomyces cerevisiae [34].

For docking studies, the parameters of MOE used were:
Placement: Triangle Matcher, Rescoring 1: London dG,
Refinement: Forcefield, Rescoring 2: GBVI/WSA. For each
ligand 10 conformations were allowed to be formed and on
the basis of docking score the top ranked conformations were
selected for further analysis. Docking score is the binding
free energy calculated by the GBVI/WSA scoring function
which is the score of the last stage showing the overall stabil-
ity of the predicted complex. For all scoring functions, lower
scores indicate more favorable poses. The calculated dock-
ing scores for α-glucosidase enzyme are listed in Table 1 and
the unit for all scoring functions is kcal/mol.

Interactions detail

All synthetic derivatives 1–38 that were divided into six dif-
ferent categories, i.e., A, B, C, D, E and F on the basis of

their geometries, were docked into the binding pocket of α-
glucosidase enzyme in order to find the binding interactions
of the compoundswithin the active-site residues.On the basis
of docking scores, the best conformations were analyzed for
hydrogen bonding/arene-arene/arene-cation interactions, at
the end of docking experiment. Similarly, various degrees of
inhibitory potentials were predicted for the active derivatives
of the series against α-glucosidase enzyme.

Figure 10a–d presents the binding mode of some most
active compounds. For example, Fig. 10a shows that com-
pound 5 fits well into the binding cavity of α-glucosidase
enzyme showing three interactions with residues Phe177,
Asn347, and Arg312. Phe177 participates in π–H interac-
tion with the arylthiazole π -electron system. Asn347 forms
another π–H interaction with the π -electrons of arylthia-
zole. Similarly, Arg312 forms a third π–H bond with the
π -electrons of arylhydrazinyl group.

Compound 7 in this group is an intermediary active com-
pound which forms two noticeable interactions with the
binding site residues Phe177 and Glu304 as presented in Fig.
10b. Phe177 shows π–H interaction with the arylhydrazinyl
ring of compound.

A side chain H-donor interaction was also perceived
between Glu304 and H of the thiazole group. Figure 10c
shows the binding mode of the most active compound 8,
forming four important interactions with active site residues
His279, Asn241, and Phe177. His279 forms a polar interac-
tion with the S of thiazole and a π–H bond with hydrazinyl
group of compound.

Asn347 involves a side chain H-acceptor interaction with
the nitrogen of hydrazinyl group and Phe177 shows π–H
interaction with the arylhydrazinyl group. Compound 10
is another significantly active compound in this group and
shows two different interactions with the residues Glu276
and Phe157 as shown in Fig. 10d. Glu276 establishes an
H-donor interaction with the Br of arylthiazole group. A
second strong H-donor bond is observed between Phe157
and hydrazinyl group. The 3D binding mode also shows that
Asp408 may also form another H-donor bond with the S of
thiazole moiety as the distance between them was measured
as 2.86Å. In addition to the catalytic residues, molecular
docking studies of (E)-2-(2-(arylmethylene)hydrazinyl)-4-
arylthiazole derivatives predict that residues like Phe157,
Asn347, Arg312, Glu304, andHis279 have an important role
in the α-glucosidase inhibition.

Conclusion

Synthetic (E)-2-(2-(arylmethylene)hydrazinyl)-4-arylthia-
zoles along with intermediates were screened for α-
glucosidase inhibitory activity. A number of compounds
demonstrated good inhibitory potential. Molecular model-
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Fig. 10 Docking conformations of compounds in α-glucosidase enzyme. a 3D binding mode of compound 5. b 3D binding mode of compound 7.
c 3D binding mode of compound 8. d 3D binding mode of compound 10. Ligands are shown green

ing identified structural features that participate in binding
interactions with the active sites of enzyme. This study iden-
tified a number of promising candidates that may serve as
leads for the future research in search of therapeutic agents
for type-2 diabetes mellitus.

Experimental

Materials andmethods

Reagents were purchased from Sigma-Aldrich (USA) and
were of analytical grade. Thin-layer chromatography was
performed on pre-coated silica gel, GF-254. Spots were
visualized under ultraviolet light at 254 and 366 nm. Mass
spectra were recorded under electron impact (EI) condition

on Varian Massen Spectrometers MAT 312 and MAT 113D.
The 1H-NMR and 13C-NMR were recorded on Bruker AM
machines operating at 300, 400 and 500MHz. Chemical shift
values are presented in ppm (δ) relative to tetramethylsilane
(TMS) as an internal standard and the coupling constant (J )

are in Hz. Multiplicities are reported as singlet (s), doublet
(d), triplet (t), doublet of doublets (dd), doublet of triplets
(dt), quartet (q) or multiplet (m).

General procedure for the synthesis of
thiosemicarbazone intermediates (1, 4, 12, 20, 28,
35)

Different aryl aldehydes (10 mmol) and thiosemicarbazide
(10 mmol) were taken in ethanol (50 mL) into a 250-mL
round-bottomed flask with few drops of glacial acetic acid.
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The reaction mixture was refluxed for 4 h with constant
stirring. Progress of reaction was monitored by thin-layer
chromatography (TLC). After completion, the resulting pre-
cipitate was filtered and washed with 10 mL cold ethanol
to afford the pure product in good yields. All compounds
1, 4, 12, 20, 28, 35 were characterized by the spectroscopic
techniques. To the best of our knowledge, structures of all
intermediates are known [35–40].

(E)-2-(2,6-Dimethoxybenzylidene)
hydrazinecarbothioamide (1) [35]

Solid;Light orange;Yield: 73%;M.P.: 182–184 ◦C; 1H-NMR
(400 MHz, DMSO-d6) δ 11.33 (s, 1H, NH), 8.29 (s, 1H,
H–C=N), 8.09 (s, 1H, NH), 7.33 (t, J4(3,5) = 8.4 Hz, 1H,
H-4), 7.19 (s, 1H, NH), 6.69 (d, J3,4 = J5,4 = 8.4 Hz,
2H, H-3, H-5), 3.78 (s, 6H, 2OCH3); 13C-NMR (125 MHz,
DMSO-d6):δ 177.7 (C=S), 158.8 (C-2), 158.8 (C-6), 138.2
(HC=N), 131.2 (CH-4), 110.3 (C-1), 104.3 (CH-3), 104.3
(CH-5), 56.0 (OCH3), 56.0 (OCH3); EI-MS m/z (% rel.
abund.): 239 (M+, 95), 164 (83), 163 (89), 149 (100),
121 (51), 106 (67), 91(95), 51(88); HREI-MS Calcd for
C10H13N3O2S:m/z = 239.0728, found 239.0730; Anal.
Calcd for C10H13N3O2S : C = 50.19; H = 5.48; N =
17.56; Found: C = 50.21; H = 5.50; N = 17.59.

(E)-2-(Naphthalen-1-ylmethylene)hydrazine-
carbothioamide (4) [36]

Solid; White; Yield: 78%; M.P.: 119-121 ◦C; 1H-NMR
(400 MHz, DMSO-d6) δ 8.90 (s, 1H, H–C=N), 8.36 (d,
J2,3 = 8.4 Hz, 1H, H-2), 8.25 (s, 1H, NH), 8.21 (d, J4,3 =
6.8Hz, 1H, H-4), 8.00 (d, J5,6 = J8,7 = 8.4Hz, 2H, H-5, H-
8), 7.95 (s, 1H, NH), 7.66 (t, J3(2,4) = 8.0 Hz, 1H, H-3), 7.59
(overlapping multiplet, 2H, H-6, H-7); 13C-NMR (125MHz,
DMSO-d6) : δ 177.8 (C=S), 142.6 (HC=N), 133.7 (C-10),
130.5 (CH-4), 130.3 (C-9), 128.7 (CH-5), 128.2 (C-1), 127.8
(CH-3), 126.4 (CH-6), 126.4 (CH-7), 125.7 (CH-2), 123.2
(CH-8); EI-MS m/z (% rel. abund.): 229 (M+, 77), 195 (17),
169 (44), 154 (86), 153 (100), 127 (47); HREI-MS Calcd for
C12H11N3S:m/z = 229.0674, found 229.0670; Anal. Calcd
for C12H11N3S:C = 62.86; H = 4.84; N = 18.33; Found:
C = 62.84; H = 4.83; N = 18.31.

(E)-2-(Naphthalen-2-ylmethylene)
hydrazinecarbothioamide (12) [37]

Solid; Off white; Yield: 67%; M.P.: 132–134 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 8.22 (s, 1H, H-1), 8.20 (s, 1H, H–
C=N), 8.17 (d, J3,4 = 8.7 Hz, 1H, H-3), 8.10 (s, 1H, H-NH),
8.07 (bd s, 1H,NH), 7.96 (overlappingmultiplet, 3H,H-4, H-
5, H-8), 7.55 (dd, J6,8 = J7,5 = 3.0Hz, J6,5 = J7,8 = 6Hz,
2H, H-6, H-7); 13C-NMR (125 MHz, DMSO-d6):δ 177.6

(C=S), 145.9 (HC=N), 136.2 (C-10), 132.7 (C-9), 129.3 (C-
2), 128.3 (CH-4), 128.0 (CH-1), 127.7 (CH-8), 127.5 (CH-5),
127.3 (CH-3), 126.3 (CH-6), 126.1 (CH-7); EI-MS m/z
(% rel. abund.): 229 (M+, 68), 212 (10), 195 (21), 169
(23), 153 (100), 127 (44), 115 (19); HREI-MS Calcd for
C12H11N3S:m/z = 229.0674, found 229.0671; Anal. Calcd
for C12H11N3S: C = 62.86; H = 4.84; N = 18.33; Found:
C = 62.87; H = 4.86; N = 18.35.

(E)-2-((2-Hydroxynaphthalen-1-yl) methylene)
hydrazinecarbothioamide (20) [38]

Solid;Light yellow;Yield: 75%;M.P.: 271–273 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 11.35 (s, 1H, NH), 9.03 (s, 1H,
H–OH), 8.50 (d, J8,7 = 8.1 Hz, 1H, H-8), 8.19 (s, 1H,
H–C=N), 7.88 (overlapping multiplet, 4H, H-4, H-5, 2NH),
7.57 (m, 1H, H-7), 7.39 (t, J6(5,7) = 7.2 Hz, 1H, H-6),
7.19 (d, J3,4 = 8.7 Hz, 1H, H-3); 13C-NMR (125 MHz,
DMSO-d6) : δ 177.5 (C=S), 170.2 (C-2), 144.2 (HC=N),
133.2 (C-10), 132.6 (CH-4), 130.0 (C-9), 128.4 (CH-5),
127.2 (CH-7), 124.3 (CH-6), 120.4 (CH-3), 118.9 (CH-8),
107.7 (C-1); EI-MS m/z (% rel. abund.): 245 (M+, 35),
169 (100), 141 (18), 128 (12), 115 (25); HREI-MS Calcd
for C12H11N3OS: m/z = 245.0623, found 245.0616; Anal.
Calcd for C12H11N3OS : C = 58.76; H = 4.52; N = 17.13;
Found: C = 58.74; H = 4.55; N = 17.15.

(E)-2-(Biphenyl-4-ylmethylene)
hydrazinecarbothioamide (28) [39]

Solid; Off white; Yield: 68%; M.P.: 205–207 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 11.45 (s, 1H, NH), 8.07 (s, 1H,
NH), 8.03 (s, 1H, H–C=N), 7.98 (d, J2,3 = J6,5 = 8.4 Hz,
2H, H-2, H-6), 7.72 (m, 4H, H-3, H-5, H-2′, H-6′), 7.49
(t, J3′(2′,4′) = J5′(4′,6′) = 7.2 Hz, 2H, H-3′, H-5′), 7.39
(t, J4′(3′,5′) = 7.2 Hz, 1H, H-4′); 13C-NMR (125 MHz,
DMSO-d6) : δ 177.9 (C=S), 146.2 (HC=N), 142.9 (C-4),
140.7 (C-7), 133.0 (C-1), 129.8 (CH-2), 129.8 (CH-6), 129.0
(CH-9), 129.0 (CH-11), 127.7 (CH-3), 127.7 (CH-5), 127.6
(CH-8), 127.6 (CH-12), 127.3 (CH-10); EI-MS m/z (% rel.
abund.): 255 (M+, 76), 238 (27), 221 (30), 179 (100), 152
(39); HREI-MS Calcd for C14H13N3S: m/z = 255.0830,
found 255.0822; Anal. Calcd for C14H13N3S : C = 65.86;
H = 5.13; N = 16.46; Found: C = 65.88; H = 5.15;
N = 16.49.

(E)-2-(4-(Benzyloxy) benzylidene)
hydrazinecarbothioamide (35) [40]

Solid; Off white; Yield: 72%; M.P.: 188–190 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 11.29 (s, 1H, NH), 8.04 (s, 1H,
H–C=N), 7.97 (s, 1H, H–NH), 7.89 (bd s, 1H, NH), 7.73
(d, J2,3 = J6,5 = 8.7 Hz, 2H, H-2, H-6), 7.45 (t,
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J9(8,10) = J10(9,11) = J11(10,12) = 6.9 Hz, 3H, H-9, H-10,
H-11), 7.38 (overlapping multiplet, 2H, H-8, H-12), 7.04 (d,
J3,2 = J5,6 = 8.7 Hz, 2H, H-3, H-5), 5.14 (s, 2H, H-CH2);
13C-NMR (125MHz, DMSO-d6) : δ 177.8 (C=S), 160.2 (C-
4), 146.3 (HC=N), 136.4 (C-7), 130.2 (CH-2), 130.2 (CH-6),
128.7 (CH-9), 128.7 (CH-11), 127.5 (CH-10), 127.0 (CH-8),
127.0 (CH-12), 126.2 (C-1), 114.5 (CH-3), 114.5 (CH-5),
70.6 (CH2); EI-MS m/z (% rel. abund.): 285 (M+, 51), 268
(27), 135 (9), 91 (100), 75 (6), 65 (20); HREI-MS Calcd
for C15H15N3OS: m/z = 285.0936, found 285.0930; Anal.
Calcd for C15H15N3OS : C = 63.13; H = 5.30; N = 14.73;
Found: C = 63.15; H = 5.32; N = 14.76.

General procedure for the synthesis of
(E)-2-(2-(arylmethylene)hydrazinyl)-4-arylthiazole
derivatives (2, 3, 5–11, 13–19, 21–27, 29–34, 36–38)

Thiosemicarbazone intermediates (0.5 mmol), different sub-
stituted phenacyl bromides (0.5 mmol), and triethyl amine
(0.5 mmol) were taken in ethanol into a 100-mL round-
bottomed flask and refluxed for 3 h with constant stirring.
Progress of the reaction was monitored by the thin-layer
chromatography (TLC). After completion, the resulting pre-
cipitate was filtered and washed with 5 mL cold ethanol to
afford the pure products. Compounds 2, 3, 5–11, 13–19,
21–27, 29–34, 36–38 were characterized by spectroscopic
analysis. To the best of our knowledge, compounds 2, 3, 11,
14, 16–19, 23, 27, and 29–34 are new compoundswhile other
compounds are structurally known [41,42].

(E)-2-(2-(2,6-Dimethoxybenzylidene)hydrazinyl)-4-
(4-methoxyphenyl)thiazole (2)

Solid; Orange; Yield: 78%; M.P.: 145–147 ◦C; 1H-NMR
(400 MHz, DMSO-d6) δ 11.80 (s, 1H, NH), 8.21 (s, 1H,
H–C=N), 7.77 (d, J2′′,3′′ = J6′′,5′′ =8.8 Hz, 2H, H-2′′,
H-6′′), 7.31 (t, J4(3,5) = 8.4 Hz, 1H, H-3), 7.06 (s, 1H,
H-5′), 6.95 (d, J3′′,2′′ = J5′′,6′′ =8.8 Hz, 2H, H-3′′, H-5′′),
6.71 (d, J3,4 = J5,4 = 8.4 Hz, 2H, H-3, H-5), 3.81 (s,
6H, 2H, OCH3), 3.77 (s, 3H, OCH3); 13C-NMR (125 MHz,
DMSO-d6) : δ 168.4 (N=C–S), 158.6 (C-4′′), 158.3 (C-2),
158.3 (C-6), 147.3 (C-4′), 136.1 (HC=N), 130.3 (CH-4),
126.7 (CH-2′′), 126.7 (CH-6′′), 123.7 (C-1′′), 113.8 (CH-3′′),
113.8 (CH-5′′), 110.0 (C-1), 104.5 (CH-3), 104.5 (CH-5),
101.2 (CH-5′), 56.0 (OCH3), 56.0 (OCH3), 55.0 (OCH3);
EI-MS m/z (% rel. abund.): 369 (M+, 64), 219 (15), 206
(100), 191 (24), 164 (34), 149 (22); HREI-MS Calcd for
C19H19N3O3S: m/z = 369.1147, found 369.1133; Anal.
Calcd for C19H19N3O3S : C = 61.77; H = 5.18; N =
11.37; Found: C = 61.75; H = 5.17; N = 11.35.

(E)-2-(2-(2,6-Dimethoxybenzylidene)
hydrazinyl)-4-(3-nitrophenyl)thiazole (3)

Solid; Yellow; Yield: 75%; M.P.: 178–180 ◦C; 1H-NMR
(400 MHz, DMSO-d6) δ 11.98 (s, 1H, NH), 8.65 (s, 1H,
H–C=N), 8.29 (d, J4′′,5′′ = 7.6 Hz, 1H, H-4′′), 8.24 (s,
1H, H-2′′), 8.14 (dd, J6′′,4′′ = 1.6 Hz, J6′′,5′′ = 8.0 Hz,
1H, H-6′′), 7.71 (t, J5′′(4′′,6′′) = 8.0 Hz, 1H, H-6′′), 7.58
(s, 1H, H-5′), 7.32 (t, J4(3,5) = 8.4 Hz, 1H, H-4), 6.72 (d,
J3,4 = J5,4 = 8.4 Hz), 3.82 (s, 6H, 2OCH3); 13C-NMR
(125 MHz, DMSO-d6) : δ 170.6 (N=C–S), 158.4 (C-2),
158.4 (C-6), 148.1 (C-4′), 147.2 (C-3′′), 136.7 (HC=N),
131.8 (C-1′′), 131.5 (CH-6′′), 130.5 (CH-4), 130.1 (CH-2′′),
122.8 (CH-4′′), 119.8 (CH-5′′), 110.1 (C-1), 106.2 (CH-5′),
104.5 (CH-3), 104.5 (CH-5), 56.0 (OCH3), 56.0 (OCH3);
EI-MS m/z (% rel. abund.): 384 (M+, 31), 221 (26), 175
(56), 149 (23), 121 (11), 89 (10); HREI-MS Calcd for
C18H16N4O4S: m/z = 384.0892, found 384.0967; Anal.
Calcd for C18H16N4O4S : C = 56.24; H = 4.20; N =
14.58; Found: C = 56.27; H = 4.23; N = 14.60.

(E)-2-(2-(Naphthalen-1-ylmethylene) hydrazinyl)-4-
phenylthiazole (5) [CAS # 464200-44-0]

Solid;Brick brown;Yield: 58%;M.P.: 183–185 ◦C; 1H-NMR
(600 MHz, DMSO-d6) δ 12.29 (s, 1H, NH), 8.76 (d, J2,3 =
8.4 Hz, 1H, H-2), 8.66 (s, 1H, H–C=N), 8.01 (d, J4,3 =
7.8 Hz, 1H, H-4), 7.98 (d, J5,6 =7.8 Hz, 1H, H-5), 7.88
(d, J2′′,6′′ = J6′′,5′′ = 7.2 Hz, 2H, H-2′′, H-6′′), 7.85 (d,
J8,7 = 7.2 Hz, 1H, H-8), 7.68 (t, J7(6,8) = 7.8 Hz, 1H,
H-7), 7.60 (overlapping multiplet, 2H, H-3, H-6), 7.42 (t,
J3′′(2,4) = J5′′(4′′,6′′) = 7.8 Hz, 2H, H-3′′, H-5′′), 7.37 (s, 1H,
H-5′), 7.31 (t, J4′′(3′′,5′′) = 7.2 Hz, 1H, H-4′′); 13C-NMR
(125 MHz, DMSO-d6) : δ 168.2 (N=C-S), 150.1 (C-4′),
141.4 (HC=N), 133.2 (C-10), 133.1 (C-1′′), 130.5 (CH-4),
130.3 (C-9), 129.0 (CH-5), 129.0 (C-1), 128.6 (CH-3), 128.5
(CH-6), 128.2 (CH-7), 127.5 (CH-2), 127.3 (CH-3′′), 127.3
(CH-5′′), 126.2 (CH-4′′), 125.5 (CH-2′′), 125.5 (CH-6′′),
123.2 (CH-8), 105.6 (CH-5′); EI-MS m/z (% rel. abund.):
329 (M+, 68.2), 176 (100), 153 (36), 134 (48), 127 (18);
HREI-MS Calcd for C20H15N3S: m/z = 329.0987, found
329.0965; Anal. Calcd for C20H15N3S : C = 72.92; H =
4.59; N = 12.76; Found: C = 72.94; H = 4.61; N = 12.78.

(E)-2-(2-(Naphthalen-1-ylmethylene)
hydrazinyl)-4-p-tolylthiazole (6) [41]

Solid; Light brown;Yield: 50%;M.P.: 209–211 ◦C; 1H-NMR
(600 MHz, DMSO-d6) δ 12.26 (s, 1H, NH), 8.76 (d,
J2,3 = 8.4 Hz, 1H, H-2), 8.65 (s, 1H, H–C=N), 8.01 (d,
J4,3 =7.8 Hz, 1H, H-4), 7.97 (d, J5,6 = 7.8 Hz, 1H, H-
5), 7.85 (d, J8,7 = 7.5 Hz, 1H, H-8), 7.76 (d, J2′′,3′′ =
J6′′,5′′ = 7.8 Hz, 2H, H-2′′, H-6′′), 7.68 (t, J7(6,8) = 7.8 Hz,
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1H, H-7), 7.60 (overlapping multiplet, 2H, H-3, H-6), 7.28
(s, 1H, H-5′), 7.22 (d, J3′′,2′′ = J5′′,6′′ = 7.8 Hz, 2H,
H-3′′, H-5′′), 2.32 (s, 3H, H-CH3); 13C-NMR (125 MHz,
DMSO-d6) : δ 168.0 (N=C–S), 150.8 (C-4′), 141.1 (HC=N),
136.8 (C-4′′), 133.6 (C-10), 132.0 (C-1′′), 129.8 (CH-4),
129.5 (C-9), 129.2 (CH-3′′), 129.2 (CH-5′′), 128.9 (CH-5),
127.2 (C-1), 127.0 (CH-3), 126.2 (CH-6), 126.1 (CH-7),
125.6 (CH-2), 125.5 (CH-2′′), 125.5 (CH-6′′), 124.0 (CH-8),
102.8 (CH-5′), 20.8 (CH3); EI-MS m/z (% rel. abund.): 343
(M+, 97), 189 (100), 148 (39), 127 (17); HREI-MSCalcd for
C21H17N3S:m/z = 343.1143, found 343.1124; Anal. Calcd
for C21H17N3S : C = 73.44; H = 4.99; N = 12.24; Found:
C = 73.47; H = 4.98; N = 12.26.

(E)-4-(4-Methoxyphenyl)-2-(2-(naphthalen-1-
ylmethylene)hydrazinyl)thiazole (7) [41]

Solid;Dark orange;Yield: 55%;M.P.: 207–209 ◦C; 1H-NMR
(600 MHz, DMSO-d6) δ 12.26 (s, 1H, NH), 8.76 (d, J2,3 =
8.4 Hz, 1H, H-2), 8.65 (s, 1H, H–C=N), 8.01 (d, J4,3 =
8.4 Hz, 1H, H-4), 7.97 (d, J5,6 = 7.8 Hz, 1H, H-5), 7.85
(d, J8,7 = 7.2 Hz, 1H, H-8), 7.80 (d, J2′′,3′′ = 8.4 Hz,
1H, H-2′′), 7.68 (t, J7(6,8) = 8.4 Hz, 1H, H-7), 7.60 (over-
lapping multiplet, 2H, H-3, H-6), 7.18 (s, 1H, H-5′), 6.97
(d, J3′′,2′′ = J5′′,6′′ = 8.4 Hz, 2H, H-3′′, H-5′′), 3.78 (s,
3H, OCH3); 13C-NMR (125 MHz, DMSO-d6) : δ 168.7
(N=C–S), 159.4 (C-4′′), 150.5 (C-4′), 141.7(HC=N), 133.2
(C-10), 130.7 (CH-4), 130.5 (C-9), 128.8 (CH-5), 128.4
(C-1), 128.3 (CH-2′′), 128.3 (CH-6′′), 127.6 (CH-3), 126.4
(CH-6), 125.6 (CH-7), 125.5(C-1′′), 125.5 (CH-2), 123.4
(CH-8), 114.7 (CH-3′′), 114.7 (CH-5′′), 105.7 (CH-5′), 55.6
(OCH3); EI-MS m/z (% rel. abund.): 359 (M+, 84), 205
(100), 190 (23), 163 (34), 148 (17), 127 (13); HREI-MS
Calcd for C21H17N3OS: m/z = 359.1092, found 359.1074;
Anal. Calcd for C21H17N3OS : C = 70.17; H = 4.77;
N = 11.69; Found: C = 70.19; H = 4.75; N = 11.71.

(E)-4-(Biphenyl-4-yl)-2-(2-(naphthalen-1-
ylmethylene)hydrazinyl)thiazole (8) [CAS #
468750-89-2]

Solid; Orange; Yield: 52%; M.P.: 177–179 ◦C; 1H-NMR
(600 MHz, DMSO-d6) δ 12.27 (s, 1H, NH), 8.76 (d,
J2,3 = 8.4 Hz, 1H, H-2), 8.66 (s, 1H, H–C=N), 8.00 (over-
lapping multiplet, 4H, H-4, H-5, H-2′′′, H-6′′′), 7.85 (d,
J8,7 = 7.2 Hz, 1H, H-8), 7.72 (overlapping multiplet, 4H,
H-2′′, H-3′′, H-5′′, H-6′′), 7.66 (t, J7(6,8) = 7.2 Hz, 1H,
H-7), 7.59 (t, J3(2,4) = J5(4,6) = 7.2 Hz, 2H, H-3, H-
5), 7.48 (t, J3′′′(2′′′,4′′′) = J5′′′(4′′′,6′′′) = 7.6 Hz, 2H, 3′′′,
H-5′′′), 7.42 (s, 1H, H-5′), 7.37 (t, J4′′′(3′′′,5′′′) = 7.2 Hz,
1H, H-4′′′); 13C-NMR (125 MHz, DMSO-d6) : δ 168.4
(N=C–S), 150.5 (C-4′), 141.6 (HC=N), 140.8 (C-4′′), 140.7
(C-7′′), 133.2 (C-10), 131.8 (C-1′′), 130.5 (CH-4), 130.1 (C-

9), 129.1 (CH-9′′), 129.1 (CH-11′′), 128.5 (CH-5), 128.4
(C-1), 128.1 (CH-2′′), 128.1 (CH-6′′), 127.8 (CH-8′′), 127.8
(CH-12′′), 127.6 (CH-10′′), 127.1 (CH-3), 127.0 (CH-3′′),
127.0 (CH-5′′), 126.4 (CH-6), 125.6 (CH-7), 125.6 (CH-2),
123.4 (CH-8), 105.8 (CH-5′); EI-MS m/z (% rel. abund.):
405 (M+, 95), 251 (100), 210 (56), 154 (16), 127 (11);
HREI-MS Calcd for C26H19N3S: m/z = 405.1300, found
405.1324; Anal. Calcd for C26H19N3S : C = 77.01; H =
4.72; N = 10.36; Found: C = 77.03; H = 4.70; N = 10.38.

(E)-2-(2-(Naphthalen-1-ylmethylene) hydrazinyl)-4-
(3-nitrophenyl)thiazole (9) [CAS # 464200-43-9]

Solid; Yellow; Yield: 47%; M.P.: 228–230 ◦C; 1H-NMR
(600 MHz, DMSO-d6) δ 12.42 (s, 1H, NH), 8.77 (d, J2,3 =
8.4 Hz, 1H, H-2), 8.69 (d, J2′′,6′′ = 1.8 Hz, 1H, H-2′′), 8.67
(s, 1H, H–C=N), 8.33 (d, J6′′,5′′ = 7.8 Hz, 1H, H-6′′), 8.16
(dd, J4′′,2′′ = 1.8 Hz, J4′′,3′′ = 8.4 Hz, 1H, H-4′′), 8.01 (d,
J4,3 = 7.8 Hz, 1H, H-4), 7.99 (d, J5,6 = 8.4 Hz, 1H, H-5),
7.87 (d, J8,7 = 7.2Hz, 1H,H-8), 7.73 (t, J5′′(4′′,6′′) = 7.8Hz,
1H, H-5′′), 7.70 (s, 1H, H-5′), 7.69 (t, J7(6,8) = 7.2 Hz, 1H,
H-7), 7.61 (overlapping multiplet, 2H, H-3, H-6); 13C-NMR
(125 MHz, DMSO-d6) : δ 169.8 (N=C–S), 151.3 (C-4′),
148.5 (C-3′′), 142.3 (HC=N), 133.8 (C-1′′), 133.7 (CH-6′′),
133.4 (C-10), 130.8 (CH-2′′), 130.7 (CH-4), 130.4 (C-9),
128.9 (CH-5), 128.5 (C-1), 127.9 (CH-3), 126.5 (CH-6),
125.7 (CH-7), 125.7 (CH-2), 123.7 (CH-8), 123.5 (CH-4′′),
122.6 (CH-5′′), 106.6 (CH-5′); EI-MS m/z (% rel. abund.):
374 (M+, 34), 220 (100), 175 (30), 154 (15), 127(19); HREI-
MS Calcd for C20H14N4O2S: m/z = 374.0837, found
374.0832; Anal. Calcd for C20H14N4O2S : C = 64.16;
H = 3.77; N = 14.96; Found: C = 64.19; H = 3.78;
N = 14.94.

(E)-4-(4-Bromophenyl)-2-(2-(naphthalen-1-
ylmethylene)hydrazinyl)thiazole (10) [CAS #
464211-54-9]

Solid; Pale yellow; Yield: 60%;M.P.: 192–194 ◦C; 1H-NMR
(600 MHz, DMSO-d6) δ 12.30 (s, 1H, NH), 8.75 (d, J2,3 =
8.4 Hz, 1H, H-2), 8.66 (s, 1H, H–C=N), 8.01 (d, J4,3 =
7.8 Hz, 1H, H-4), 7.98 (d, J5,6 = 7.8 Hz, 1H, H-5), 7.85 (d,
J8,7 = 7.2 Hz, 1H, H-8), 7.83 (d, J2′′,3′′ = J6′′,5′′ = 8.4 Hz,
2H, H-2′′, H6′′), 7.68 (t, J7(8,6) = 7.2 Hz, 1H, H-7), 7.61
(overlapping multiplet, 4H, H-3, H-6, H-3′′, H-5′′), 7.45
(s, 1H, H-5′), 3.78 (s, 3H, OCH3); 13C-NMR (125 MHz,
DMSO-d6) : δ 168.1 (N=C–S), 150.3 (C-4′), 141.5 (HC=N),
133.0 (C-10), 132.1 (CH-3′′), 132.1 (CH-5′′), 132.0 (C-1′′),
130.5 (CH-4), 130.2 (C-9), 128.5 (CH-5), 128.5 (C-1), 128.4
(CH-2′′), 128.4 (CH-6′′), 127.6 (CH-3), 126.5 (CH-6), 125.6
(CH-7), 125.6 (CH-2), 123.4 (CH-8), 123.3 (C-4′′), 105.7
(CH-5′); EI-MS m/z (% rel. abund.): 407 (M+, 39), 409
(M+2, 36), 256 (100), 214 (15), 174 (22), 154 (16), 127

123



Molecular Diversity (2018) 22:841–861 855

(20); HREI-MS Calcd for C20H14BrN3S: m/z = 407.0092,
found407.0083;Anal.Calcd forC20H14BrN3S : C = 58.83;
H = 3.46; N = 10.29; Found: C = 58.85; H = 3.48;
N = 10.31.

(E)-4-(3,4-Dichlorophenyl)-2 -(2-(naphthalen-1-
ylmethylene) hydrazinyl) thiazole (11)

Solid; Brick red; Yield: 48%; M.P.: 160–162 ◦C; 1H-NMR
(600 MHz, DMSO-d6) δ 12.33 (s, 1H, NH), 8.75 (d, J2,3 =
8.4 Hz, 1H, H-2), 8.66 (s, 1H, H–C=N), 8.10 (d, J2′′,6′′ =
1.8 Hz, 1H, H-2′′), 8.01 (d, J4,3 = 7.8 Hz, 1H, H-4), 7.99 (d,
J5,6 = 8.4Hz, 1H, H-5), 7.86 (overlappingmultiplet, 2H, H-
8, H-6′′), 7.68 (overlapping multiplet, 2H, H-7, H-5′′), 7.61
(m, 3H, H-3, H-6, H-5′); 13C-NMR (125 MHz, DMSO-d6) :
δ 168.3 (N=C–S), 150.4 (C-4′), 141.6 (HC=N), 133.6 (C-4′′),
133.1 (C-10), 132.7 (C-3′′), 132.5 (C-1′′), 130.6 (CH-4),
130.5 (CH-5′′), 130.2 (C-9), 128.6 (CH-2′′), 128.4 (CH-5),
128.3 (C-1), 127.7 (CH-3), 127.3 (CH-6′′), 126.3 (CH-6),
125.5 (CH-7), 125.5 (CH-2), 123.3 (CH-8), 105.9 (CH-5′);
EI-MS m/z (% rel. abund.): 397 (M+, 24), 399 (M+2, 18),
401 (M+4, 7), 244 (100), 202 (17), 154 (15), 127 (18); HREI-
MS Calcd for C20H13Cl2N3S: m/z = 397.0207, found
397.0190; Anal. Calcd for C20H13Cl2N3S : C = 60.31;
H = 3.29; N = 10.55; Found: C = 60.33; H = 3.27;
N = 10.52.

(E)-2-(2-(Naphthalen-2-ylmethylene) hydrazinyl)-4-
phenylthiazole (13) [CAS # 1860007-95-9]

Solid; Yellow; Yield: 75%; M.P.: 229–231 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 12.28 (s, 1H, NH), 8.18 (s, 1H,
H-1), 8.04 (s, 1H, H–C=N), 7.96 (overlapping multiplet,
4H, H-3, H-4, H-5, H-8), 7.86 (d, J2′′,3′′ = J6′′,5′′ =
7.5 Hz, 2H, H-2′′, H-6′′), 7.54 (dd, J6,8 = J7,5 = 1.5 Hz,
J6,5 = J7,8 = 9.0 Hz, 2H, H-6, H-7), 7.42 (t, J3′′(2′′,4′′) =
J5′′(4′′,6′′) = 7.5 Hz, 2H, H-3′′, H-5′′), 7.35 (s, 1H, H-5′),
7.31 (t, J4′′(3′′,5′′) = 7.5Hz, 1H,H-4′′); 13C-NMR (125MHz,
DMSO-d6) : δ 171.5 (N=C–S), 150.4 (C-4′), 143.3 (HC=N),
135.9 (C-10), 132.4 (C-9), 132.2 (C-1′′), 129.4 (CH-3′′),
129.4 (CH-5′′), 129.0 (C-2), 128.4 (CH-4′′), 128.2 (CH-4),
127.8 (CH-1), 127.6 (CH-8), 127.4 (CH-5), 127.2 (CH-3),
126.3 (CH-2′′), 126.3 (CH-6′′), 126.1 (CH-6), 126.0 (CH-7),
105.3 (CH-5′); EI-MS m/z (% rel. abund.): 329 (M+, 56),
176 (100), 154 (9), 134 (34), 127 (13); HREI-MS Calcd for
C20H15N3S:m/z = 329.0987, found 329.0969; Anal. Calcd
for C20H15N3S : C = 72.92; H = 4.59; N = 12.76; Found:
C = 72.94; H = 4.61; N = 12.78.

(E)-2-(2-(Naphthalen-2-ylmethylene)
hydrazinyl)-4-p-tolylthiazole (14)

Solid; Yellow; Yield: 62%; M.P.: 240–242 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 12.24 (s, 1H, H-NH), 8.18 (s,
1H, H-1), 8.03 (s, 1H, H–C=N), 7.96 (overlapping multi-
plet, 4H, H-3, H-4, H-5, H-8), 7.75 (d, J2′′,3′′ = J6′′,5′′ =
4.8 Hz, 2H, H-2′′, H-6′′), 7.54 (dd, J6,8 = J7,5 = 2.4 Hz,
J6,5 = J7,8 = 4.5 Hz, 2H, H-6, H-7), 7.27 (s, 1H, H-5′),
7.21 (d, J3′′,2′′ = J5′′,6′′ = 5.1 Hz, 2H, H-3′′, H-5′′),
2.31 (s, 3H, CH3); 13C-NMR (125 MHz, DMSO-d6) : δ

171.3 (N=C–S), 150.0 (C-4′), 143.1 (HC=N), 135.6 (C-10),
132.4 (C-9), 130.0 (C-4′′), 129.1 (CH-3′′), 129.1 (CH-5′′),
128.5 (C-1′′), 128.1 (C-2), 127.9 (CH-4), 127.4 (CH-2′′),
127.4 (CH-6′′), 127.3 (CH-1), 126.1 (CH-8), 127.1 (CH-5),
127.0 (CH-3), 126.4 (CH-6), 125.9 (CH-7), 104.7 (CH-5′),
21.1 (CH3); EI-MS m/z (% rel. abund.): 343 (M+, 64), 190
(100), 153 (10), 148 (33), 127 (14); HREI-MS Calcd for
C21H17N3S:m/z = 343.1143, found 343.1157; Anal. Calcd
for C21H17N3S : C = 73.44; H = 4.99; N = 12.24; Found:
C = 73.42; H = 4.97; N = 12.26.

(E)-4-(4-Methoxyphenyl)-2-(2-(naphthalen-2-
ylmethylene) hydrazinyl)thiazole (15) [CAS #
1808939-62-9]

Solid;Dark yellow;Yield: 65%;M.P.: 238–240 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.21 (s, 1H, NH), 8.17 (s, 1H, H-
1), 8.03 (s, 1H, H–C=N), 7.96 (overlapping multiplet, 4H,
H-3, H-4, H-5, H-8), 7.80 (d, J2′′,3′′ = J6′′,5′′ = 8.7 Hz,
2H, H-2′′, H-6′′), 7.55 (overlapping multiplet, 2H, H-6, H-
7), 7.17 (s, 1H, H-5′), 6.97 (d, J3′′,2′′ = J5′′,6′′ = 8.7 Hz,
2H, H-3′′, H-5′′), 3.77 (s, 3H, OCH3); 13C-NMR (125 MHz,
DMSO-d6) : δ 171.2 (N=C–S), 159.4 (C-4′′), 149.8 (C-4′),
143.0 (HC=N), 135.8 (C-10), 132.3 (C-9), 129.0 (C-2),
128.4 (CH-4), 128.3 (CH-2′′), 128.3 (CH-6′′), 128.2 (CH-1),
127.7 (CH-8), 127.6 (CH-5), 127.4 (CH-3), 126.3 (CH-6),
126.1 (CH-7), 125.4 (C-1′′), 114.6 (CH-3′′), 114.6 (CH-5′′),
104.5 (CH-5′), 55.5 (OCH3); EI-MS m/z (% rel. abund.):
359 (M+, 83), 206 (100), 191 (16), 164 (32), 149 (14), 127
(16); HREI-MS Calcd for C21H17N3OS: m/z = 359.1092,
found 359.1082; Anal. Calcd for C21H17N3OS : C = 70.17;
H = 4.77; N = 11.69; Found: C = 70.19; H = 4.75;
N = 11.67.

(E)-4-(Biphenyl-4-yl)-2-(2-(naphthalen-2-
ylmethylene)hydrazinyl)thiazole (16)

Solid; Yellow; Yield: 66%; M.P.: 279–281 ◦C; 1H-NMR
(300MHz,DMSO-d6) δ 12.28 (s, 1H,NH), 8.20 (s, 1H,H-1),
8.04 (s, 1H, H–C=N), 7.97 (overlapping multiplet, 6H, H-3,
H-4, H-5, H-8, H-2′′, H-6′′), 7.73 (overlappingmultiplet, 4H,
H-3′′, H-5′′, H-8′′, H-12′′), 7.55 (m, 2H, H-6, H-7), 7.49 (t,

123



856 Molecular Diversity (2018) 22:841–861

J9′′(8′′,10′′) = J11′′(10′′,12′′) =7.5 Hz, 2H, H-9′′, H-11′′), 7.42
(s, 1H, H-5′), 7.38 (t, J10′′(9′′,11′′) = 7.2 Hz, 1H, H-10′′);
13C-NMR (125 MHz, DMSO-d6) : δ 171.5 (N=C–S), 150.2
(C-4′), 143.8 (HC=N), 140.8 (C-4′′), 140.7 (C-7′′), 136.0
(C-10), 132.5 (C-9), 131.4 (C-1′′), 129.3 (CH-9′′), 129.3
(CH-11′′), 129.2 (C-2), 128.5 (CH-4), 128.4 (CH-1), 127.9
(CH-8), 127.8 (C-10′′), 127.7 (CH-2′′), 127.7 (CH-6′′), 127.6
(CH-8′′), 127.6 (CH-12′′), 127.5 (CH-5), 127.4 (CH-3′′),
127.4 (CH-5′′), 127.2 (CH-3), 126.5 (CH-6), 126.3 (CH-7),
105.4 (CH-5′); EI-MS m/z (% rel. abund.): 405 (M+, 44),
252 (100), 210 (28), 180 (4), 153 (9), 127 (9); HREI-MS
Calcd for C26H19N3S: m/z = 405.1300, found 405.1311;
Anal. Calcd for C26H19N3S : C = 77.01; H = 4.72;
N = 10.36; Found: C = 77.04; H = 4.70; N = 10.34.

(E)-2-(2-(Naphthalen-2-ylmethylene)
hydrazinyl)-4-(3-nitrophenyl)thiazole (17)

Solid; Yellow; Yield: 67%; M.P.: 232–234 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.39 (s, 1H, NH), 8.64 (s, 1H,
H-2′′), 8.32 (d, J4,3 = 7.8 Hz, 1H, H-4′′), 8.20 (s, 1H, H-
1), 8.16 (dd, J6′′,4′′ = 2.1 Hz, J6′′,5′′ = 8.1 Hz, 1H, H-6′′),
8.05 (s, 1H, H–C=N), 7.97 (overlapping multiplet, 4H, H-
3, H-4, H-5, H-8), 7.73 (overlapping multiplet, 2H, H-5,
H-5′), 7.55 (overlappingmultiplet, 2H, H-6, H-7); 13C-NMR
(125 MHz, DMSO-d6) : δ 172.4 (N=C–S), 150.9 (C-3′′),
150.7 (C-4′), 149.1 (C-1′′), 144.5 (HC=N), 136.4 (C-10),
134.0 (CH-6′′), 133.0 (C-9), 132.1 (CH-2′′), 129.6 (C-2),
128.7 (CH-4), 128.6 (CH-1), 128.0 (CH-8), 127.9 (CH-5),
127.7 (CH-3), 126.8 (CH-6), 126.3 (CH-7), 124.2 (CH-4′′),
123.2 (CH-5′′), 106.0 (CH-5′); EI-MS m/z (% rel. abund.):
374 (M+, 25), 221 (100), 175 (26), 153 (24), 127 (17);
HREI-MSCalcd forC20H14N4O2S:m/z = 374.0837, found
374.0868; Anal. Calcd for C20H14N4O2S : C = 64.16;
H = 3.77; N = 14.96; Found: C = 64.18; H = 3.75;
N = 14.98.

(E)-4-(4-Bromophenyl)-2-(2-(naphthalen-2-
ylmethylene)hydrazinyl)thiazole (18)

Solid; Brown; Yield: 68%; M.P.: 263–265 ◦C; 1H-NMR
(500 MHz, DMSO-d6) 12.28 (s, 1H, H-NH), 8.19 (s, 1H,
H-1), 8.04 (s, 1H, H–C=N), 7.96 (overlapping multiplet, 4H,
H-3, H-4, H-5, H-8), 7.82 (d, J2′′,3′′ = J6′′,5′′ = 8.5 Hz,
2H, H-2′′, H-6′′), 7.60 (d, J3′′,2′′ = J5′′,6′′ = 8.5 Hz, 2H,
H-3′′, H-5′′), 7.54 (m, 2H, H-7, H-8), 7.43 (s, 1H, H-5′);
13C-NMR (125 MHz, DMSO-d6) : δ 171.3 (N=C–S), 149.9
(C-4′), 143.1 (HC=N), 135.8 (C-10), 132.4 (C-9), 132.2
(CH-3′′), 132.2 (CH-5′′), 132.1 (C-1′′), 129.2 (C-2), 128.5
(CH-4), 128.4 (CH-2′′), 128.4 (CH-6′′), 128.3 (CH-1), 127.8
(CH-8), 127.7 (CH-5), 127.5 (CH-3), 126.4 (CH-6), 126.2
(CH-7), 123.4 (C-4′′), 104.6 (CH-5′); EI-MS m/z (% rel.
abund.): 407 (M+, 39), 409 (M+2, 44), 256 (98), 254 (100),

214 (16), 21 (16), 174 (36), 153 (18), 127 (25); HREI-MS
Calcd for C20H14BrN3S:m/z = 407.0092, found 407.0088;
Anal. Calcd for C20H14BrN3S : C = 58.83; H = 3.46;
N = 10.29; Found: C = 58.85; H = 3.49; N = 10.31.

(E)-4-(3,4-Dichlorophenyl)-2-(2-(naphthalen-2-
ylmethylene) hydrazinyl)thiazole (19)

Solid; Off white; Yield: 58%; M.P.: 235–237 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.29 (s, 1H, NH), 8.19 (s, 1H,
H-1), 8.09 (d, J2′′,6′′ = 1.8 Hz, 1H, H-2′′), 8.05 (s, 1H, H–
C=N), 7.96 (overlapping multiplet, 4H, H-3, H-4, H-5, H-8),
7.86 (dd, J6′′,2′′ = 2.1 Hz, J6′′,5′′ = 8.4 Hz, 1H, H-6′′), 7.68
(d, J5′′,6′′ = 8.4 Hz, 1H, H-5′′), 7.58 (s, 1H, H-5′), 7.55 (dd,
J6,8 = J7,5 = 2.4 Hz, J6,5 = J7,8 = 4.5 Hz, 2H, H-6,
H-7); 13C-NMR (125 MHz, DMSO-d6) : δ 171.5 (N=C–S),
150.0 (C-4′), 143.3 (HC=N), 136.0 (C-10), 133.3 (C-4′′),
133.0 (C-3′′), 132.8 (C-1′′), 132.6 (C-9), 131.2 (CH-5′′),
129.3 (C-2), 129.1 (CH-4), 128.5 (CH-2′′), 128.3 (CH-1),
127.9 (CH-8), 127.7 (CH-5), 127.5 (CH-3), 127.2 (CH-6′′),
126.5 (CH-6), 126.3 (CH-7), 105.2 (CH-5′); EI-MS m/z (%
rel. abund.): 397 (M+, 49), 399 (M + 2, 33), 246 (80),
244 (100), 208 (15), 202 (20), 127 (21); HREI-MS Calcd
for C20H13Cl2N3S: m/z = 397.0207, found 397.0212;
Anal. Calcd for C20H13Cl2N3S : C = 60.31; H = 3.29;
N = 10.55; Found: C = 60.34; H = 3.30; N = 10.57.

(E)-1-((2-(4-Phenylthiazol-2-yl)
hydrazono)methyl)naphthalen-2-ol (21) [42]

Solid; Green; Yield: 55%; M.P.: 248–250 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 11.01 (s, 1H, NH), 8.96 (s, 1H, H–
C=N), 8.70 (d, J4,3 = 8.7 Hz, 1H, H-4), 7.87 (overlapping
multiplet, 4H, H-2′′, H-3′′, H-5′′, H-6′′), 7.60 (t,J4(3,5) =
7.2 Hz, 1H, H-4′′), 7.44 (m, 3H, H-5, H-6, H-7), 7.35 (m,
2H, H-5′, H-6), 7.23 (d, J3,4 = 9.0 Hz, 1H, H-3); 13C-NMR
(125 MHz, DMSO-d6) : δ 171.5 (N=C–S), 170.2 (C-2),
150.4 (C-4′), 143.1 (HC=N), 133.3 (C-10), 132.8 (CH-4),
132.5 (C-1′′), 130.2 (C-9), 129.0 (CH-3′′), 129.0 (CH-5′′),
128.5 (CH-4′′), 128.4 (CH-5), 127.4 (CH-7), 127.2 (CH-2′′),
127.2 (CH-6′′), 124.5 (CH-6), 120.3 (CH-3), 118.7 (CH-
8), 107.8 (C-1), 105.3 (CH-5′); EI-MS m/z (% rel. abund.):
345 (M+, 79), 328 (100), 176 (92), 170 (35), 134 (39), 115
(17); HREI-MS Calcd for C20H15N3OS: m/z = 345.0936,
found 345.0917; Anal. Calcd for C20H15N3OS : C = 69.54;
H = 4.38; N = 12.17; Found: C = 69.57; H = 4.40;
N = 12.19.

(E)-1-((2-(4-p -Tolylthiazol-2-yl) hydrazono)
methyl)naphthalen-2-ol (22) [CAS # 357650-77-2]

Solid; Light green; Yield: 78%;M.P.: 268–270 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 11.03 (s, 1H, NH), 8.96 (s, 1H, H–
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C=N), 8.69 (d, J4,3 = 8.4 Hz, 1H, H-4), 7.87 (d, J5,6 =
J8,7 = 8.7 Hz, 2H, H-5, H-8), 7.76 (d, J2′′,3′′ = J6′′,5′′ =
8.1 Hz, 2H, H-2′′, H-6′′), 7.59 (t, J7(6,8) = 7.8 Hz, 1H, H-7),
7.40 (t, J6(5,7) = 7.5 Hz, 1H, H-6), 7.25 (m, 4H, H-3, H-5′,
H-3′′, H-4′′), 2.31 (s, 3H, H-CH3); 13C-NMR (125 MHz,
DMSO-d6) : δ 171.3 (N=C–S), 170.0 (C-2), 150.2 (C-4′),
143.0 (HC=N), 133.5 (C-10), 132.4 (CH-4), 131.4 (C-4′′),
130.2 (C-1′′), 130.1 (C-9), 129.3 (CH-3′′), 129.3 (CH-5′′),
128.6 (CH-5), 127.5 (CH-7), 125.4 (CH-2′′), 125.4 (CH-6′′),
124.3 (CH-6), 120.1 (CH-3), 118.5 (CH-8), 107.7 (C-1),
105.1 (CH-5′), 21.0 (CH3); EI-MS m/z (% rel. abund.): 359
(M+, 77), 342 (100), 190 (89), 170 (32), 148 (27), 115 (20);
HREI-MS Calcd for C21H17N3OS: m/z = 359.1092, found
359.1081; Anal. Calcd for C21H17N3OS : C = 70.17; H =
4.77; N = 11.69; Found: C = 70.15; H = 4.75; N = 11.70.

(E)-1-((2-(4-(4-Methoxyphenyl)thiazol-2-
yl)hydrazono)methyl)naphthalen-2-ol (23)

Solid; Yellow; Yield: 87%; M.P.: 235–237 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 11.05 (s, 1H, NH), 8.97 (s, 1H,
OH), 8.97 (s, 1H, H–C=N), 8.67 (d, J4,3 = 8.7 Hz, 1H, H-
4), 7.87 (d, J2′′,3′′ = J6′′,5′′ = 8.7 Hz, 2H, H-2′′, H-6′′),
7.80 (d, J5,6 = J8,7 = 8.7 Hz, 2H, H-5, H-8), 7.59 (t,
J7(6,8) = 7.5 Hz, 1H, H-7), 7.40 (t, J6(5,7) = 7.5 Hz, 1H,
H-6), 7.23 (d, J3,4 = 9.0 Hz, 1H, H-3), 7.15 (s, 1H, H-5′),
6.99 (d, J3′′,2′′ = J5′′,6′′ = 8.7 Hz, 2H, H-3′′, H-5′′), (s,
3H, OCH3); 13C-NMR (125 MHz, DMSO-d6) : δ 171.4
(N=C–S), 170.1 (C-2), 158.7 (C-4′′), 150.3 (C-4′), 143.0
(HC=N), 133.1 (C-10), 132.4 (CH-4), 130.2 (C-9), 128.4
(CH-5), 128.3 (CH-2′′), 128.3 (CH-6′′), 127.3 (CH-7), 125.4
(C-1′′), 124.4 (CH-6), 120.2 (CH-3), 118.6 (CH-8), 114.6
(CH-3′′), 114.6 (CH-5′′), 107.7 (C-1), 105.2 (CH-5′), 54.6
(OCH3); EI-MS m/z (% rel. abund.): 375 (M+, 57), 358 (85),
206 (100), 191 (37), 170 (44), 149 (30), 115 (19); HREI-MS
Calcd for C21H17N3O2S:m/z = 375.1041, found 375.1028;
Anal. Calcd for C21H17N3O2S : C = 67.18; H = 4.56;
N = 11.19; Found: C = 67.20; H = 4.58; N = 11.20.

(E)-1-((2-(4-(Biphenyl-4-yl)thiazol-2-yl)hydrazono)
methyl)naphthalen-2-ol (24) [CAS # 468751-46-4]

Solid; Brown; Yield: 80%; M.P.: 248–250 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 11.01 (s, 1H, H-NH), 8.97 (s, 1H,
H–C=N), 8.72 (d, J5,6 = J8,7 = 8.4 Hz, 2H, H-5, H-
8), 7.88 (d, J2′′,3′′ = J6′′,5′′ = 8.7 Hz, 2H, H-2′′, H-6′′),
7.74 (overlapping multiplet, 4H, H-2′′′, H-3′′, H-5′′, H-6′′′),
7.60 (t, J7(6,8) = 7.2 Hz, 1H, H-7), 7.50 (t, J3′′′(2′′′,4′′′) =
J5′′(4′′,6′′) = 7.2 Hz, 2H, H-3′′′, H-5′′′), 7.41 (overlapping
multiplet, 3H, H-6, H-5′, H-4′′′), 7.24 (d, J3,4 = 9.0 Hz, 1H,
H-3); 13C-NMR (125 MHz, DMSO-d6) : δ 171.5 (N=C–
S), 170.3 (C-2), 150.5 (C-4′), 143.2 (HC=N), 140.8 (C-4′′),
140.7 (C-7′′), 133.4 (C-10), 132.6 (CH-4), 131.8 (C-1′′),

130.3 (C-9), 129.1 (CH-9′′), 129.1 (CH-11′′), 128.6 (CH-
5), 128.2 (CH-2′′), 128.2 (CH-6′′), 127.8 (CH-8′′), 127.8
(CH-12′′), 127.4 (CH-4′′), 127.0 (CH-3′′), 127.0 (CH-5′′),
126.9 (CH-7), 124.6 (CH-6), 120.4 (CH-3), 118.8 (CH-8),
107.9 (C-1), 105.4 (CH-5′); EI-MS m/z (% rel. abund.):
421 (M+, 53), 404 (66), 252 (100), 210 (36), 170 (31), 115
(11); HREI-MS Calcd for C26H19N3OS: m/z = 421.1249,
found 421.1233; Anal. Calcd for C26H19N3OS : C = 74.09;
H = 4.54; N = 9.97; Found: C = 74.12; H = 4.55;
N = 9.99.

(E)-1-((2-(4-(3-Nitrophenyl)thiazol-2-yl)hydrazono)
methyl)naphthalen-2-ol (25) [CAS # 307533-15-9]

Solid; Yellow; Yield: 85%; M.P.: 210–212 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.32 (s, 1H, NH), 10.88 (s, 1H,
OH), 8.94 (s, 1H, H–C=N), 8.78 (d, J4,3 = 8.7 Hz, 1H, H-4),
8.69 (d, J2′′,6′′ = 1.8Hz, 1H,H-2′′), 8.33 (d, J4′′,5′′ = 8.1Hz,
1H, H-4′′), 8.17 (dd, J6′′,4′′ = 1.8 Hz, J6′′,5′′ = 7.8 Hz,
1H, H-6′′), 7.87 (d, J5,6 = J8,7 = 8.7 Hz, 2H, H-5, H-
8), 7.74 (overlapping multiplet, 2H, H-5′, H-5′′), 7.60 (t,
J7(6,8) = 8.1 Hz, 1H, H-7), 7.40 (t, J6(5,7) = 7.8 Hz,
1H, H-6), 7.23 (d, J3,4 = 8.7 Hz, 1H, H-3); 13C-NMR
(125 MHz, DMSO-d6) : δ 172.0 (N=C–S), 170.5 (C-2),
150.9 (C-4′), 148.8 (C-3′′), 143.7 (HC=N), 133.8 (C-1′′),
133.7 (CH-6′′), 133.5 (C-10), 132.7 (CH-4), 130.5 (CH-2′′),
130.4 (C-9), 128.8 (CH-5), 127.6 (CH-7), 124.8 (CH-6),
123.6 (CH-4′′), 122.6 (CH-5′′), 120.5 (CH-3), 118.9 (CH-8),
108.0 (C-1), 106.1 (CH-5′); EI-MS m/z (% rel. abund.): 390
(M+, 50), 373 (50), 221 (100), 170 (35), 115 (19); HREI-MS
Calcd for C20H14N4O3S:m/z = 390.0787, found 390.0769;
Anal. Calcd for C20H14N4O3S : C = 61.53; H = 3.61;
N = 14.35; Found: C = 61.55; H = 3.63; N = 14.37.

(E)-1-((2-(4-(4-Bromophenyl)thiazol-2-yl)hydrazono)
methyl)naphthalen-2-ol (26) [CAS # 404016-81-5]

Solid; Green; Yield: 78%; M.P.: 248–250 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.23 (s, 1H, NH), 10.92 (s, 1H,
OH), 8.95 (s, 1H, H–C=N), 8.73 (d, J4,3 = 8.4 Hz, 1H, H-
4), 7.87 (overlappingmultiplet, 4H,H-2′′, H-3′′, H-5′′, H-6′′),
7.62 (overlapping multiplet, 3H, H-5, H-8, H-5′), 7.43 (over-
lapping multiplet, 2H, H-6, H-7), 7.23 (d, J3,4 = 9.0 Hz, 1H,
H-3); 13C-NMR (125 MHz, DMSO-d6) : δ 171.4 (N=C–
S), 170.0 (C-2), 150.3 (C-4′), 143.0 (HC=N), 133.2 (C-10),
132.5 (CH-4), 132.1 (C-1′′), 132.0 (CH-3′′), 132.0 (CH-5′′),
130.2 (C-9), 128.5 (CH-5), 128.4 (CH-2′′), 128.4 (CH-6′′),
127.3 (CH-7), 124.2 (CH-6), 123.5 (C-4′′), 120.1 (CH-3),
118.6 (CH-8), 107.7 (C-1), 105.1 (CH-5′); EI-MS m/z (%
rel. abund.): 423 (M+, 63), 425 (M+2, 61), 406 (62), 256
(100), 213 (21), 170 (48), 115 (38); HREI-MS Calcd for
C20H14BrN3OS: m/z = 423.0041, found 423.0026; Anal.
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Calcd for C20H14BrN3OS : C = 56.61; H = 3.33; N =
9.90; Found: C = 56.59; H = 3.35; N = 9.92.

(E)-1-((2-(4-(3,4-Dichlorophenyl)thiazol-2-
yl)hydrazono)methyl)naphthalen-2-ol (27)

Solid; Green; Yield: 88%; M.P.: 248–250 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.24 (s, 1H, NH), 10.90 (s, 1H,
OH), 8.95 (s, 1H, H–C=N), 8.76 (d, J4,3 = 8.7 Hz, 1H, H-4),
8.10 (d, J2′′,6′′ = 1.8 Hz, 1H, H-2′′), 7.87 (d, J5,6 = J8,7 =
J6,5 = 8.7 Hz, 3H, H-5, H-8, H-6′′), 7.69 (d, J5,6 = 8.4 Hz,
1H, H-5′′), 7.57 (overlapping multiplet, 2H, H7, H-5′), 7.40
(t, J6(5,7) = 7.8 Hz, 1H, H-6), 7.23 (d, J3,4 = 9.0 Hz, 1H,
H-3); 13C-NMR (125 MHz, DMSO-d6) : δ 171.5 (N=C–
S), 170.3 (C-2), 150.4 (C-4′), 143.2 (HC=N), 133.3 (C-4′′),
133.2 (C-10), 132.6 (C-3′′), 132.5 (C-1′′), 132.4 (CH-4),
130.7 (CH-5′′), 130.4 (C-9), 128.9 (CH-2′′), 128.7 (CH-5),
127.5 (CH-6′′), 127.1 (CH-7), 124.6 (CH-6), 120.4 (CH-3),
118.8 (CH-8), 107.9 (C-1), 105.4 (CH-5′); EI-MS m/z (%
rel. abund.): 411 (M+, 22), 413 (M+2, 48),415 (M+4, 26) 396
(45), 340 (17), 244 (100), 202 (27), 170 (68), 115 (21);HREI-
MS Calcd for C20H13Cl2N3OS: m/z = 413.0156, found
413.0149; Anal. Calcd for C20H13Cl2N3OS : C = 57.98;
H = 3.16; N = 10.14; Found: C = 57.96; H = 3.15;
N = 10.12.

(E)-2-(2-(Biphenyl-4-ylmethylene)
hydrazinyl)-4-phenylthiazole (29)

Solid; Yellow; Yield: 70%; M.P.: 234–236 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.21 (s, 1H, NH), 8.06 (s, 1H,
H–C=N), 7.86 (d, J2′′,3′′ = J6′′,5′′ = 7.5 Hz, 2H, H-2′′,
H-6′′), 7.74 (overlapping multiplet, 6H, H-2, H-3, H-5, H-6,
H-2′′′, H-6′′′), 7.50 (t, J3′′(2′′,4′′) = J5′′(4′′,6′′) = 7.2 Hz, 2H,
H-3′′, H-5′′), 7.42 (t, J3′′′(2′′′,4′′′) = J5′′′(4′′′,6′′′) = J4′′(3′′,2′′) =
7.5 Hz, 3H, H-3′′′, H-5′′′, H-4′′), 7.33 (s, 1H, H-5′), 7.31
(t, J4′′′(3′′′,5′′′) = 7.5 Hz, 1H, H-4′′′); 13C-NMR (125 MHz,
DMSO-d6) : δ 171.5 (N=C–S), 150.0 (C-4′), 143.4 (HC=N),
142.8 (C-4), 140.6 (C-7), 133.2 (C-1), 132.7 (C-1′′), 129.7
(CH-2), 129.7 (CH-6), 129.2 (CH-3′′), 129.2 (CH-5′′), 129.0
(CH-9), 129.0 (CH-11), 128.5 (C-4′′), 127.8 (CH-3), 127.8
(CH-5), 127.5 (CH-8), 127.5 (CH-12), 127.4 (CH-2′′), 127.4
(CH-6′′), 127.3 (CH-10), 105.2 (CH-5′); EI-MS m/z (%
rel. abund.): 355 (M+, 61), 176 (100), 152 (14), 134 (34);
HREI-MS Calcd for C22H17N3S: m/z = 355.1143, found
355.1144; Anal. Calcd for C22H17N3S : C = 74.34; H =
4.82; N = 11.82; Found: C = 74.36; H = 4.81; N = 11.83.

(E)-2-(2-(Biphenyl-4-ylmethylene)
hydrazinyl)-4-(4-methoxyphenyl)thiazole (30)

Solid; Yellow; Yield: 65%; M.P.: 233–235 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.17 (s, 1H, NH), 8.05 (s, 1H,

H–C=N), 7.79 (d, J2′′,3′′ = J6′′,5′′ = 8.7 Hz, 2H, H-2′′,
H-6′′), 7.76 (overlapping multiplet, 6H, H-2, H-3, H-5, H-
6, H-7, H-11), 7.50 (t, J8(7,9) = J10(9,11) = 7.2 Hz, 2H,
H-8, H-10), 7.15 (s, 1H, H-5′), 6.97 (d, J3′′,2′′ = J5′′,6′′ =
8.7 Hz, 2H, H-3′′, H-5′′), 3.77 (s, 3H, OCH3); 13C-NMR
(125 MHz, DMSO-d6) : δ 171.6 (N=C–S), 159.2 (C-4′′),
150.2 (C-4′), 143.5 (HC=N), 142.9 (C-4), 140.7 (C-7), 133.3
(C-1), 129.8 (CH-2), 129.8 (CH-6), 129.3 (CH-9), 129.3
(CH-11), 128.3 (CH-2′′), 128.3 (CH-6′′), 127.8 (CH-3),
127.8 (CH-5), 127.6 (CH-8), 127.6 (CH-12), 127.4 (CH-10),
125.2 (C-1′′), 114.7 (CH-3′′), 114.7 (CH-5′′), 105.3 (CH-5′),
55.6 (OCH3); EI-MS m/z (% rel. abund.): 385 (M+, 100),
206 (83), 191 (16), 180 (11), 164 (28); HREI-MS Calcd
for C23H19N3OS: m/z = 385.1249, found 385.1251; Anal.
Calcd for C23H19N3OS: C = 71.66; H = 4.97; N = 10.90;
Found: C = 71.68; H = 4.99; N = 10.92.

(E)-4-(Biphenyl-4-yl)-2-(2-(biphenyl-
4-ylmethylene)hydrazinyl)thiazole (31)

Solid; Dark green; Yield: 82%; M.P.: 258–260 ◦C; 1H-NMR
(600 MHz, DMSO-d6) δ 12.25 (s, 1H, NH), 8.07 (s, 1H, H–
C=N), 7.95 (d, J2′′,3′′ = J6′′,5′′ = 8.4 Hz, 2H, H-2′′, H-6′′),
7.74 (overlapping multiplet, 4H, H-2, H-3, H-5, H-6), 7.72
(m, 6H, H-3′′, H-5′′, H-7′′, H-8′′, H-10′′, H-11′′), 7.49 (q, 4H,
H-7, H-8, H-10, H-11), 7.41 (s, 1H, H-5′), 7.39 (m, 2H, H-9,
H-9′′); 13C-NMR (125MHz,DMSO-d6) : δ 171.5 (N=C–S),
150.1 (C-4′), 143.4 (HC=N), 142.8 (C-4), 140.7 (C-7), 140.6
(C-4′′), 140.5 (C-7′′), 133.3 (C-1), 131.7 (C-1′′), 129.6 (CH-
2), 129.6 (CH-6), 129.2 (CH-2′′), 129.2 (CH-6′′), 129.0 (CH-
9), 129.0 (CH-11), 127.8 (CH-9′′), 127.8 (CH-11′′), 127.7
(CH-3), 127.7 (CH-5), 127.7 (CH-3′′), 127.7 (CH-5′′), 127.6
(CH-8), 127.6 (CH-12), 127.5 (CH-10), 127.3 (CH-10′′),
127.0 (CH-8′′), 127.0 (CH-12′′), 105.3 (CH-5′); EI-MS m/z
(% rel. abund.): 431 (M+, 53), 252 (100), 210 (29), 180
(11), 152 (10); HREI-MS Calcd for C28H21N3S: m/z =
431.1456, found 431.1311; Anal. Calcd for C28H21N3S:
C = 77.93; H = 4.91; N = 9.74; Found: C = 77.96;
H = 4.93; N = 9.72.

(E)-2-(2-(Biphenyl-4-ylmethylene)
hydrazinyl)-4-(3-nitrophenyl)thiazole (32)

Solid; Orange; Yield: 63%; M.P.: 230–232 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.34 (s, 1H, NH), 8.67 (s, 1H,
H-2′′), 8.31 (d, J4′′,5′′ = 7.8 Hz, 1H, H-4′′), 8.16 (dd,
J6′′,4′′ = 2.1 Hz, J6′′,5′′ = 8.1 Hz, 1H, H-6′′), 8.08 (s, 1H,
H–C=N), 7.75 (overlapping multiplet, 4H, H-2, H-3, H-5, H-
6), 7.73 (overlapping multiplet, 3H, H-7, H-11, H-5′′), 7.67
(s, 1H, H-5′), 7.50 (t, J8(7,9) = J10(9,11) = 7.2 Hz, 2H, H-
8, H-10), 7.40 (t, J9(8,10) = 7.2 Hz, 1H, H-9); 13C-NMR
(125 MHz, DMSO-d6) : δ 171.7 (N=C–S), 150.4 (C-4′),
148.6 (C-3′′), 143.7 (HC=N), 142.9 (C-4), 140.8 (C-7),
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133.8 (C-1′′), 133.5 (CH-6′′), 133.4 (C-1), 130.4 (CH-2′′),
129.9 (CH-2), 129.9 (CH-6), 129.3 (CH-9), 129.3 (CH-11),
127.8 (CH-3), 127.8 (CH-5), 127.6 (CH-8), 127.6 (CH-
12), 127.5 (CH-10), 123.8 (CH-4′′), 122.8 (CH-5′′), 105.8
(CH-5′); EI-MS m/z (% rel. abund.): 400 (M+, 34), 221
(100), 180 (11), 175 (26), 152 (15); HREI-MS Calcd for
C22H16N4O2S: m/z = 400.0994, found 400.1003; Anal.
Calcd for C22H16N4O2S: C = 65.99; H = 4.03; N =
13.99; Found: C = 65.97; H = 4.01; N = 13.97.

(E)-2-(2-(Biphenyl-4-ylmethylene)
hydrazinyl)-4-(4-bromophenyl)thiazole (33)

Solid; Off white; Yield: 58%; M.P.: 250–252 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.20 (s, 1H, NH), 8.06 (s, 1H,
H–C=N), 7.82 (d, J2′′,3′′ = J5′′,6′′ = 8.7 Hz, 2H, H-2′′,
H-6′′), 7.74 (overlapping multiplet, 4H, H-2, H-3, H-5, H-
6), 7.72 (d, J7,8 = J11,10 = 7.2 Hz, 2H, H-7, H-11),
7.60 (d, J3′′,2′′ = J5′′,6′′ = 8.7 Hz, 2H, H-3′′, H-5′′),
7.50 (t, J8(7,9) = J10(9,11) = 7.2 Hz, 2H, H-8, H-10),
7.42 (s, 1H, H-5′), 7.40 (t, J9(8,10) = 7.2 Hz, 1H, H-9);
13C-NMR (125 MHz, DMSO-d6) : δ 171.4 (N=C–S), 149.9
(C-4′), 143.2 (HC=N), 142.7 (C-4), 140.6 (C-7), 133.0 (C-1),
132.1 (C-1′′), 132.0 (CH-3′′), 132.0 (CH-5′′), 129.6 (CH-2),
129.6 (CH-6), 129.0 (CH-9), 129.0 (CH-11), 128.2 (CH-2′′),
128.2 (CH-6′′), 127.7 (CH-3), 127.7 (CH-5), 127.5 (CH-8),
127.5 (CH-12), 127.3 (CH-10), 123.3 (C-4′′), 105.0 (CH-5′);
EI-MS m/z (% rel. abund.): 433 (M+, 48), 435 (M+2, 53),
256 (100), 214 (11), 174 (25), 152 (16); HREI-MS Calcd
for C22H16BrN3S: m/z = 433.0248, found 433.0237; Anal.
Calcd for C22H16BrN3S : C = 60.84; H = 3.71; N = 9.67;
Found: C = 60.86; H = 3.73; N = 9.66.

(E)-2-(2-(Biphenyl-4-ylmethylene)
hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (34)

Solid;Light yellow;Yield: 46%;M.P.: 220–222 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.25 (s, 1H, NH), 8.08 (over-
lapping multiplet, 2H, H-2′′, H–C=N), 7.85 (dd, J6′′,2′′ =
1.8Hz, J6′′,5′′ = 8.4 Hz, 1H, H-6′′), 7.74 (overlappingmulti-
plet, 4H,H-2, H-3, H-5, H-6), 7.72 (m, 3H,H-7, H-11, H-5′′),
7.56 (s, 1H, H-5′), 7.50 (t, J8(7,9) = J10(9,11) = 7.2 Hz,
2H, H-8, H-10); 13C-NMR (125 MHz, DMSO-d6) : δ 171.6
(N=C–S), 150.1 (C-4′), 143.3 (HC=N), 142.8 (C-4), 140.7
(C-7), 133.5 (C-4′′), 133.2 (C-1), 132.6 (C-3′′), 132.8 (C-1′′),
130.7 (CH-5′′), 129.7 (CH-2), 129.7 (CH-6), 129.1 (CH-9),
129.1 (CH-11), 128.7 (CH-2′′), 127.7 (CH-3), 127.7 (CH-
5), 127.6 (CH-8), 127.6 (CH-12), 127.4 (CH-10), 127.2
(CH-6′′), 105.2 (CH-5′); EI-MS m/z (% rel. abund.): 423
(M+, 56), 425 (M+2, 35), 243 (100), 202 (18), 180 (14), 152
(16); HREI-MSCalcd for C22H15Cl2N3S:m/z = 423.0364,
found 423.0364; Anal. Calcd for C22H15Cl2N3S : C =

62.27; H = 3.56; N = 9.90; Found: C = 62.30; H = 3.58;
N = 9.92.

(E)-2-(2-(4-(Benzyloxy)benzylidene) hydrazinyl)-4-
(4-methoxyphenyl)thiazole (36) [CAS #
1808939-63-0]

Solid; Orange; Yield: 62%; M.P.: 204–206 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 11.96 (s, 1H, NH), 7.95 (s, 1H,
H–C=N), 7.78 (d, J2,3 = J6,5 = 8.7 Hz, 2H, H-2, H-6),
7.59 (d, J2′′,3′′ = J6′′,5′′ = 9.0 Hz, 2H, H-2′′, H-6′′), 7.46 (t,
J9(8,10) = J10(9,11) = J11(10,12) = 9.0 Hz, 3H, H-9, H-10,
H-11), 7.39, (overlapping multiplet, 2H, H-8, H-12), 7.11 (s,
1H,H-5′), 7.08 (d, J3,2 = J5,6 = 8.7Hz, 2H,H-3,H-5), 6.96
(d, J3′′,2′′ = J5′′,6′′ = 9.0 Hz, 2H, H-3′′, H-5′′), 5.14 (s, 2H,
H-CH2); 13C-NMR (125MHz, DMSO-d6) : δ 171.4 (N=C–
S), 160.2 (C-4), 158.7 (C-4′′), 149.9 (C-4′), 143.5 (HC=N),
136.4 (C-7), 130.2 (CH-2), 130.2 (CH-6), 128.7 (CH-9),
128.7 (CH-11), 128.3 (CH-2′′), 128.3 (CH-6′′), 127.5 (CH-
10), 127.0 (CH-8), 127.0 (CH-12), 126.2 (C-1), 125.4 (C-1′′),
114.6 (CH-3′′), 114.6 (CH-5′′), 114.5 (CH-3), 114.5 (CH-
5), 105.2 (CH-5′), 70.6 (CH2), 55.5 (OCH3); EI-MS m/z
(% rel. abund.): 415 (M+, 51), 206 (100), 191 (14), 164
(20), 149 (19), 134 (11), 91 (84); HREI-MS Calcd for
C24H21N3O2S: m/z = 415.1354, found 415.1340; Anal.
Calcd for C24H21N3O2S : C = 69.38; H = 5.09; N =
10.11; Found: C = 69.40; H = 5.11; N = 10.13.

(E)-2-(2-(4-(Benzyloxy)benzylidene) hydrazinyl)-4-
(biphenyl-4-yl)thiazole (37) [CAS # 468750-68-7]

Solid; Dark brown; Yield: 77%;M.P.: 235–237 ◦C; 1H-NMR
(500 MHz, DMSO-d6) δ 12.03 (s, 1H, NH), 7.98 (s,
1H, H–C=N), 7.94 (d, J2′′,3′′ = J6′′,5′′ =8.5 Hz, 2H,
H-2′′, H-6′′), 7.71(d, J2,3 = J6,5 = J3′′,2′′ = J5′′,6′′ =
8.0 Hz, 4H, H-2, H-6, H-3′′, H-5′′), 7.60 (d, J8′′,9′′ =
J12′′,11′′ = 9.0 Hz, 2H, H-8′′, H-12′′), 7.48 (overlapping
multiplet, 4H, H-8, H-12, H-9′′, H-11′′), 7.41 (t, J9(8,10) =
J11(10,12) = 7.5 Hz, 2H, H-9, H-11), 7.36 (overlapping mul-
tiplet, 3H, H-10, H-5′, H-10′′), 7.08 (d, J3,2 = J5,6 =
8.1 Hz, 2H, H-3, H-5), 5.14 (s, 2H, H-CH2); 13C-NMR
(125 MHz, DMSO-d6) : δ 171.5 (N=C–S), 160.3 (C-4),
150.1 (C-4′), 143.7 (HC=N), 140.7 (C-4′′), 140.6 (C-7′′),
136.5 (C-7), 130.6 (C-1′′), 130.4 (CH-2), 130.4 (CH-6),
129.3 (CH-2′′), 129.3 (CH-6′′), 128.8 (CH-9), 128.8 (CH-
11), 128.4 (CH-9′′), 128.4 (CH-11′′), 127.8 (CH-3′′), 127.8
(CH-5′′), 127.7 (CH-10), 127.2 (CH-8′′), 127.2 (CH-12′′),
127.0 (CH-8), 127.0 (CH-12), 126.9 (CH-10′′), 126.3 (C-
1), 114.4 (CH-3), 114.4 (CH-5), 105.2 (CH-5′), 70.7 (CH2);
EI-MS m/z (% rel. abund.): 461 (M+, 59), 252 (100),
238 (11), 210 (26), 165 (8), 91 (79); HREI-MS Calcd for
C29H23N3OS: m/z = 461.1562, found 461.1543; Anal.
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Calcd for C29H23N3OS : C = 75.46; H = 5.02; N = 9.10;
Found: C = 75.49; H = 5.04; N = 9.12.

(E)-2-(2-(4-(Benzyloxy)benzylidene)
hydrazinyl)-4-(3-nitrophenyl)thiazole (38) [CAS #
469871-00-9]

Solid; Orange; Yield: 58%; M.P.: 207–209 ◦C; 1H-NMR
(300 MHz, DMSO-d6) δ 12.14 (s, 1H, NH), 8.66 (s, 1H,
H-2′′), 8.30 (d, J4′′,5′′ = 7.8 Hz, 1H, H-4′′), 8.15 (dd,
J6′′,2′′ = 2.1 Hz, J6′′,5′′ = 8.1 Hz, 1H, H-6′′), 7.98 (s,
1H, H–C=N), 7.72 (t, J5′′(4′′,6′′) = 8.1 Hz, 1H, H-5′′),
7.63 (overlapping multiplet, 3H, H-2, H-6, H-5′), 7.47 (t,
J9(8,10) = J10(9,11) = J11(10,12) = 8.7 Hz, 3H, H-9, H-10,
H-11), 7.39, (overlapping multiplet, 2H, H-8, H-12), 7.08
(d, J3,2 = J5,6 = 8.7 Hz, 2H, H-3, H-5), 5.14 (s, 2H,
H-CH2); 13C-NMR (125MHz, DMSO-d6) : δ 171.8 (N=C–
S), 160.3 (C-4), 150.3 (C-4′), 148.9 (C-3′′), 143.9 (HC=N),
136.6 (C-7), 133.7 (C-1′′), 133.5 (CH-6′′), 130.8 (CH-2′′),
130.3 (CH-2), 130.3 (CH-6), 128.8 (CH-9), 128.8 (CH-11),
127.7 (CH-10), 127.2 (CH-8), 127.2 (CH-12), 126.3 (C-1),
123.8 (CH-4′′), 122.6 (CH-5′′), 114.6 (CH-3), 114.6 (CH-5),
105.7 (CH-5′), 70.8 (CH2); EI-MS m/z (% rel. abund.): 430
(M+, 15), 221 (81), 191 (11), 175 (9), 91 (100); HREI-MS
Calcd for C23H18N4O3S:m/z = 430.1100, found 430.1109;
Anal. Calcd for C23H18N4O3S : C = 64.17; H = 4.21;
N = 13.02; Found: C = 64.20; H = 4.23; N = 13.00.

In vitro˛-glucosidase inhibition assay

Theα-glucosidase inhibitory profile of all synthesized (E)-2-
(2-(arylmethylene)hydrazinyl)-4-arylthiazoles and interme-
diates was measured by following a reported method [43].
Typically, α-glucosidase activity was performed in phos-
phate buffer 50 mM of pH 6.8 which contains 5% v/v
dimethylsulfoxide and PNP glycoside was used as a sub-
strate. The inhibitors were pre-incubated with enzyme for
half an hour at 37 ◦C. Then substrate was added and the enzy-
matic reaction was performed for 60 s at 37 ◦C. Absorbance
was measured spectrophotometrically at 400 nm. The assay
was carried at five different concentrations around the IC50

values that were roughly calculated in the first turn of the
experiments, and the mean values were adopted.
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