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Abstract
Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety
of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been
designed for their synthesis.
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Introduction

The Schiff bases, a subclass of imines [1–3] first discovered
by Schiff in 1864 [1], are compounds with the general for-
mula RHC = N-R1, where R1 may be aryl, cycloalkyl or
heterocyclic groups [1,3,4]. Schiff bases have been found
to exhibit a broad range of biological activities such as
anticancer [5–7], antitumor [8], anti-inflammatory [9], insec-
ticidal [10], antibacterial [11–15], antituberculosis [16,17],
antimicrobial [18,19], anticonvulsant [20], antifungal [15,
21,22], antimalarial [23] and antiviral [15,24], (including
antiHIV-1 [25]) activities. Imines, acting as ligands to furnish
extensively used coordination complexes [26], have phys-
iological and pharmacological importance [27], are being
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widely used formetal ion extraction [28] and heavymetal ion
estimation in environmental samples [29]. Imines often play
a major role in organic catalysis [30], e.g., cyclopropanation
and epoxidation of alkenes [31,32], ring-opening polymer-
ization of lactide [33], trimethylsilyl-cyanation of aldehyde
[34], enantioselective oxidation ofMeSPh [35] and enantios-
elective epoxidation of silyl enol ethers [28].

The nucleophilic attack of an amine at the C=O func-
tionality is a reversible reaction and the likelihood of imine
formation largely depends on the rate of H2O removal
[36]. Use of azeotropic distillation [37], dehydrating agents
(Na2SO4 or molecular sieves etc.) [38] and dehydrating sol-
vents [Si(OMe)4 or CH(OMe)3, etc.] [39,40] also facilitates
H2O removal. A lot of catalysts such as organic acids, min-
eral acids, Lewis acids, natural catalysts, polymers or even
dehydrating agents are used for the synthesis of imine in
appreciable yield (Table 1).

Green chemistry requires cleaner and eco-friendly meth-
ods of synthesis. Replacement of toxic, costly and volatile
organic solvents is of prime importance. Enhancement in
reaction efficiency, selectivity, ease of product separation and
purification are being achieved by solvent-free approaches
[41–47]. Acceptable yields of imines have also been reported
in H2O, as suspension, using no acid catalyst [48] and MW-
assisted solvent-free conditions. Better selectivity and easy
workup showed improvement in reaction rates [49] but this
methodology is limited to small-scale reactions [50]. Table 1
presents a comparison of reported Schiff-base synthesis by
protocols (entries 1–34) usingorganic solvents/H2Owith cat-
alysts applying green strategies [51–80].
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Table 1 Comparison of Schiff-base synthesis by different reported methods

Entry Eq£ T T (◦C) Solvent Catalyst Technique % Yields

1 1:1 24h Ambient H2O/EtOH None Stirring [51] 70–80

2 1:1 24h Ambient EtOH None Reflux [52] 66

3 1:1 13–15min 45 MeOH None Reflux [53] 56

4 1:1 2h 40–50 EtOH None Heating [54] 77–96

5 1:5 18h Reflux EtOH None Reflux [55] 60–87

6 1:1 3h Ambient EtOH Glacial AcOH Stirring [56] 98

7 1:1 9–10min 45 MeOH Glacial AcOH Reflux [53] 43

8 1:1 3h Reflux – Glacial AcOH Reflux [57] 68

9 1:1 3h 40 Dry PhNH2 p-TsOH Heating [58] 70

10 1:1 30–40min Ambient H2O Conc. H2SO4 Stirring [59] 67

11 1:1 4h Reflux EtOH Conc.H2SO4 Reflux [58] Low yield

12 1:1 5h 0–5 H2O Conc. HCl Stirring [60] 78

13 – – – – Bu2SnCl2 Stirring [61] 80–90

14 1:1 3h Ambient EtOH – SAMS� [62] 90

15 1:1 1–12h Ambient MeOH [ReBr3(CO)3]/[TcCl3(CO)3] Metal chelation [63] 69–75

16 1:1 3h Reflux – P2O5/Al2O3 Stirring [64] 80

17 1:1 20min Reflux EtOH CeCl3 · 7H2O Reflux [65] 68

18 1:1 3h Reflux DCM Mg(ClO4)2 Reflux[58] 50–75

19 1:1 0.5h Ambient 3–5 mL H2O – Stirring [66] 55–90

20 1:1 10–12min Ambient – – Grinding [67] 91

21 1:1 12h Ambient – – Grinding [68] >99

22 1:1 5min Ambient Oil∗ None Grinding [53] 98

23 1:1 30–35min Ambient None P2O5/SiO2 Grinding [69] 92

24 1:1 30min Ambient None P2O5/SiO2 Grinding [70] 80

24 2:1 1.5min MW Silica gel None MW-irradiation [71] 84

25 2:1 10min MW None p-TsOH MW-irradiation [72] 75

26 1:1 2min MW None None MW-irradiation [73] 85

27 1:1 2–3h 50 None Fe2(SO4)3 Heating [74] 94.5

28 1:1 20min Ambient – CES^+ HCl Grinding [75] 40–98

29 1:1 1–120min Ambient/reflux EtOH¤/PhH/CH2Cl2/Et2O MCM-41-SO3H#¤ Stirring/Reflux [76] 60–96

30 1:1 30min Ambient – lemon juice Stirring [77] 94

31 1:1 6min Ambient – – Grinding [78] 85–99

32 1:1 1–24h 60–90 – PPG Heating [78] 90–99

33 1:1 6–7min Ambient – – Jet milling [79] 91–93

34 1:1 3–10min Ambient EtOH Chitosan Stirring [80] 65–90

£Eq. of aldehyde to amine; p-TsOH = p-toluenesulphonic acid monohydrate; SAMS� = Self-assembled monolayers on Au and Si substrates;
^CES=chicken egg shells; #MCM-41-SO3H = Nano-ordered MCM-41 anchored SO2OH (NaOH and Na2CO3 is also used to diazotize); ¤ best
yield
MW microwave irradiation; PPG poly(propyleneglycol)

The use of aromatic solvents under high temperature con-
ditions poses a severe health risk. Dehydrating agents are
not usually efficient enough to trap all the H2O produced
during a reaction. Therefore, the exploration of a conve-
nient, high yielding and environment friendly methodology
for furnishing targeted indole-fused imines was pursued.
The condensation of 7-formylindoles with various aromatic
1°-amines was carried out using different conditions which
included:

1. Natural lemon juice catalyzed condensation.
2. Condensation by refluxing in dry solvent (EtOH/MeOH)

without catalyst.
3. The H2O-assisted condensation.
4. Catalyst- and solvent-free condensation (SFC).

The use of above protocols offered several advantages
such as:
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Scheme 1 a benzoin, PhNH2, AcOH, reflux; b POCl3,DMF; c lemon juice (5 mL), ambient; d dry EtOH, reflux; e 180 ºC; f H2O/CHCl3 (15:1),
reflux

1. Use of economically inexpensive and harmless reaction
media (e.g., H2O/lemon juice).

2. Avoidance of drying agents and catalysts.
3. Ease of product isolation (just simple filtration from reac-

tion medium) in all above cited approaches (except 1).

The main indole nucleus of 2a and 2b has already been
recognized for its anticancer, antimicrobial and many other
biological activities. These indole imines can serve as a tar-
get for exploration of the aforementioned and many other
biological activities. Furthermore, the position of donor (N)
atoms in indole imines 4–15 makes these substrates potent
ligands for complexation/chelation. If bound with metals to
furnish six-member ring, these kinds of ligands can assume
an excellent inhibitory character.

Results and discussion

We adopted a modified Bischler indole synthesis [81–83]
to produce a series of 4,6-dimethoxy-2,3-diphenyl-(1H)-
indoles 2a and 4,5,6-trimethoxy-2,3-diphenyl-(1H)-indoles
2b by employing commercially available substituted PhNH2

1a–b and benzoin. The indole ring formation was verified
by various spectroscopic techniques. Concrete evidence was
provided by single-crystal XRD studies (Fig. 1, Table 4).
Indoles 2a–b were formylated via a Vilsmeier–Haack reac-
tion in which the chlorinating agent is the chloroiminium
ion intermediate, generated from the reaction between DMF
and POCl3 [84]. 7-Fomylindoles 3a–b were condensed with
a variety of PhNH2 derivatives to afford novel indole imines
4–15 (Scheme 1).

The disappearance of a signal corresponding to H7 in the
aromatic region and the emergence of a new singlet at 10.41
ppm (CHO) confirm formylation. Supportive proof came

from the 13C-NMR, which recorded C5 as a doublet and C7

as a quaternary carbon. Moreover, the aldehyde C=O sin-
glet emerged at 188.2 ppm. The downfield shift of C7 may
be due to electron withdrawing (–I and –R) effects of the
aldehyde functionality. The bathochromic shift in the λmax

of formylated indoles 3a and 3b (372, 358 nm) as com-
pared to reactants 2a–b (322, 318 nm) and the appearance
of C=O at 1606 cm−1 indicate the successful introduction
of a carbonyl functionality. The EIMS of formylated indoles
exhibited [M]+· as the base signal, no further fragmentation
was observed. The XRD studies finally concluded the struc-
ture of 3a–b (Fig. 1, Table 4).

In the beginning the conversion of reactants into products
remained incomplete after changing a variety of protocols.
This pointed out the reversibility of imines.We observed that
the acidic nature of silica onTLC(formonitoring theprogress
of reaction) was misguiding the completion of reaction, con-
verting the product (imine) back into the reactant (aldehyde)
on the TLC plate. The TLC plate was neutralized by elut-
ing with Et3N and n-hexane (2:3), prior to TLC to monitor
the progress of the reaction. Similarly, the use of neutralized
CHCl3 (obtained by eluting through a thin and short column
packed with NaHCO3) for TLC showed no decomposition.
With this strategy no traces of reactant were observed, show-
ing completion of reaction.

The reversibility in the formation of imine would be due
to the poor electrophilicity of C=O (attributed to strong +R
effect ofOMegroups of indole ring) aswell as the poor nucle-
ophilicity of anilines. Since column chromatography could
not be adopted under such circumstances, therefore, attempts
were made to synthesize imines with complete consumption
of reactants. Four strategies gave fruitful results briefly dis-
cussed in the introduction.

Employing NaOH [85], HCl [60] and AcOH [53,56,57]
resulted in no product formation. To avoid harsh conditions
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Fig. 1 ORTEP presentation of 2a (left) and 3b (right)

Table 2 Optimization of conditions for imine synthesis

Entry Indole Aniline∧ Reagent Temperature (time) Solvent Product (% Yield)

1* 3a 0.02 NaOH Ambient (½h) EtOH ***

2 3a 1 AcOH (2–3 drops) Ambient (48h) EtOH **

3 3a 1.5 AcOH (2–3 drops) Reflux (8h) EtOH **

4 3a 1 HCl (2–3 drops) Ambient (48h) EtOH –

5 3a 1.5 HCl (2–3 drops) Reflux (8h) EtOH –

6 3a 1 Lemon juice (2–3 drops) Ambient (24h) – –

7 3a 3 Lemon juice (5mL) Ambient (48h) – 4a (74)

8 3a 1 – Reflux (72h) Dry EtOH �= **

9 3a 3 – Reflux (72h) Dry EtOH �= 4a (81)

10 3a 1 – 120 ºC (5min) – –

11 3a 1 – 180 ºC (5min) – **

12 3a 3 – 180 ºC (5min ) – 4a (86)

13 3a 1 H2O/CHCl3(15:1) Reflux (24h) – **

14 3a 3 H2O/CHCl3(15:1) Reflux (24h) – **

15 3b 1 AcOH (2–3 drops) Ambient (48h) EtOH **

16 3b 1.5 AcOH (2–3 drops) Reflux (8h) EtOH **

17 3b 1 HCl (2–3 drops) Ambient (48h) EtOH –

18 3b 1.5 HCl (2–3 drops) Reflux (8h) EtOH –

19 3b 1 Lemon juice (2–3 drops) Ambient (24h) – —

20 3b 3 Lemon juice (5mL) Ambient (48h) – 4b (78)

21 3b 1 – Reflux (72h) Dry EtOH �= **

22 3b 3 – Reflux (72h) Dry EtOH �= 4b (88)

23 3b 1 – 120 ºC (5min) – —

24 3b 1 – 180 ºC (5min) – **

25 3b 3 – 180 ºC (5min) – 4b (90)

26 3b 1 H2O/CHCl3(15:1) Reflux (24h) – **

27 3b 3 H2O/CHCl3(15:1) Reflux (24h) – 4b (86)

∧Equivalents to 7-formylindole 3a/3b; *the reactants were ground with 2.0 equivalents of NaOH in mortar and pastel; **mixture of product and
reactant; ***a number of products formed; �=molecular sieves
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Table 3 Comparison of yields of imines 4–15 using different protocols

Compound R R1 R2 R3 R4 Lemon juice* H2O-mediated£ DryEtOH# SFC�

4a H H H H H 74 ** 81 86

5a H H H Cl H 80 ** 86 90

6a H H Cl H H 64 ** 71 78

7a H Cl Cl H H 84 ** 86 92

8a H H H Me H 85 ** 95 98

9a H H Me H H 90 ** 95 98

10a H Me Me H H 72 ** 83 88

11a H H H OMe H 72 ** 81 89

12a H H OMe OMe OMe 70 ** 79 87

13a H H H NO2 H 92 ** 95 98

14a H H NO2 H H 68 ** 76 82

15a H H H Br H 76 ** 80 88

4b H H H H H 78 86 88 90

5b OMe H H Cl H 77 81 82 84

6b OMe H Cl H H 89 89 90 92

8b OMe H H Me H 75 78 85 88

9b OMe H Me H H 88 94 92 96

10b OMe Me Me H H 72 82 84 88

11b OMe H H OMe H 72 80 83 87

12b OMe H OMe OMe OMe 70 82 85 89

13b OMe H H NO2 H 78 85 91 82

14b OMe H NO2 H H 72 77 80 95

15b OMe H H Br H 82 88 91 94

**Product + reactant; *lemon juice as catalyst and solvent, 48h stirring; #dry EtOH as solvent, 72h reflux; �heating at 180 °C for 5min under
neat conditions; £H2O (15mL)/CHCl3(1mL), 24h reflux

and the need to use high temperature, a reported procedure, in
which lemon juice was used as a catalyst, was tried [77,78].
The use of natural lemon juice as a catalyst has a few advan-
tages over other catalysts, since it is an eco-friendly method,
which in our case afforded better results (60–80% yield).
Lemon juice may contain some organic acids and metals
(which may coordinate to C=O to increase the electrophilic-
ity of 7-formylindoles 3a–b) that may contribute to its better
catalytic profile. The imines thus formed were separated by
partitioning between CHCl3 and H2O. A little decomposi-
tion of imines was observed upon workup, which may be
due to acidic aqueous medium. Neutralizating the reaction
mixture first with 0.5M aqNaHCO3followed by partitioning
with CHCl3 avoided the decomposition of imines; however,
this did not improve the reaction yield.

To avoid acidic medium, 7-formylindoles 3a–b and
PhNH2derivativeswere refluxed indryEtOH,which afforded
crystalline product in better yield (70–95%) by just washing
thoroughly with dry EtOH/MeOH to remove unreactive ani-
line. The long reaction duration (≥ 70h) drove us to think
about an alternate strategy.

The H2O-assisted condensation proved to be detrimen-
tal for the formation of imines 4a–15a; however, the same
strategy furnished better yields (77–94%) for imines 4b–15b
(Table 2). The condensation of anilines with 7-formylindoles
3a–b in molten state (solvent-free condition, SFC) provided
excellent yields (78–98%, Table 2). The accumulation of
H2O-droplets above the reactants near the neck of flask indi-
cated the progress of reaction.

In order to check the effect of substituents, on indole
and phenyl rings, on the yield of product the aforemen-
tioned conditions were employed for the condensation of
7-formylindoles 3a/3b with a variety of substituted aniline.
The comparison of yields of the product is displayed in
Table 3.

The successful condensation of 7-formylindoles 3a–b
with various substituted PhNH2 to afford the desired imines
was verified by various spectroscopic techniques. Primar-
ily, the transformation was supported by the disappearance
of IR absorptions of HC=O at 1608, 1647cm−1 for 3a–
b, respectively, and emergence of new signals at 1560 ±
20 cm−1 indicating C=N absorptions. The λmax indicated a

123



714 Molecular Diversity (2018) 22:709–722

Fig. 2 ORTEP presentation of 10b

bathochromic shift from 355±20 (3a–b) to 370±20 nm (4–
15) due to an increase in conjugation. The expected increase
in λmax was about 450–500 nm due to increase in conju-
gation of an additional aromatic ring. It indicates that the
resonance of additional phenyl ring to indole nucleus would
be restricted due to the presence of two phenyl groups at
indolic ring, which pushes the incoming phenyl ring out of
plane; hence, its contribution to the resonance is not observed
in UV/Vis studies.

The disappearance of a singlet of HC=O at 10.41/
10.43 ppm of 3a and 3b, respectively, and the appearance
of a singlet corresponding to HC=N at 9.00±0.15 ppm in
the 1 H-NMR confirmed the imine formation. Furthermore,
additional signals of aromatic protons also authenticated the
attachment of aniline fragment with indole nucleus. The
downfield shift of NH signal from 10.43±0.02 ppm (in reac-
tants) to 11.5±0.3 (in imines) is due to H-bonding between
indolic NH and iminic nitrogen (HC=N). The presence of
additional signals in the aromatic region corresponding to
the aniline fragment confirmed the formation of imines. The
disappearance of a methine carbon at 189±1 ppm (corre-
sponding to CHO) and the appearance of a methine carbon
at 155±4 ppm (corresponding to HC=N) in broad band
13 C-NMR supports our claim of successful imine forma-
tion. The XRD studies of a representative of imine (10b)
ultimately confirmed the imine synthesis beyond any doubt
(Fig. 2, Table 4).

Conclusion

The comparison of a variety of protocols for indole-
based imine synthesis indicated high reversibility of the

products to respective reactants (7-formylindole 3a–b and
amines) under acidic conditions. The lemon catalyzed,
H2O-assisted, EtOH-mediated and neat conditions furnished
fruitful results. The lemon catalyzed protocol, although a
green approach, furnished lower yields even after the use of
neutralized CHCl3. The EtOH-mediated strategy gave fair
yields that required dry reaction conditions and reflux for a
long duration, which increased the cost and decreased the
efficiency of reaction. The H2O-assisted protocol proved
inadequate for the synthesis of indole imines 4a–15a but
produced good results for indole imines 4b–15b. Stability
and good yield may be favored by the presence of three
methoxy groups in case of 4,5,6-trimethoxyindole imines
4b–15b. Most efficient, economical and high yielding pro-
tocol was solvent-free synthesis, which yielded both kind
of indole imines (4a–15a and 4b–15b) rapidly in excellent
yields.

Experimental section

Pre-coated silica gel (0.25mm thick layer over Al sheet,
Merck, Darmstadt, Germany) TLC was used to monitor
reactions. Glass column-packed silica gel (0.6–0.2mm, 60Å
mesh size, Merck) was used for purification. IR spectra
were recorded on a Prestige 21 (Shimadzu, Japan) as KBr
disks. UV/Vis spectra were recorded on a Thermo Spectronic
(UV-1700) spectrophotometer as solution in MeOH/CHCl3.
1H-NMRand 13C-NMRwere recorded inCDCl3 on aBruker
AVANCEDPX (300, 400 or 500MHz) spectrometer (Bruker,
Billarica, MA) using TMS as internal standard (s, d, t, q,
dd, ddd and m stands for singlet, doublet, triplet, quarter-
ate, double doublet, doublet of double doublet and multiplet,
respectively). HR ESI was recorded on a Q-TOF Ultima API
(Micromass, Waters, Milford, MA) at the Biomedical Mass
Spectrometry Facility (BMSF), UNSW, Sydney (Australia).
Single-crystal X-Ray data were recorded on a Bruker Kappa
APEX 11 CCD diffractometer. Crystallographic data in this
article have been deposited with the Cambridge Crystallo-
graphic Data Centre as supplementary publication number
CCDC 1,562,669, 1,526,270 and 1,562,120 for 2a, 3b and
10b, respectively. The X-ray structure was obtained by Prof
Dr Muhammad Nawaz Tahir, Department of Physics, Uni-
versity of Sargodha, Sargodha (Pakistan).

Representative procedure for the synthesis of
indoles 2a–b

A mixture of 3,5-(OMe)2 1a or 3,4,5-(OMe)3C6H2NH2

1b (13.1mmol, 3 eq) and 2-hydroxy-1,2-diphenylethanone
(benzoin, 13.1mmol, 3 eq) was stirred at 120 ºC for 2h. The
mixture was cooled to ambient temperature and stirred upon
the addition of PhNH2 (4.4mmol, 1 eq) and AcOH (8.1mL,
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Table 4 Crystal data of 2a, 3b and 10b

Parameters 2a 3b 10b

Chemical formula C22H19NO2 C24H21NO4 C32H30N2O3

Mr 329.38 387.42 490.58

Crystal system, space group Monoclinic,P21/n Monoclinic, P21/c Triclinic, P̄1

Temperature (K) 296 296 296

a, b, c (Å) 11.7435 (16), 9.4480 (12),
15.940 (2)

6.4296 (7), 19.445 (3),
15.858 (2)

10.4673 (10), 11.3389 (12),
11.9563 (11)

β(◦) 106.682 (7) 96.230 (6) 111.371 (3), 98.510 (3),
90.301 (3)

V (Å3) 1694.2 (4) 1970.9 (4) 1304.2 (2)

Z 4 4 2

Radiation type Mo Kα Mo Kα Mo Kα

μ(mm−1) 0.08 0.09 0.08

Crystal size (mm) 0.30 × 0.26 × 0.24 0.35 × 0.18 × 0.16 0.38 × 0.28 × 0.26

Tmin, Tmax 0.965, 0.985 0.960, 0.990 0.965, 0.988

Number of measured, independent and
observed [I > 2σ(I )] reflections

14,818, 3912, 1657 14,638, 3829, 1668 21,177, 5701, 3479

Rint 0.072 0.086 0.033

(sinθ/λ)max (Å−1) 0.651 0.617 0.639

R[F2 > 2σ(F2)],wR(F2), S 0.055, 0.138, 0.94 0.062,0.161, 0.97 0.046, 0.130, 1.02

No. of reflections 3912 3829 5701

No. of parameters 229 265 339

H-atom treatment H-atom parameters
constrained

�ρmax, �ρmin (eÅ−3) 0.19, −0.15 0.18, −0.21 0.18, −0.21

8.5 g, 0.141 mol, 32 eq). The resulting mixture was further
stirred for 5h at 130 ºC. The resulting mixture was cooled
to ambient temperature and filtered. The crude product was
washed with MeOH to afford a white solid (50–60%).

4,6-Dimethoxy-2,3-diphenyl-(1H)-indole 2a 3,5-(OMe)2
C6H3NH2 1a (2.01g, 13.1mmol, 3 eq), benzoin (2.8g,13.1
mmol, 3 eq); 2a as colorless solid (2.4g, 56%); R f : 0.3
(EtOAc/n-hexane, 2:3); mp: 240–242 ◦C; log ε (λmax in nm):
5.56330 (274), 4.62403 (325); ύmax (cm−1): 3343 (N–H); δH
in ppm (300 MHz): 3.73, 3.92 (3H each, s, OCH3), 6.26 (d,
1H, J = 1.9Hz,H5), 6.57 (1H, d, J = 1.9Hz,H7), 7.22–7.45
(10H, m, 2 × Ph), 8.16 (1H, bs, NH); δC in ppm (75MHz):
55.2, 55.7 (q, OCH3), 86.5, 92.5 (d, C5 and C7), 113.0, 115.0
(s, C3 and C3a), 125.9, 126.9 (d, C4′

and C4′′
), 127.3, 127.8,

128.5, 131.5 (all 2× , d, C2′
,C3′

, C2′′
and C3′′

), 131.9, 133.0
(s, C1′

andC1′′
), 135.9, 137.4 (s, C2 andC7a), 155.3, 157.8 (s,

C4 and C6); LR EIMS (m/z, amu): 329 [M]+· (100%), 314
[M–Me·]+ (54%); CHNS analysis: found for C22H19NO2:
C (79.9%); H (5.7%), N (4.2%), requires: C (80.2%); H
(5.8%); N (4.3%); Crystallographic data: Molecular For-
mula: C22H19NO2, Molecular mass [amu]: 329.38, Crystal
System: Monoclinic, a, b, c [Å]: 11.7435(16), 9.4480(12),

15.940(2), α, β, γ [◦]: 90, 106.682(7), 90, Density of crystal
(calc.) [g/cm3]: 1.291.

4,5,6-Trimethoxy-2,3-diphenyl-(1H)-indole2b3,4,5-(OMe)3
C6H2NH2 1b (2.40g, 13.1mmol, 3 eq), benzoin (2.8g,
13.1mmol, 3 eq); 3b as off white crystalline solid (2.4g,
50%); Rf : 0.25 (EtOAc/n-hexane, 1:7); mp: 218–220 ◦C; log
ε (λmax in nm): 2.89228 (318); ύmax (cm−1): 3363 (N–H);
δH in ppm (300MHz): 3.36, 3.72, 3.87 (3H each, s, OCH3),
6.78 (1H, s, H7), 7.23–7.48 (10H , m, 2× Ph), 8.12 (bs, 1H,
NH); δC in ppm (75MHz): 56.3, 60.9, 61.2 (q, OCH3), 90.7
(d, C7), 113.5, 115.8 (s, C3 and C3a), 126.4, 127.2 (d, C4′

and
C4′′

), 127.9, 128.0, 128.7, 131.3 (all 2× , d, C2′
,C3′

, C2′′
and

C3′′
), 132.9, 133.0, (s, C1′

and C1′′
), 133.4, 136.6 (s, C2 and

C7a), 136.8, 146.7, 151.0 (all s, C4, C5 and C6); LR EIMS
(m/z, amu): 359 [M]+· (100%).

General procedure for formylation of indoles 3a–b

The indole 2a/2b (3mmol, 1 eq) was added to a stirred solu-
tion of POCl3 (0.85mL, 1.4g, 9mmol, 3 eq) in DMF (20mL)
at ambient temperature. The reactionwas stirred at room tem-
perature for 2.5h before being quenched with chilled H2O
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(100 mL) and was basified with aq. NaOH solution (50mL
of 1 M). The resulting precipitate was filtered, washed with
chilled H2O and dried over anhydrous silica in desiccator
under reduced pressure to afford aldehyde (90–92%) as a
yellow solid.

4,6-Dimethoxy-2,3-diphenyl-(1H)-indole-7-carbaldehyde3a
Indole 2a (0.99g), 3a as yellow solid (0.99g, 92%); Rf :
0.18 (CHCl3/n-hexane, 1:4); mp: 180–182 ◦C; log ε (λmax

in nm): 3.770941 (326), 3.59740 (372); ύmax(cm−1): 1608
(C=O), 3298 (N–H); δH in ppm (300MHz): 3.81, 4.00 (3H
each, s, OCH3), 6.15 (1H, s, H

5), 7.23–7.36 (10H, m, 2 Ph),
10.41 (1H, s, D2O non-exchangeable, CHO), 10.59 (1H, bs,
D2O exchangeable, NH); δC in ppm (75MHz): 55.5, 56.4
(q, OCH3), 86.9 (d, C5), 104.2 (s, C7), 112.76, 114.7 (s, C3

and C3a), 126.2, 127.3 (d, C4′
and C4′′

), 127.5, 127.9, 128.5,
131.3 (all 2× , d, C2′

,C3′
, C2′′

and C3′′
), 132.2, 133.3 (s, C1′

and C1′′
), 135.4, 136.8 (s, C2 and C7a), 161.7, 163.0 (s, C4

and C6), 188.2 (d, C8); LR EIMS (m/z, amu): 357 [M]+·
(100%).

4,5,6-Trimethoxy-2,3-diphenyl-(1H)-indole-7-carbaldehyde
3b Indole 2b (1.08g), 3b as yellow solid (0.93g, 80%); Rf :
0.65 (CHCl3/n-hexane, 3:7); mp: 158 ◦C; log ε (λmax in nm):
3.92456 (358); ύmax(cm−1): 1647 (C=O), 3347 (N–H); δH in
ppm (500MHz): 3.62, 3.89, 4.10 (3H each, s, OCH3), 7.26–
7.40 (10H, m, 2Ph), 10.43 (1H, s, D2O non-exchangeable,
CHO), 10.45 (1H, bs, D2O exchangeable, NH); δC in ppm
(125MHz): 61.5 (q, OCH3), 63.2 (2× , q, OCH3), 107.8 (s,
C7), 114.3, 118.8 (s, C3 and C3a), 126.6, 127.7 (d, C4′

and
C4′′

), 128.0, 127.8, 128.6, 131.2 (all 2× , d, C2′
,C3′

, C2′′

and C3′′
), 131.8, 132.0 (s, C1′

and C1′′
), 134.6, 135.2 (s, C2

and C7a), 153.1 (s, C5), 154.0 (2×, s, C4 and C6), 190.0
(d, C8); LR EIMS (m/z, amu): 388.3 [M + 1]+· (26%);
387.3 [M]+· (100%), 372.3 [M–Me]+· (34%); crystallo-
graphic data; molecular formula: C24H21NO4; molecular
mass [amu]: 387.42; crystal system: monoclinic; a, b, c [Å]:
6.4296(7), 19.445(3), 15.858(2); α, β, γ [◦]90: 96.230(6),
90; density of crystal (calc.) [g/cm3] 1.306.

Procedures for the synthesis of imines 4a–15a,
4b–6b, 8b–15b

Procedure-A A mixture of 4,6-dimethoxy-2,3-diphenyl-
1H -indole-7-carbaldehyde3a/4,5,6-trimethoxy-2,3-diphenyl-
1H -indole-7-carbaldehyde 3b (1.0/1.1g, 2.8mmol, 1 eq) and
PhNH2 derivatives (8.4mmol, 3 eq) in dry EtOH (30mL)
with activated molecular sieves, was refluxed under stirring
for 24h. The resulting crystals (70–90%) were thoroughly
washed with MeOH to remove excess of PhNH2derivatives.
Procedure-B To a well stirred mixture of 3a/3b (1.0/1.1g,
2.8 mmol, 1 eq) and lemon juice extract (5mL of 1.9 to 2.2
pH), the PhNH2 derivatives (8.4mmol, 3 eq) were added.
The mixture was stirred at room temperature for 48h. The

reaction mixture was partitioned between H2O (25mL) and
neutralizedCHCl3(3×25mL). The combinedorganic extract
was dried over anhydrousNa2SO4, filtered and concentrated
under reduced pressure to afford reddish yellow solid (70–
90%). This impure product was thoroughly washed with
MeOH, to remove excess PhNH2derivatives, which afforded
pure bright yellow imine.
Procedure-C A homogenous mixture of 3a/3b (1.0/1.1g,
2.8mmol, 1 eq) and PhNH2 derivatives (8.4mmol, 3 eq)
in CHCl3 (1mL) was refluxed in H2O (15mL) for 24h.
Upon the completion of reaction, the resulting solid (70–
95%) was thoroughly washed with MeOH to remove excess
of PhNH2derivatives.
Procedure-D Amixture of solid 3a/3b (1.0/1.1g, 2.8mmol,
1 eq) and PhNH2 derivatives (8.4mmol, 3 eq) was stirred
at 200 ◦C for 24–48h in a flask without stopper. The H2O
produced as a by-product was collected at the neck of the
flask. Upon the completion of reaction, the resulting solid
(70–95%) was thoroughly washed with MeOH to remove
excess of PhNH2derivatives.

N-Phenyl (4,6-dimethoxy-2,3-diphenyl-1H-indol-7-yl)
methanimine 4a PhNH2 (0.77mL, 1.0g); 4a as light yellow
crystals (1.04g, 86%); Rf : 0.33 (CHCl3/n-hexane, 1:4); mp:
255 − −257 ◦C; log ε (λmax in nm): 3.53965 (363); ύmax

(cm−1): 1585 (C=N), 3329 (N–H); δH in ppm (300MHz):
3.80, 3.98 (3H each, s, OCH3), 6.24 (1H, s, H5), 7.21–7.44
(15H, m, 3 Ph), 9.11 (1H, s, HC=N), 11.54 (1H, bs, NH); LR
EIMS (m/z, amu): 433 [M+ 1]+· (25%), 432 [M]+· (100%).

N-(4-Chlorophenyl)(4,6-dimethoxy-2,3-diphenyl-1H-
indol-7-yl)methanimine 5a 4-ClC6H4NH2 (1.1g); 5a as
bright yellow crystals (1.18g, 90%); Rf : 0.30 (CHCl3/n-
hexane, 1:4); mp: 235 ◦C; log ε (λmax in nm): 4.24303
(379); ύmax (cm−1): 1566 (C=N), 3338 (N–H); δH in ppm
(400MHz): 3.78, 3.97 (3H each, s, OCH3), 6.20 (1H, s, H

5),
7.20–7.42 (14H, m, 3 Ph), 9.07 (1H, s, HC=N), 11.41 (1H,
bs, NH); δC in ppm (100MHz): 55.4, 55.7 (q, OCH3), 87.7
(d, C5), 101.9 (s, C7), 113.2, 114.6 (s, C3 and C3a), 122.5
(2× , d, C3′′′

), 126.1, 127.0 (d, C4′
and C4′′

), 127.4, 127.8,
128.5, 131.5 (2× , d, C2′

,C3′
, C2′′

and C3′′
), 129.2 (2× , d,

C2′′′
), 130.5 (s, C4′′′

), 132.9 (2× , s, C1′′
, C1′

), 135.9, 136.6
(s, C2 and C7a), 151.4 (s, C1′′′

), 156.5 (d, C8) 159.1, 159.6
(s, C4 and C6); CHNS analysis: found for C29H23ClN2O2:
C (72.19%), H (4.56%), N (6.08%), requires: C (74.59%), H
(4.96%), Cl (7.59%), N (6.00%), O (6.85%).

N-(3-Chlorophenyl)(4,6-dimethoxy-2,3-diphenyl-1H-
indol-7-yl)methanimine 6a 3-ClC6H4NH2 (0.9mL, 1.1 g);
6a as light yellow crystals (1.02g, 78%); Rf : 0.69 (CHCl3/n-
hexane, 1:1); mp: 185 ◦C; log ε (λmax in nm): 4.02584
(379); ύmax (cm−1): 1566 (C=N), 3338 (N–H); δH in ppm
(400MHz): 3.79, 3.98 (3H each, s, OCH3), 6.22 (1H, s, H

5),
7.14–7.41 (m, 14H), 9.07 (1H, s, HC=N), 11.36 (1H, bs,

123



Molecular Diversity (2018) 22:709–722 717

NH); δC in ppm (100MHz): 55.4, 56.6 (q, OCH3), 87.6
(d, C5), 101.7 (s, C7), 113.0, 114.6 (s, C3 and C3a), 119.8,
121.3, 125.0 (d, C2′′′

, C4′′′
and C6′′′

), 126.1, 126.9 (d, C4′
and

C4′′
), 127.4, 127.8, 128.5, 131.5 (2× , d, C2′

,C3′
, C2′′

and
C3′′

), 130.5 (d, C5′′′
), 132.8, 132.9 (s, C1′

and C1′′
), 134.6

(s, C3′′′
), 135.9, 136.6 (s, C2 and C7a), 151.3 (s, C1′′′

), 157.0
(d, C8), 159.3, 159.8 (s, C4 and C6). CHNS analysis: found
for C29H23ClN2O2: C (72.93%), H (4.56%), N ( 5.69%),
requires: C (74.59%), H (4.96%), Cl (7.59%), N (6.00%), O
(6.85%).

N-(2,3-Dichlorophenyl)(4,6-dimethoxy-2,3-diphenyl-1H-in
dol-7-yl)methanimine 7a 2,3-Cl2C6H3NH2 (1.4g); 7a as
light yellowcrystals (1.3g, 92%);Rf : 0.33 (CHCl3/n-hexane,
1:4); δH in ppm (400MHz): 3.79, 3.97 (3H each, s, OCH3),
6.21 (1H, s, H5), 6.24 (1H, dd, J = 8.4.2.2 Hz, H4), 7.21–
7.44 (12H,m, 3Ph), 9.05 (1H, s,HC=N), 11.28 (1H, bs,NH);
δC in ppm (100MHz): 55.4, 56.6 (q, OCH3), 87.6 (d, C5),
101.7 (s, C7), 113.1, 114.7 (s, C3 and C3a), 121.1, 122.9 (d,
C4′′′

andC6′′′
), 126.2, 127.1 (d, C4′

andC4′′
) 127.5, 127.8 (2×

, d, any two of C2′
,C3′

, C2′′
andC3′′

), 128.4 (s, C3′′′
), 130.7 (d,

C5′′′
), 128.5, 131.5 (2× , d, any two of C2′

,C3′
, C2′′

and C3′′
),

132.7, 132.8 (s, C1′
and C1′′

), 133.0 (s, C2′′′
), 135.8, 136.6

(s, C2 and C7a) 152.5 (s, C1′′′
), 157.2 (d, C8) 159.5, 159.9

(s, C4 and C6). CHNS analysis: found for C29H22Cl2N2O2:
C (66.86%), H (4.75%), N (5.25%), requires: C (69.47%), H
(4.42%), Cl (14.14%), N (5.59%), O (6.38%).

N-(4-methylphenyl)(4,6-dimethoxy-2,3-diphenyl-1H-indol-
7-yl)methanimine 8a 4-MeC6H4NH2 (0.9g); 8a as light yel-
low crystals (1.28g, 98%); Rf : 0.3 (CHCl3/n-hexane, 1:4);
mp: 180 ◦C; log ε (λmax in nm): 4.41288 (372); ύmax (cm−1):
1581 (C=N), 3294 (N–H); δH in ppm (400MHz): 2.38 (3H,
s, ArCH3), 3.79, 3.97 (3H each, s, OCH3), 6.23 (1H, s, H

5),
7.20–7.42 (14H, m, 3 Ph), 9.11 (1H, s, HC=N), 11.56 (1H,
bs, NH); δC in ppm (100MHz): 20.9 (q, CH3), 55.4, 56.8 (q,
OCH3), 87.9 (d, C5), 102.2 (s, C7), 113.2, 114.5 (s, C3 and
C3a), 121.1 (2× , d, C3), 126.0, 126.9 (d, C4′

and C4′′
), 127.4

(2× , d, C2′′′
), 127.8, 128.5, 129.7, 131.5 (all 2× , d, C2′

,C3′
,

C2′′
and C3′′

), 132.5, 133.0 (s, C1′
and C1′′

), 134.8, 136.6
(s, C2 and C7a), 134.6 (s, C4′′′

), 150.3 (s, C1′′′
), 155.5 (d,

C8), 158.6, 159.2 (s, C4 and C6). CHNS analysis: found for
C30H26N2O2: C (76.80%), H (6.10%), N (5.79%), requires:
C (80.69%), H (5.87%), N (6.27%), O (7.17%).

N-(3-Methylphenyl)(4,6-dimethoxy-2,3-diphenyl-1H-indol-7-
yl)methanimine 9a 3-MeC6H4NH2 (0.9mL, 0.9g); 9a as pale
yellow crystals (1.28g, 98%); Rf : 0.78 (CHCl3/n-hexane,
1:1); mp: 193 ◦C; log ε (λmax in nm): 4.16495 (363); ύmax

(cm−1): 1573 (C=N), 3318 (N–H); δH in ppm (400MHz):
2.40 (3H, s, CH3), 3.73, 3.91 (3H each, s, OCH3), 6.17 (1H,
s, H5), 7.04–7.37 (14H, m, 3 Ph), 8.98 (1H, s, HC=N),
11.57(1H, bs, NH); δC in ppm (100MHz): 18.5 (q, CH3),
52.3, 56.5 (q, OCH3), 87.8 (d, C5), 102.3 (s, C7), 113.2,

114.5 (s, C3 and C3a), 118.0 (d, C4′′′
), 125.1 (d, C2′′′

), 126.1
(d, C4′

/C4′′
), 127.0 (2× , d, C4′

/C4′′
and C6′′′

), 127.5, 127.7,
128.5, 131.5 (all 2× , d, C2′

,C3′
, C2′′

andC3′′
), 130.2 (d,C5′′′

),
131.7, 132.9 (s, C1′

and C1′′
), 136.0, 136.7 (s, C2 and C7a),

148.6 (s, C3′′′
), 151.8 (s, C1′′′

), 155.6 (d, C8), 158.7, 159.3
(s, C4 and C6). CHNS analysis: found for C30H26N2O2: C
(69.73%), H (5.21%), N (5.0%), requires: C (80.69%), H
(5.87%), N (6.27%), O (7.17%).

N-(2,3-Dimethylphenyl)(4,6-dimethoxy-2,3-diphenyl-1H-in
dol-7-yl)methanimine10a2,3-Me2C6H3NH2 (1mL, 0.99g);
10a as yellow crystals (1.13g, 88%); Rf : 0.35 (CHCl3/n-
hexane, 1:4); mp: 205 ◦C; log ε (λmax in nm): 4.67862
(364); ύmax (cm−1): 1585 (C=N), 3350 (N–H); δH in ppm
(400MHz): 2.35, 2.39 (3H each, s, ArCH3), 3.78, 3.96 (3H
each, s, OCH3), 6.23 (1H, s, H5), 6.93 (1H, d, J = 7.7 Hz,
H4′′′

), 7.03 (1H, d, J = 7.4 Hz, H6′′′
), 7.12–7.44 (11H, m, 2

Ph and H5′′′
), 9.01 (1H, s, HC=N), 11.62 (1H, bs, NH); δC in

ppm (100MHz): 14.3, 20.3 (q, CH3), 55.4, 56.8 (q, OCH3),
87.9 (d,C5), 102.4 (s, C7), 113.2, 114.5 (s, C3 andC3a), 121.1
(d, C4′′′

), 126.1, 126.2, 126.7, 126.9 (all d, C4′
,C4′′

, C5′′′
and

C6′′′
), 127.4, 127.8, 128.5, 131.5 (all 2× , d, C2′

,C3′
, C2′′

and
C3′′

), 129.9 (s, C2′′′
/C3′′′

), 132.8, 132.9 (s, C1′
andC1′′

), 136.1
(s, C2′′′

/C3′′′
), 136.7, 137.3 (s, C2 and C7a) 152.1 (s, C1′′′

),
155.7 (d, C8) 158.6, 159.2 (s, C4 and C6). CHNS analysis:
found for C31H28N2O2: C (77.03%), H (5.12%), N (5.49%),
requires: C (80.84%), H (6.13%), N (6.08%), O (6.95%).

N-(4-Methoxyphenyl)(4,6-dimethoxy-2,3-diphenyl-1H-
indol-7-yl)methanimine 11a 4-MeOC6H4NH2 (1.0g); 11a as
greenish yellow crystals (1.15g, 89%); Rf : 0.61 (CHCl3/n-
hexane, 1:1); mp: 171 ◦ C; log ε (λmax in nm): 3.65085
(379); ύmax (cm−1): 1543 (C=N), 3345 (N–H); δH in ppm
(400MHz): 3.69 (3H, s, OCH3 at 4”’), 3.76, 3.89 (3H each,
s, OCH3), 6.14 (1H, s, H5), 6.87 (2H, d, J = 8.2, H3′′′

),
7.12–7.34 (12H, m, 2 Ph and H2′′′

), 9.03 (1H, s, HC=N),
11.50 (1H, bs, NH); δC in ppm (100MHz): 55.3, 55.6, 56.8
(all q, OCH3), 87.9 (d, C5), 102.2 (s, C7), 113.1, 114.5 (s, C3

and C3a), 114.4 (2× , d, C3′′′
), 122.2 (2× , d, C2′′′

), 126.1,
126.9 (d, C4′

and C4′′
), 127.4, 127.8, 128.5, 131.5 (all 2× , d,

C2′
,C3′

, C2′′
and C3′′

), 132.9, 133.1 (s, C1′
and C1′′

), 136.1,
136.6 (s, C2 and C7a), 146.0 (s, C1′′′

), 154.6 (d, C8), 154.6 (s,
C4), 158.5, 159.1 (s, C4′′′

and C6). CHNS analysis: found for
C30H26N2O3: C (74.04%), H (4.97%), N (4.88%), requires:
C (77.90%), H (5.67%), N (6.06%), O (10.38%).

N-(3,4,5-Trimethoxyphenyl)(4,6-dimethoxy-2,3-diphenyl-1
H-indol-7-yl) methanimine 12a 3,4,5-(OMe)3C6H2NH2

(1.54g); 12a as shiny yellow crystals (1.27g, 87%); Rf : 0.08
(CHCl3/n-hexane, 1:4); mp: 215 ◦C; log ε (λmax in nm):
4.07061 (379); ύmax (cm−1): 1581 (C=N), 3337 (N–H); δH
in ppm (400MHz): 3.73, 3.80, 3.92 (3H each, s, OCH3), 3.86
(6H, s, OCH3), 6.17 (1H, s, H

5), 6.44 (2H, s, H2′′′
and H6′′′

),
7.12–7.36 (10H, m, 2 Ph), 8.99 (1H, s, HC=N), 11.33 (1H,
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bs, NH); δC in ppm (100MHz): 55.4, 56.2, 56.3, 56.8, 61.1
(q, OCH3), 87.7 (d, C5), 98.5 (2× , d, C2′′′

and C6′′′
), 101.9

(s, C7), 113.1, 114.6 (s, C3 and C3a), 126.1, 127.0 (d, C4′
and

C4′′
), 127.5, 127.9, 128.5, 131.5 (all 2× , d, C2′

,C3′
, C2′′

and
C3′′

), 133.0 (2× , s, C1′
and C1′′

), 136.0, 137.6 (s, C2 and
C7a), 149.4 (s, C1′′′

), 153.6 (d, C8), 156.0 (3× , s, C3′′′
, C4′′′

,
C5′′′

), 158.9, 159.4 (s, C4 and C6). CHNS analysis: found for
C32H30N2O5: C (72.57%), H (5.09%), N (4.69%), requires:
C (73.55%), H (5.79%), N (5.36%), O (15.31%).

N-(4-Nitrophenyl)(4,6-dimethoxy-2,3-diphenyl-1H-indol-7
-yl)methanimine 13a 4-NO2C6H4NH2 (1.2g); 13a as rusty
yellow crystals (1.31g, 98%); Rf : 0.52 (CHCl3/n-hexane,
1:3); mp: 266 ◦C; log ε (λmax in nm) 3.98706 (351); ύmax

(cm−1): 1583 (C=N), 3345 N–H); δH in ppm (400MHz):
3.82, 3.98 (3H each, s, OCH3), 7.08–7.29 (10H, m, 2
Ph), 7.36 (2H, d, J = 5.0Hz,H2′′′

), 8.25 (2H, d, J =
5.0Hz,H3′′′

), 9.14 (1H, s, HC=N), 11.25 (1H, bs, NH).

N-(3-Nitrophenyl)(4,6-dimethoxy-2,3-diphenyl-1H-indol-7
-yl)methanimine 14a 3-NO2C6H4NH2 (1.2g); 14a as orange
crystals (1.1g, 82%); Rf : 0.18 (CHCl3/n-hexane, 1:1); mp:
268 ◦C; log ε (λmax in nm): 4.15902 (347); ύmax (cm−1):
1578 (C=N), 3310 (N–H); δH in ppm (400MHz): 3.80, 3.99
(3H each, s, OCH3), 6.22 (1H, s, H

5), 7.22–7.58 (12H, m, 3
Ph), 8.03 (1H, d, J = 7.8 Hz, H4′′′

), 8.10 (1H, t, J = 2.0 Hz,
H2′′′

), 9.13 (1H, s, HC=N), 11.26 (1H, bs, NH); δC in ppm
(100MHz): 55.4, 56.5 (q, OCH3), 87.5 (d, C5), 101.7 (s, C7),
113.0, 114.8 (s, C3 and C3a), 115.6 (d, C5′′′

), 119.5 (d, C6′′′
),

126.2, 127.1 (d, C4′
and C4′′

), 127.5, 127.8, 128.6, 131.4
(all 2× , d, C2′

,C3′
, C2′′

and C3′′
), 128.1 (d, C4′′′

), 129.7 (d,
C2′′′

), 132.8, 133.0 (s, C1′
and C1′′

), 135.7, 136.6 (s, C2 and
C7a), 149.1 (s, C3), 154.2 (s, C1), 157.2 (d, C8), 159.8, 160.2
(s, C4 and C6). CHNS analysis: found for C29H23N3O4: C
(69.59%), H (4.57%), N (7.84%), requires: C (72.94%), H
(4.85%), N (8.80%), O (13.40%).

N-(4-Bromophenyl)(4,6-dimethoxy-2,3-diphenyl-1H-indol-
7-yl)methanimine 15a 4-BrC6H4NH2 (1.5g); 15a as dark
yellow crystals (1.26g, 88%); Rf : 0.71 (EtOAc/CHCl3/n-
hexane, 1:3:6); mp: 246 ◦C; log ε (λmax in nm): 4.46683
(382); ύmax, cm−1 (KBr): 1578 (C=N), 3336 (N–H); δH in
ppm (400MHz): 3.73, 3.91 (3H each, s, OCH3), 6.15 (1H,
s, H5), 7.09 (1H, d, J = 8.7Hz,H3′′′

), 7.13–7.35 (10H, m,
2 Ph), 7.43 (1H, d, J = 8.0Hz,H2′′′

), 9.00 (1H, s, HC=N),
11.33 (1H, bs, NH); δC in ppm (100MHz): 55.4, 56.6 (q,
OCH3), 87.6 (d, C5), 101.9 (s, C7), 113.0, 114.6 (s, C3 and
C3a), 118.5 (s, C4′′′

), 123.0 (2× , d, C3′′′
), 126.1, 127.0 (d,

C4′
and C4′′

), 127.5, 131.5, 128.6, 131.4 (all 2× , d, C2′
,C3′

,
C2′′

and C3′′
), 132.1 (2× , d, C2′′′

), 132.9, 133.0 (s, C1′
and

C1′′
), 135.9, 136.6 (s, C2 and C7a), 151.9 (s, C1′′′

), 156.5 (d,
C8), 159.1, 159.6 (s, C4 and C6).

N-Phenyl(4,5,6-trimethoxy-2,3-diphenyl-1H-indol-7-yl)
methanimine 4b PhNH2 (0.77mL, 1.0g); 4b as yellow crys-

tals (1.08g, 90%); Rf : 0.44 (CHCl3/n-hexane, 1:1); mp:
168 ◦C; log ε (λmax in nm): 5.25953 (364); ύmax (cm−1):
1570 (C=N), 3390 (N–H); δH in ppm (500MHz): 3.55, 3.90,
4.04 (3Heach, s,OCH3), 7.21–7.43 (15H,m, 3Ph), 9.04 (1H,
s, HC=N), 11.38 (1H, bs, NH); δC in ppm (125MHz): 61.3 ,
61.6, 62.9 (q, OCH3), 108.7 (s, C7), 114.3, 118.8 (s, C3 and
C3a), 121.2 (4× , d, C2′′′

and C3′′′
), 126.4, 127.4 (d, C4′

and
C4′′

), 127.7, 129.3, 128.6, 131.3 (2× , d, C2′
, C3′

, C2′′
and

C3′′
), 128.0 (d, C4′′′

), 131.7, 132.5 (s, C1′
and C1′′

), 134.9,
135.7 (s, C2 and C7a), 142.2 (s, C1′′′

), 151.3, 152.5, 153.5
(s, C4, C5 and C6), 156.7 (d, C8). CHNS analysis: found for
C30H26N2O3: C (77.53%), H (5.61%), N (5.81%), requires:
C (77.90%), H (5.67%), N (6.06%), O (10.38%).

N-(4-Chlorophenyl)(4,5,6-trimethoxy-2,3-diphenyl-1H -ind
ol-7-yl)methanimine 5b -ClC6H4NH2 (1.1g); 5b as light yel-
low crystals (1.08g, 84%); Rf : 0.60 (CHCl3/n-hexane, 1:4);
mp: 150 ◦ C; log ε (λmax in nm): 5.39486 (364); ύmax (cm−1):
1595 (C=N), 3350 (N–H); δH in ppm (400MHz): 3.50, 3.80,
3.99 (3Heach, s,OCH3), 7.17–7.36 (14H,m, 3Ph), 8.95 (1H,
s, HC=N), 11.22 (1H, bs, NH); δC in ppm (100MHz): 61.4
, 61.6, 63.0 (all q, OCH3), 108.3 (s, C7), 114.3, 118.6 (s, C3

and C3a), 122.5 (2× , d, C3′′′
), 126.5, 127.4 (d, C4′

and C4′′
),

127.8, 128.0, 128.7 (all 2× , d, any three of C2′
, C3′

, C2′′

and C3′′
), 129.4 (2× , d, C2′′′

), 131.3 (higher than 2× , s of
C4′′′

and d of C2′
/C3′

/C2′′
/C3′′

merged), 131.7, 132.6 (s, C1′′
,

C1′
), 134.6, 135.6 (s, C2 and C7a), 140.0 (s, C1′′′

), 150.9,
152.1, 153.4 (all s, C4, C5 and C6), 157.0 (d, C8). CHNS
analysis: found for C30H25ClN2O3: C (69.99%), H (4.76%),
N (5.04%), requires: C (72.50%), H (5.07%), Cl (7.13%), N
(5.64%), O (9.66%).

N-(3-Chlorophenyl)(4,5,6-trimethoxy-2,3-diphenyl-1H-ind
ol-7-yl)methanimine 6b 3-ClC6H4NH2 (0.9mL, 1.1 g); 6b
as bright yellow crystals (1.18g, 92%); Rf : 0.60 (CHCl3/n-
hexane, 1:1); mp: 149 ◦C; log ε (λmax in nm): 4.70187
(370); ύmax (cm−1): 1558 (C=N), 3348 (N–H); δH in ppm
(500MHz): 3.59, 3.92, 4.08 (3H each, s, OCH3), 7.24–7.45
(14H, m, 3 Ph), 9.02 (1H, s, HC=N), 11.28 (1H, bs, NH); δC
in ppm (125MHz): 61.3 , 61.6, 63.0 (all q, OCH3), 108.0 (s,
C7), 114.5, 118.7 (s, C3 and C3a), 119.7, 121.3 (d, C4′′′

and
C6′′′

), 125.7 (d, C2′′′
), 126.5, 127.5 (d, C4′

and C4′′
), 127.7,

128.0, 128.6, 131.3 (all 2× , d, C2′
, C3′

, C2′′
and C3′′

), 130.3
(s, C5′′′

), 131.7, 132.5 (s, C1′
and C1′′

), 134.4 (s, C3′′′
), 134.9,

135.6 (s, C2 and C7a) 144.0 (s, C1′′′
), 151.0, 152.0, 153.4 (all

s, C4, C5 and C6), 157.6 (d, C8).

N-(4-methylphenyl)(4,5,6-trimethoxy-2,3-diphenyl-1H-indol-
7-yl)methanimine 8b 4-MeC6H4NH2 (0.9g); 8b as greenish
yellow crystals (1.08g, 88%); Rf : 0.63 (CHCl3/n-hexane,
1:1); mp: 154 ◦C; log ε (λmax in nm): 4.18727 (369); ύmax

(cm−1): 1589 (C=N), 3387 (N–H); δH in ppm (400MHz):
2.45 (3H, s, ArCH3), 3.60, 3.90, 4.09 (3H each, s, OCH3),
7.30–7.50 (14H,m, 3Ph), 9.11 (1H, s,HC=N), 11.45 (1H, bs,
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NH); δC in ppm (100MHz): 21.1 (q, CH3), 61.4 , 61.6, 63.0
(all q, OCH3), 108.6 (s, C7), 114.1, 118.6 (s, C3 and C3a),
121.1 (2× , d, C3′′′

), 126.4, 127.3 (d, C4′
and C4′′

), 127.7
127.9, 128.6, 131.3 (all 2× , d, C2′

, C3′
, C2′′

and C3′′
), 129.9

(2× , d, C2′′′
), 131.8, 132.7 (s,C1′

andC1′′
), 134.6 (s,C2/C7a),

135.7 (2× , s, C2/C7a and C4′′′
), 140.1 (s, C1′′′

), 149.8, 151.4,
153.0 (all s, C4, C5 and C6), 156.0 (d, C8). CHNS analysis:
found for C31H28N2O3: C (77.23%), H (5.57%), N (4.84%),
requires: C (78.13%), H (5.92%), N (5.88%), O (10.07%).

N-(3-Methylphenyl)(4,5,6-trimethoxy-2,3-diphenyl-1H-
indol-7-yl)methanimine 9b 3-MeC6H4NH2 (0.9mL, 0.9 g);
9b asLight yellow crystals (1.18g, 96%);Rf : 0.69 (CHCl3/n-
hexane, 1:1); mp: 165 ◦C; log ε (λmax in nm): 4.58235
(364); ύmax (cm−1): 1580 (C=N), 3348 (N–H); δH in ppm
(500MHz): 2.45 (3H, s, ArCH3), 3.56, 3.93, 4.06 (3H each,
s, OCH3), 7.12 (1H, d, J = 7.5Hz,H4′′′

), 7.20 (1H, d,
J = 7.5Hz,H6′′′

), 7.22–7.47 (12H, m, 2 Ph, H2′′′
and H5′′′

),
9.01 (1H, s, HC=N), 11.47 (1H, bs, NH).

N-(2,3-Dimethylphenyl)(4,5,6-trimethoxy-2,3-diphenyl-1H-
indol-7-yl)methanimine10b2,3-Me2C6H3NH2 (1mL, 0.99g);
10b as darkyellowcrystals (1.11g, 88%);Rf : 0.63 (CHCl3/n-
hexane, 1:1); mp: 186 ◦C; log ε (λmax in nm): 4.80254
(362); ύmax (cm−1): 1570 (C=N), 3336 (N–H); δH in ppm
(500MHz): 2.28, 2.31 (3H each, s, ArCH3), 3.46, 3.83, 3.95
(3H each, s, OCH3), 6.86 (1H, d, J = 7.5 Hz, H4′′′

), 7.01
(1H, d, J = 7.5 Hz, H6′′′

), 7.13–7.36 (11H, m, 2 Ph and
H5′′′

), 8.87 (1H, s, HC=N), 11.37 (1H, bs, NH); δC in ppm
(125MHz): 14.2, 20.2 (q, CH3), 61.4 , 61.6, 63.0 (q, OCH3),
108.8 (s, C7), 114.4, 118.8 (s, C3 and C3a), 116.1 (d, C4′′′

),
126.4, 127.4 (d, C4′

and C4′′
), 127.8 (4× , d, C5′′′

,C6′′′
and

any two of C2′
, C3′

, C2′′
, C3′′

), 128.6, 131.3 (2× , d, any two
of C2′

, C3′
, C2′′

, C3′′
), 128.6 (s, C2′′′

), 132.0, 131.7 (s, C1′

and C1′′
), 135.2, 135.7 (s, C2 and C7a), 138.5 (s, C3′′′

), 141.1
(s, C1′′′

), 150.5, 151.9, 153.1 (all s, C4, C5 and C6), 156.2 (d,
C8). CHNS analysis: found for C32H30N2O3: C (77.84%),
H (5.16%), N (4.81%), requires: C (78.34%), H (6.16%),
N (5.71%), O (9.78%); Crystallographic data: molecular
formula: C32H30N2O3; molecular mass [amu]: 490.58; crys-
tal system: triclinic; a, b, c [Å]: 10.4673(10), 11.3389(12),
11.9563(11); α, β, γ [◦]:111.371(3), 98.510(3), 90.301(3);
density of crystal (calc.) [g/cm3]: 1.249.

N-(4-Methoxyphenyl)(4,5,6-trimethoxy-2,3-diphenyl-1H
-indol-7-yl)methanimine 11b 4-MeOC6H4NH2 (1.0g); 11b
as greenish yellowcrystals (1.11g, 87%);Rf : 0.54 (CHCl3/n-
hexane, 1:1); mp: 157 ◦C; log ε (λmax in nm): 4.37780
(375); ύmax (cm−1): 1591 (C=N), 3336 (N–H); δH in ppm
(400MHz): 3.47 (3H, s, OCH3 at C

4′′′
), 3.78, 3.84, 3.96 (3H

each, s, OCH3), 6.91 (2H, d, J = 8.8,H3′′′
), 7.18-7.37, (12H,

m, 2 Ph, and H2′′′
), 8.98 (1H, s, HC=N), 11.33 (1H, bs, NH);

δC in ppm (100MHz): 55.6, 61.4 , 61.7, 63.0 (q, OCH3),
108.6 (s, C7), 114.2, 118.7 (s, C3 and C3a), 114.5 (2× , d,

C3′′′
), 122.3 (2× , d, C2′′′

), 126.4, 127.3 (d, C4′
and C4′′

),
127.7, 127.9, 128.6, 131.3 (2× , d, C2′

, C3′
, C2′′

, C3′′
), 131.7,

132.7 (s, C1′
and C1′′

), 134.5, 135.7 (s, C2 and C7a), 140.0 (s,
C1′′′

), 145.4, 151.2, 152.8 (s, C4, C5 and C6), 154.8 (d, C8),
158.2 (s, C4′′′

). CHNS analysis: found for C31H28N2O3: C
(74.83%), H (5.07%), N (5.14%), O (10.99%). requires: C
(75.59%), H (5.72%), N (5.69%), O (12.99%).

N-(3,4,5-Trimethoxyphenyl)(4,5,6-trimethoxy-2,3-diphenyl-
1H-indol-7-yl)methanimine 12b 2,3,4-(MeO)3C6H2NH2

(1.54g); 12b as dark yellow crystals (1.27g, 89%); Rf : 0.21
(CHCl3/n-hexane, 1:1); mp: 163 ◦C; log ε (λmax in nm):
4.33289 (372); ύmax (cm−1): 1576 (C=N), 3379 (N–H); δH in
ppm (400MHz): 3.50, 3.81, 3.84, 3.98 (3H each, s, OCH3),
3.86 (6H, s, OCH3at C

3′′′
and C5′′′

), 6.45 (2H, s, H2′′′
and

H6′′′
), 7.17–7.36 (10H, m, 2 Ph), 8.94 (1H, s, HC=N), 11.12

(1H, bs, NH); δC in ppm (100MHz): 56.3 (2× , q, OCH3at
C3′′′

and C5′′′
), 61.0, 61.4, 61.7, 63.0 (q, OCH3), 98.5 (2× ,

d, C2′′′
and C6′′′

), 108.3 (s, C7), 114.0, 118.7 (s, C3 and C3a),
126.4, 127.4 (d, C4′

and C4′′
), 127.7, 128.0, 128.6, 131.3

(2× , d, C2′
, C3′

, C2′′
and C3′′

), 131.7, 132.6 (2× , s, C1′
and

C1′′
), 134.6, 135.5 (s, C2 and C7a), 140.0 (s, C1′′′

), 148.9,
151.7, 153.1 (s, C4, C5 and C6), 153.7(d, C8), 156.3 (3× ,
s, C3′′′

, C4′′′
, C5′′′

). CHNS analysis: found for C32H30N2O5:
C (72.25%), H (4.99%), N (5.02%), requires: C (73.55%), H
(5.79%), N (5.36%), O (15.31%).

N-(4-Nitrophenyl)(4,5,6-dimethoxy-2,3-diphenyl-1H-indol-
7-yl)methanimine 13b 4-NO2C6H4NH2 (1.2g); 13b as dark
yellow crystals (1.07g, 82%); Rf : 0.62 (CHCl3/n-hexane,
1:1); mp: 168 ◦C; log ε (λmax in nm): 4.04059 (375); ύmax

(cm−1): 1584 (C=N), 3356 (N–H); δH in ppm (400MHz):
3.59, 3.88, 4.07 (3H each, s, OCH3), 7.22–7.38 (12H, m, 2
Ph, H5′′′

and H6′′′
), 7.40 (1H, d, J = 7.8Hz,H4′′′

), 8.34 (1H,
t, J = 2.0 Hz, H2′′′

), 9.10 (1H, s, HC=N), 11.14 (1H, bs,
NH).

N-(3-Nitrophenyl)(4,5,6-trimethoxy-2,3-diphenyl-1H-
indol-7-yl)methanimine 14b 3-NO2C6H4NH2 (1.2g); 14b as
golden yellow crystals ( 1.25g, 95%); Rf : 0.51 (CHCl3/n-
hexane, 1:1); mp: 179 ◦C; log ε (λmax in nm): 5.16388
(388); ύmax (cm−1): 1576 (C=N), 3350 (N–H); δH in ppm
(500MHz): 3.53, 3.84, 4.00 (3H each, s, OCH3), 7.19–7.29
(10H, m, 2 Ph), 7.36 (2H, d, J = 5.0Hz,H2′′′

), 8.25 (2H, d,
J = 5.0 Hz, H3′′′

), 8.96 (1H, s, HC=N), 10.98 (1H, bs, NH);
δC in ppm (125MHz): 61.3, 61.5, 62.9 (q, OCH3), 107.8
(s, C7), 114.6, 118.7 (s, C3 and C3a), 121.8 (2× , d, C2′′′

),
125.2 (2× , d, C3′′′

), 127.6, 127.7 (d, C4′
and C4′′

), 127.8,
127.9, 128.7, 131.2 (2× , d, C2′

, C3′
, C2′′

and C3′′
), 131.2,

131.8 (s, C1′
and C1′′

), 134.7, 135.4 (s, C2 and C7a), 145.4 (s,
C4/C5/C6), 153.2 (2× , s, any two of C4, C5 and C6), 154.1
(s, C4′′′

), 159.1 (d of C8 and s of C1 merged).

N-(4-Bromophenyl)(4,5,6-trimethoxy-2,3-diphenyl-1H-indol-
7-yl)methanimine 15b 4-BrC6H4NH2 (1.5g); 15b as orange
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yellow crystals (1.31g, 94%); Rf : 0.66 (CHCl3/n-hexane,
1:1); mp: 152 ◦C; log ε (λmax in nm): 4.78249 (373); ύmax

(cm−1): 1583 (C=N), 3356 (N–H); δH in ppm (500MHz):
3.59, 3.92, 4.07 (3H each, s, OCH3), 7.23–7.48 (14H, m, 3
Ph), 9.09 (1H, s, HC=N), 11.49 (1H, bs, NH). CHNS anal-
ysis: found for C30H25BrN2O3: C (64.25%), H (4.09%), N
(5.12%), requires: C (66.55%), H (4.65%), Br (14.76%), N
(5.17%), O (8.86%).
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