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Abstract In the present study, five important binary finger-
printing techniques were used to model novel flavones for
the selective inhibition of Tankyrase I. From the fingerprints
used: the fingerprint atom pairs resulted in a statistically
significant 2D QSAR model using a kernel-based partial
least square regression method. This model indicates that the
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presence of electron-donating groups positively contributes
to activity, whereas the presence of electron withdrawing
groups negatively contributes to activity. This model could
be used to developmore potent as well as selective analogues
for the inhibition of Tankyrase I.
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Introduction

Molecular similarity is one of the highly applied concepts
in rational drug design. It assumes that structurally similar
fragments will elicit a similar biological response. The con-
cept of bioisosterism is closely related tomolecular similarity
where substructures may be interchanged with retention of
some degree of biological activity. Assessment of molec-

ular similarity is a tedious process. Molecular graphs and
molecular fingerprints can be used systematically to find
special chemical features responsible for the biological activ-
ity. Fingerprints are binary vectors representing specific key
structures in a chemical entity. Each bit score is represented
by a binary score of either 1 or 0, where 1 represents the
presence of a specific chemical feature, while 0 represents
the absence of such feature. Computationally advanced soft-
ware systems use either 32- or 64-bit systems. In 32-bit
systems, the probability of encountering the same frag-
ment is 1/232 and for 64-bit applications the probability is
1/264. The probability of collision is minimized by using
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advanced computational software which gives statistically
significant results. Molecular similarity may be transcribed
into a numerical value and can be applied for similarity mea-
surement, virtual screening methods and cluster analysis. In
the present study, five different types of binary fingerprinting
methods were used to predict the structural requirements for
the selective inhibition of Tankyrase I on a series of substi-
tuted flavones. The suitability of the particular fingerprint for
the selected molecules will be assessed by kernel-based par-
tial least square values. Although Tankyrases have become
attractive targets for anticancer agents, there are few effec-
tive drugs that inhibit Tankyrase. This is why this simulation
study was carried out.

Cancer is one of the most concerning diseases of the
modern world. All the cancers have a common character-
istic feature known as a dysregulated cell cycle machinery.
Among all cancers, the colorectal cancer (crc) has attracted
our attention. The recent literature reports that colorectal
cancer (crc) has the second highest mortality rate in the can-
cer segment [1]. The exact molecular mechanisms for the
development of colorectal cancer have been deduced. The
single major factor responsible for the development of col-
orectal cancer is the over activation of the Wnt signaling
pathway by its central activator beta-catenin [2,3]. Under
normal conditions, β-catenin levels are highly regulated by a
feedbackmechanism involving a β-catenin degradation com-
plex [4]. Gene mutation causes the disruption of β-catenin
degradation components. This leads to translocation of β-
catenin into the nucleus, causing abnormal activation of
transcription factors and gene networks responsible for the
development of colorectal cancers. There is an urgent need
to develop small molecule inhibitors for the selective inhi-
bition of the Wnt signaling pathway, thereby increasing the
levels of β-catenin degradation complex to combat colorectal
cancer.

Tankyrases are members of the poly ADP-ribose poly-
merase (PARP) family of proteins. They have attracted
attention because of their role in axin down regulation and
stabilization of β-catenin. The post-translational modifica-
tion involves the cleavage of PARP proteins, which results in
splitting of NAD into ADP ribose and nicotinamide units.
Poly ADP-ribose polymerases are responsible for many
important biochemical signaling process in a cell machin-
ery. The recently developed Tankyrase inhibitors were able
to increase axin levels and down regulate β-catenin lev-
els [5].

Recent literature also gave us insight about the advantage
of selective inhibition of Tankyrase I. Partial knockdown of
Tankyrase I leads to the shorteningof telomere length [6]. The
combination of selective Tankyrase I inhibitors with other
class of drugs could be a viable strategy for the treatment of
cancers like colorectal cancers.

Extensive literature search for small molecule inhibitors
of Tankyrase I arouse our interest in the flavone phar-
macophore due its diverse biological activity, and simple
scaffold Flavones are naturally occurring secondary plant
metabolites categorized under the broad class of flavonoids.
Theypossess various degrees of free radical scavengingprop-
erties and are present in a wide variety of edible plants and
vegetables. Flavonoids have also been shown to possess anti-
tumor effect in various cancer cell lines. Inhibition of TNKS1
with flavone and its antiproliferative properties have already
been reported. The present study is based on work reported
in the literature [7].

Materials and methods

Selection of data set

In the present study, a data set of 25 out of 30 compounds was
chosen from the literature [7] based on their structural diver-
sity and activity. A training set of 19 molecules (70% of total
molecules) was used to generate a kernel-based partial least
square regression equation. The training set molecules were
selected based on their structural diversity, activity range of 3
log order difference and activities covering the entire range.

To assess the predictive accuracy of the generated kernel-
based regression model, a set of 6 molecules were chosen for
the test set. The test set was selected in such a way that it is a
representation of the training set. The training set was used
to generate a 2D QSAR model, and the test set was used to
validate the generated model.

Activity values (IC50) from the literature were converted
to pIC50 (logarithmic scale) using options available in the
calculator. The logarithmic activity is termed as pact.

Importing the energy minimized structures along with
their logarithmic scale activity

The structures were imported into Maestro [8], screened for
errors, valence parameters, invalid chemistry and duplicate
structures in order to avoid interferences in the generation of
the model.

Selection and incorporation of various molecular
properties

Molecular descriptors were incorporated using the option
molecular properties available with the Canvas 2.9 interface.
There are main four types of descriptors in Canvas, namely
physicochemical descriptors, topological descriptors, ligfil-
ter descriptors and Qik-prop descriptors.
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Feature selection

Feature selection is based on a hierarchical clustering to iden-
tify subsets of properties that are representative of a larger set.
Sixty descriptors were incorporated and explained briefly.

1. Adsorbability index (AI) Amolecular descriptor, which
predicts the activated carbon adsorption of chemical
substances from aqueous solutions. The adsorbability
index [9] for amolecule is calculated by the expression:

AI =
∑

i

Ai +
∑

i

Ii

where A represents the atomic or group contributions
of increasing or decreasing adsorbability in the chem-
ical species and I represents the necessary correction
factors.

2. ALOGP One of the most applied universal lipophilicity
descriptors derived directly from experimental data.

3. Atomic composition indices The descriptor possess-
ing zero-dimensional attribute deduced directly from
the composition of chemical entities and also provides
information on the molecular weight and atomic com-
position of the chemical entity.

4. Total information index on atomic composition (IAC)

This descriptor calculates total information on atomic
composition of a molecule directly from its molecular
formula including hydrogen atoms [10].
The atomic composition index (IAC) is calculated using
the formula:

IAC = Ah · log2Ah −
∑

g

Ag · log2Ag

Ah total sum of atoms including hydrogens, Ag total
sum of atoms which belongs to the gth chemical ele-
ment.

5. Nuclear information content descriptor (INUCL) An
important descriptor which gives the information on
the total number of protons and neutrons present in all
the types of nuclei in a given molecule.
It is expressed by the following formula:

INUCL =
A∑

i=1

I n,pi

6. Information index on size (ISIZE) This descriptor pro-
vides complete information content based on the atomic
number [11].
It is expressed as:

ISIZE = Ah · log2Ah

Ah is the atom number with or without considering
hydrogen atoms.

7. Autocorrelation descriptors (ACL) This molecular
descriptor is based on the autocorrelation function
expressed as

ACL =
b∫

a

f (x) · f (x + l) · dx

8. Topological electronic descriptors (T E )These descrip-
tors [12] are based on partial atomic charges (q) and are
expressed as

T E =
A−1∑

i=1

A∑

j=i+1

|qi − q j |
r2i j

9. Partial charge weighted topological electronic index
(PCWTE) A molecular descriptor based on the topo-
logical electronic index. It is expressed as

PCWTE = 1

Q−
max

·
B∑

b=1

(
|qi − q j |

r2i j

)

b

10. Local dipole index (D) This descriptor calculates aver-
age differences in the magnitude of charge between
overall bonded atom pairs (i–j) [13] and is expressed as

D =
∑

b |qi − q j |b
B

11. Atom in structure invariant index (ASII) It belongs to
a class of charge-related indices derived from hydro-
gen depleted molecular graphs. It is grouped under the
category of global descriptors.
It is expressed as

ASIIi = ASII0i − hi + qi

12. Charged partial surface area descriptors (CPSA)These
are the set of descriptors [14] that correlate shape
and electronic information content to identify chem-
ical compounds and to quantitate the polar interaction
between molecules. They mainly consider the Vander
Walls radius as a key feature for the quantitation.

13. Partial negative surface area (PNSA1) It describes the
information on total area of solvent-accessible surface
area, comprised of all the negatively charged atoms.
It is expressed as

PNSA1 =
∑

a−
SA−

a
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14. Partial positive surface area (PPSA1) It is the total
summation of the solvent-accessible surface area of all
the positively charged atoms.
It is expressed as

PPSA1 =
∑

a+
SA+

a

The sum is restricted to positively charged atoms (a+)

15. Total charge weighted negative surface area (PNSA2)

The product of partial negative solvent-accessible sur-
face area to the total negative charge (Q−).
It is expressed as

PNSA2 = Q− ·
∑

a−
SA−

a

16. Total charge weighted positive surface area (PPSA2)

The product of partial positive solvent-accessible sur-
face area multiplied by the total positive charge (Q+).
It is expressed as

PPSA2 = Q+ ·
∑

a+
SA+

a

17. Atomic charge weighted negative surface area (PNSA3)

The product of atomic solvent-accessible surface areas
and partial charges q−

a over all negatively charged
atoms.
It is expressed as

PNSA3 =
∑

a−
q−

a · SA−
a

18. Atomic charge weighted positive surface area (PPSA3)

The summation of the products of atomic solvent-
accessible surface areas and partial charges q+

a over
all positively charged atoms.
It is expressed as

PPSA3 =
∑

a+
q+

a · SA+
a

19. Difference in the charged partial surface area (DPSA1)

The difference between partial positive solvent-
accessible surface area and partial negative solvent-
accessible surface area.
It is expressed as

DPSA1 = PPSA1 − PNSA1

20. Difference in the total charge weighted surface area
(DPSA2)The difference between total chargeweighted
positive solvent-accessible surface area and total charge
weighted negative solvent-accessible surface area.

It is expressed as

DPSA2 = PPSA2 − PNSA2

21. Difference in the atomic charge weighted surface
area (DPSA3) The difference between atomic charge
weighted positive solvent-accessible surface area and
atomic charge weighted negative solvent-accessible
surface area.
It is expressed as

DPSA3 = PPSA3 − PNSA3

22. Relative negative charge (RNCG) Partial charge of the
most negative atom divided by total negative charge.
It is expressed as

RNCG = Q−
max

Q−

23. Relative positive charge (RPCG) Partial charge of the
most positive atom divided by total positive charge.
It is expressed as

RPCG = Q+
max

Q+

24. Relative negatively charged surface area (RNCS) The
solvent-accessible surface area of the most negative
atom divided by the relative negative charge (RNCG).
It is expressed as

RNCS = SA−
max

RNCG

25. Relative positively charged surface area (RPCS) The
solvent-accessible surface area of the most positive
atom divided by the relative positive charge (RPCG).
It is expressed as

RPCS = SA+
max

RPCG

26. Total hydrophobic surface area (TASA) The sum of
solvent-accessible surface areas of atoms with absolute
value of partial charges less than 0.2.
It is expressed as

TASA =
∑

a

SAa

27. Total polar surface area (TPSA) The sum of solvent-
accessible surface areas of atoms with absolute value
of partial charges greater than or equal to 0.2.
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It is expressed as

TPSA =
∑

a

SAa

28. Relative hydrophobic surface area (RASA) The ratio
of total hydrophobic surface area (TASA) to the total
molecular solvent-accessible surface area (SASA).
It is expressed as

RASA = TASA

SASA

29. Relative polar surface area (RPSA) The total polar
surface area (TPSA) divided by the total molecular
solvent-accessible surface area (SASA).
It is expressed as

RPSA = TPSA

SASA

30. RHTA index The ratio of hydrogen bond donor groups
to hydrogen bond acceptor groups.
It is expressed as

RHTA = HBD

HBA

31. SSAH index The total surface area of hydrogen atoms
that can be readily donated.
It is expressed as

SSAH ≡ HDSA =
∑

d

SAd

32. RSAH index The average surface area of hydrogen
atoms that can be donated.
It is expressed as

RSAH =
∑

d SAd

HBD

33. RSHM index The fraction of the total molecular surface
area associatedwith hydrogen atoms that can be readily
donated.
It is expressed as

RSHM ≡ FHDSA =
∑

d SAd

SASA

34. SSAA indexThe sumof the surface areas of all hydrogen
bond acceptor atoms.
It is expressed as

SSAA ≡ HASA =
∑

a

SAa

35. RSAM index The fraction of the total molecular surface
area associated with H-bond acceptor groups.
It is expressed as

RSAM ≡ FHASA =
∑

a SAa

SASA

36. HDCA index The sum of charged surface areas of
hydrogen atoms that can be donated.
It is expressed as

HDCA =
∑

d

qd · SAd

37. HBSA indexThe sumof the surface areas of both hydro-
gen atoms that can be donated to hydrogen acceptor
atoms.
It is expressed as

HBSA = HDSA + HASA

38. Graph distance complexity Molecular descriptor
derived from the distance matrix D [15].
It is expressed as

HD =
A∑

i=1

σi

IROUV
· vd

i =
A∑

i=1

σi

2W
· vd

i

39. Polar hydrogen factor (QH) This descriptor correlates
polarity of molecules to C–H bonds. Its application is
limited to halogenated hydrocarbons.
It is expressed as

QH =
∑

b

⎡

⎣
∑

C

kC +
∑

α

kα +
∑

β

kβ

⎤

⎦

40. Q polarity index Topological polarity index derived
from the electro topological intrinsic state of the atoms
confined in a molecule.
It is expressed as

Q = A2 · ∑A
i=1 IALKi(∑A

i=1 Ii

)2

41. Molecular polarizability effect index (MPEI) This
descriptor works by the principle that molecules are
polarized by electrostatic potential fields [16]. The
index is calculated by summing the polarizability con-
tributions from different atoms in a molecule.
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It is expressed as

MPEI =
A∑

i=1

PEIi

42. Balaban distance connectivity index (J) It is one of the
topological descriptors and its value does not vary sub-
stantially with the size of the molecules or number of
ring systems.
It is expressed as

J = B

C + 1
·
∑

b

(σi · σ j )
−1/2
b

= 1

C + 1
·
∑

b

(σ̄i · σ̄ j )
−1/2
b

43. Atomic charge (q) The experimental approach to cal-
culate atomic charge is called Mulliken population
analysis [17]. The method allocates electrons to atoms,
transforming atomic charge to a local descriptor.
It is expressed as

qa = Za −
NAO∑

μ=1

NAO∑

v=1

Pμv · Sμv

44. Sub-molecular polarity parameter (SPP1�): An elec-
tronic descriptor [18] that mathematically determines
the excess charge difference between a pair of atoms.
It is expressed as

1� = ∣∣Q+
max − Q−

max

∣∣

45. Second-order sub-molecular polarity parameter (2�):
Determines the second prime difference of excess
charges [19].
It is expressed as

D P =
∣∣Q+

max − Q−
max

∣∣

r2±
=

1�

r2±

46. Molar polarization (PM) The dipole moment induced
for each unit volume V is termed molar polarization.
Clausius–Mossotti equation explains this descriptor.
It is expressed as

PM = ε − 1

ε + 2
· MW

�
= 4π

3
· NA · α ·

E = n2
D − 1

n2
D + 2

· MW

�
= MR

47. Atom–atom polarizability A chemical reactivity index
solely calculated on the basis of perturbation theory.
It is expressed as

Pab = 4.
∑

i

∑

j

∑

μ

∑

v

Ciμ,a · C jμ,a · Civ,b · C jv,b

εi − ε j

48. Anisotropy of the polarizability It quantifies the devi-
ation of molecular polarizability from an equivalent
spherical shape.
It is expressed as

β2 =
(
αxx − αyy

)2 + (
αyy − αzz

)2 + (αzz − αxx )
2

2

49. Overall electronic constants These are the Hammett
substitution constants [20] which measure the total
electronic effect of meta and para substituted benzene
rings comprised of substituents in a side chain.
It is expressed as

σm,p = 1

�
· log

(
KX

K0

)
= 1

�
·
(
pK 0

a − pKX
a

)

50. Information index on the molecular symmetry (I SYM):
An important molecular symmetry descriptor which is
solely based on total information content.
It is expressed as

ISYM = A · log2A −
G∑

g=1

Aglog2Ag

51. Joshi steric descriptor (JM1) A descriptor that directly
measures the steric effect [21] of substituents. It is
grouped under the broad class of quantum chemical
descriptors.
It is expressed as

JM1 = �EX

�EH
log(JM1) = log(�EX) − log(�EH)

52. Substituent front strain (Sf) A steric descriptor [22]
obtained using empirical force fields and calculated
based on enthalpy of formation.
It is expressed as

Sf = �H0
f [XC(CH3)3] − �H0

f [XCH3]

+ 8.87 [104 J/mol]

53. Steric vertex topological descriptor (SVTI) Best per-
forming steric descriptor for alkyl groups [23] char-
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Fig. 1 Actual versus predicted
test set (fingerprint—atom pairs)

Fig. 2 Actual versus predicted
training set (fingerprint—atom
pairs)

acterized by their topological distance (d) from an
H-depleted molecular graph.
It is expressed as

SVTI =
AX∑

j=1

di j ∀di j ≤ 3

54. Steric density descriptor (SDX ) The substituent steric
descriptor [24], which correlates molecular mass to van
der Waals volume.

It is expressed as

SDX =
(

MW

VVDW

)

X
−

(
MW

VVDW

)

H

=
(

MW

VVDW

)

X
− 0.29

55. Model of the Frontier steric effect descriptor (RS)

Theoretical descriptor used to estimate Taft’s steric
constant [25] which is based on the fundamental char-
acteristics of constituent atoms.
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Table 1 KPLS results on training set

KPLS factors SD R2

1 0.8362 0.682

2 0.4173 0.9261

3 0.2066 0.9832

Table 2 KPLS results on test set

KPLS factors RMS deviation Q2

1 0.6871 0.7107

2 0.4920 0.8516

3 0.5035 0.8446

Table 3 Activity prediction (actual vs. predicted)

Structure Model set Pact Pred (pact) Error

tan1 Training 6.495 6.708 0.214

tan2 Training 5.509 5.548 0.04

tan3 Test 5.62 6.037 0.417

tan4 Test 6.553 6.972 0.419

tan5 Training 6.252 6.081 − 0.171

tan6 Training 6.201 6.219 0.018

tan7 Training 6.509 6.526 0.017

tan8 Test 6.638 5.994 − 0.645

tan9 Training 6.553 6.25 − 0.303

tan10 Training 7.284 7.534 0.25

tan11 Training 3.678 3.833 0.156

tan12 Training 3.225 3.249 0.024

tan13 Test 3.444 4.306 0.863

tan14 Test 3.633 3.75 0.118

tan15 Training 3.504 3.712 0.207

tan16 Training 3.071 3.167 0.096

tan17 Test 4.18 4.649 0.468

tan18 Training 5.222 4.919 − 0.303

tan19 Training 4.174 3.962 − 0.212

tan20 Training 3.565 3.685 0.119

tan21 Training 3.79 3.805 0.014

tan22 Training 3.836 3.637 − 0.199

tan23 Training 3.839 4.022 0.184

tan24 Training 5.155 5.005 − 0.15

tan25 Test 3.943 4.12 0.177

It is expressed as

RS = −30 · log
(
1 −

n∑

i=1

R2
i

4 · r2i

)

56. Carbo similarity index (C) This descriptor [26] com-
pares two molecules based on their electron density.

It is also applied to compare any structural properties
between molecules.
It is expressed as

Cst =
∑N

k=1Psk · Ptk
(∑N

k=1 P2
sk

)1/2 ·
(∑N

k=1 P2
tk

)1/2

57. Electrophilic atomic frontier electron density descrip-
tor ( f −

a ) Molecular descriptor reflecting the electron
density status in the HOMO orbital of a compound.
It is expressed as

f −
a =

∑

μ

(
cHOMO,μ

)2

58. Hardness indices (η) These are the class of descriptors
derived directly from density functional theory [27].
They correspond to the second-order derivative energy
levels with respect to the total number of electrons in
the system.
It is expressed as

η = 1

2

(
∂2E

∂ Nel
2

)

v(r)

=
(

∂μ

∂ Nel

)

v(r)

=
∫

h(r)dr = 1

2 · S

59. Composite nuclear potential (ν(r)) This descriptor
defines the pattern of the nuclei of a molecule.
It is expressed as

v(r) =
A∑

a=1

Za

|r − Ra |

60. Kier alpha molecular flexibility index (Φ) Direct mea-
surement ofmolecular flexibility [28] derived fromKier
alpha adapted shape descriptors.
It is expressed as

Φ =
1Kα · 2Kα

A

Incorporation of Binary fingerprints

The seven available binary fingerprints were incorporated
usingCanvas interface. Only themodelswith significant con-
tribution were retained for further process.

Kernel-based partial least square regression using
different binary fingerprints

1. Binary fingerprint—atom pairs [29]

Description: represents pair of atoms, which are differenti-
ated into atom types and distance of separation.
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Fig. 3 Hashing in atom pair
fingerprinting

Atom pair 1 Atom pair 2 

Atom pair 3&4

Fig. 4 Atomic contribution model for fingerprint—atom pairs
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Fig. 5 Actual versus predicted
training set (fingerprint –atom
triplets)

Fig. 6 Actual versus predicted
test set (fingerprint—atom
triplet)

Table 4 KPLS results on training set

KPLS factors SD R2

1 0.7597 0.731

2 0.4084 0.9274

3 0.2768 0.9690

Table 5 Results of KPLS on test set

KPLS factors RMS deviation Q2

1 0.9022 0.5293

2 0.5131 0.8478

3 0.4246 0.8908

The concept of atompairs has been used in this fingerprint.
A molecular entity is hashed into smaller fragments to give
an integer value, and the shortest distance between any two
atoms is given by the term d. The actual contribution of the
model to the activity is assessed by kernel-based partial least
square equation by considering their regression values (R2

and Q2 values).

2. Binary fingerprint—atom triplets [29]

Description: triplets of atoms and three distances separating
them.
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The model is an extension of the atom-pair fingerprint.
Triplets represent three atoms and the distance at which they
are separated. A triplet can be presented in 6 different ways
according to the theory of permutation and combination. An
operation is performed to exclude the bits which correspond
only to the permutation Typea-dab-Typeb-dbc-Typec-dca.
The assessment method is identical to the description under
atom pairs.

3. Binary fingerprint—fp linear [29]

Description: linear fragments+ ring closures.
The linear fingerprint fragments a molecule in every

possible linear combination path. The default application
considers up to 7 bonds.A hashing operation is performed for
each linear fragment to generate a corresponding bit address.
To apply a linear path on closed ring systems, linear paths
may be extended up to 14 bonds. The linear fingerprints can
be extensively applied to compounds with extended ring sys-
tems. The assessmentmethod used is the same for atompairs.

4. Binary fingerprint—2D molprint [29]

Description: The molprint fingerprint uses heavy atoms
present in a molecule and surrounding environment which
is separated by a maximum of two bonds. The bit value is
measured from a stored data containing a heavy atom and dis-
tance separated by other atoms by one or two bond orders.
The assessment method used is the same for atom pairs.

5. Binary fingerprint—fp dendritic [29]

Description: Linear and branched fragments.
The dendritic fingerprint uses a combination of both linear

and branched fragments up to a user-defined value of 5 bonds.
There is no special treatment for ring systems which are con-
sidered as branched fragments. The assessment method used
is the same for atom pairs.

Results and discussion

1. Results of kernel-based partial least square [30] regres-
sion on fingerprint—atom pairs (Figs. 1, 2)

The fingerprint atom pairs gave a statistically significant 2D
QSARmodelwith excellent regression coefficient values and
cross-validation coefficient values as represented in Tables 1
and 2. The model also showed good predictive accuracy
in both test and training set molecules as demonstrated in
Table 3. A hashing technique used is represented in Fig. 3.
For the assessment of atomic contribution to the model,
three molecules were taken from each active and inactive
set. Atoms positively contributing to activity were colored
blue and atoms detrimentally contributing to the model were
colored yellow which is shown in Fig. 4.

Table 6 Activity prediction (actual vs. predicted)

Structure Model set Pact Pred (pact) Error

tan1 Training 6.495 6.708 0.214

tan2 Training 5.509 5.548 0.04

tan3 Test 5.62 6.037 0.417

tan4 Test 6.553 6.972 0.419

tan5 Training 6.252 6.081 − 0.171

tan6 Training 6.201 6.219 0.018

tan7 Training 6.509 6.526 0.017

tan8 Test 6.638 5.994 − 0.645

tan9 Training 6.553 6.25 − 0.303

tan10 Training 7.284 7.534 0.25

tan11 Training 3.678 3.833 0.156

tan12 Training 3.225 3.249 0.024

tan13 Test 3.444 4.306 0.863

tan14 Test 3.633 3.75 0.118

tan15 Training 3.504 3.712 0.207

tan16 Training 3.071 3.167 0.096

tan17 Test 4.18 4.649 0.468

tan18 Training 5.222 4.919 − 0.303

tan19 Training 4.174 3.962 − 0.212

tan20 Training 3.565 3.685 0.119

tan21 Training 3.79 3.805 0.014

tan22 Training 3.836 3.637 − 0.199

tan23 Training 3.839 4.022 0.184

tan24 Training 5.155 5.005 − 0.15

tan25 Test 3.943 4.12 0.177

Triplet 1 

Triplet 2 

Triplet 3 

Fig. 7 Hashing in atom triplets

2. Results of kernel-based partial least square regression on
fingerprint—atom triplets (Figs. 5, 6)

The fingerprint atom triplets gave a statistically significant
2D QSAR model with excellent regression coefficient val-

123



Mol Divers (2018) 22:359–381 371

Fig. 8 Atomic contribution model for atom fingerprint—atom triplets

Table 7 KPLS results on training set

KPLS factors SD R2

1 1.081 0.4748

2 0.3914 0.9358

3 0.1573 0.9904

ues and cross-validation coefficient values as represented in
Tables 4 and 5. Themodel also showed good predictive accu-
racy in both test and training set molecules as evidenced in
Table 6. The hashing pattern in the atom triplet is shown in
Fig. 7.

For the assessment of atomic contribution to the model,
three molecules were taken from each active and inactive set,

Table 8 KPLS results on training set

KPLS factors RMS deviation Q2

1 0.7408 0.6448

2 0.7716 0.6146

3 0.8714 0.5085

atoms positively contributing to the activitywere colored yel-
low and atoms detrimentally contributing to the model were
colored green which is shown in Fig. 8.

The fingerprint fp linear gave a statistically significant
2D QSAR model with excellent regression coefficient val-
ues and cross-validation coefficient values as represented
in Tables 7 and 8. The model also showed good predictive
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Table 9 Activity prediction (actual vs. predicted)

Structure Model set Pact Pred (pact) Error

tan1 Training 6.495 6.401 − 0.093

tan2 Test 5.509 4.637 − 0.871

tan3 Training 5.62 5.484 − 0.136

tan4 Training 6.553 6.518 − 0.035

tan5 Test 6.252 5.454 − 0.798

tan6 Training 6.201 6.311 0.11

tan7 Test 6.509 6.862 0.353

tan8 Training 6.638 6.829 0.191

tan9 Training 6.553 6.428 − 0.124

tan10 Training 7.284 7.178 − 0.106

tan11 Training 3.678 3.509 − 0.168

tan12 Test 3.225 2.468 − 0.758

tan13 Training 3.444 3.51 0.067

tan14 Training 3.633 3.686 0.053

tan15 Training 3.504 3.572 0.068

tan16 Training 3.071 2.94 − 0.131

tan17 Training 4.18 3.996 − 0.184

tan18 Training 5.222 5.352 0.13

tan19 Test 4.174 5.241 1.067

tan20 Test 3.565 4.67 1.104

tan21 Training 3.79 4.099 0.309

tan22 Test 3.836 4.764 0.928

tan23 Training 3.839 3.943 0.104

tan24 Training 5.155 5.162 0.007

tan25 Training 3.943 3.884 − 0.06

Fig. 9 Hashing in fp linear fingerprint

ability in both test and training set molecules as evidenced
in Table 9. Hashing pattern in fp linear is represented in
Fig. 9.

3. Results of kernel-based partial least square regression on
fingerprint—fp linear (Figs. 10, 11)

For the assessment of atomic contribution to the model [31],
three molecules were taken from each active and inactive
set, and atoms positively contributing to activity were col-
ored red and atoms detrimentally contributing to the model
were colored blue which is shown in Fig. 12.

4. Results of kernel-based partial least square regression on
fingerprint—2D molprint (Figs. 13, 14)

The finger print 2D molprint gave a statistically insignifi-
cant 2D QSAR model with a large difference in regression
coefficient values and cross-validation coefficient values as
presented in Tables 10 and 11. 2D molprint is not a suit-
able fingerprint for the selected flavone class. The model
also showed poor predictive accuracy in both test and train-
ing set molecules as shown in Table 12. Hashing pattern is
represented in Fig. 15.

For the assessment of atomic contribution to the model,
threemolecules were taken from each active and inactive sets
and atoms positively contributing to the activity were colored
maroon and atoms detrimentally contributing to the model
were colored blue as shown in Fig. 16.

5. Results of kernel-based partial least square regression on
fingerprint—fp dendritic

The fingerprint fp dendritic gave a statistically insignificant
2D QSAR model with a large difference in the regres-
sion coefficient values and cross-validation coefficient values
as represented in Tables 13 and 14. Therefore, fp den-
dritic [10] is not a suitable fingerprint for the selected flavone
class (Figs. 17, 18, 19). The model also showed poor pre-
dictive ability in both test and training set molecules as
evidenced in Table 15. The hashing pattern is represented in
Fig. 20.

For the assessment of atomic contribution to the model,
three molecules were taken from each active and inactive
set, and atoms positively contributing to the activity were
colored Orange and atoms detrimentally contributing to the
model were colored maroon which is shown in Fig. 19.

Structure–activity relationship studies

Figure 21 shows that substitution with electron-donating
groups (e.g., hydroxyl) on both rings A and C was found
to increase activity in all the 5 fingerprint models. The only
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Fig. 10 Actual versus predicted
test set (fingerprint—fp linear)

Fig. 11 Actual versus
predicted training set
(fingerprint—fp linear)

exception was molecule Tan 1, which is an active molecule
even though it has no substitutions on both rings A and C.
Substitution with electron withdrawing groups on both rings

A and Cwas found to decrease activity in all the 5 fingerprint
models. This may be attributed to the electronic parame-
ters exerted by various functional groups on the aromatic
rings.
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Fig. 12 Atomic contribution model for fingerprint—fp linear

Fig. 13 Actual versus
predicted training set
(fingerprint—2D molprint)
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Fig. 14 Actual versus
predicted test set
(fingerprint—2D molprint)

LAYER 0 1 2

C .aromatic(sp2)      C .aromatic (sp2)     

C. aromatic (sp2)     

C .aromatic(sp2) 

C .aromatic  (sp2)   

 C=O   (sp2)   

 C-O         

Layer 0

Layer 1

Layer 2

Fig. 15 Hashing in 2D molprint (circular fingerprints)
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Table 10 KPLS results on
training set

KPLS factors SD R2

1 1.038 0.5204

2 0.5195 0.8879

3 0.3841 0.9431

Table 11 KPLS results on test
set

KPLS factors RMS deviation Q2

1 0.6632 0.7047

2 0.7947 0.5706

3 0.8860 0.4278

Table 12 Activity prediction
(actual vs. predicted)

Structure Model set Pact Pred (pact) Error

tan1 Training 6.495 5.442 − 1.053

tan2 Training 5.509 5.333 − 0.175

tan3 Training 5.62 5.876 0.257

tan4 Test 6.553 6.284 − 0.269

tan5 Test 6.252 5.791 − 0.46

tan6 Training 6.201 6.355 0.155

tan7 Training 6.509 6.641 0.132

tan8 Training 6.638 6.576 − 0.062

tan9 Training 6.553 6.09 − 0.463

tan10 Training 7.284 7.576 0.292

tan11 Training 3.678 3.641 − 0.037

tan12 Test 3.225 3.592 0.366

tan13 Training 3.444 3.386 − 0.058

tan14 Training 3.633 3.592 − 0.041

tan15 Training 3.504 3.452 − 0.052

tan16 Training 3.071 3.311 0.241

tan17 Training 4.18 4.19 0.009

tan18 Test 5.222 5.442 0.22

tan19 Test 4.174 5.442 1.268

tan20 Test 3.565 4.65 1.084

tan21 Training 3.79 4.097 0.306

tan22 Training 3.836 3.977 0.142

tan23 Training 3.839 3.817 − 0.022

tan24 Training 5.155 5.586 0.431

tan25 Test 3.943 5.442 1.499

During the analysis of binding site of flavones in the active
site of Tankyrase 1, it is evident that hydrogen bond donor
interactions are prominent for the effective binding. Conse-

quently, electron-donating groups such as –OH and –NH2
were found to increase binding affinity toward Tankyrase I
according to the developed QSAR model.
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Fig. 16 Atomic contribution model for fingerprint—2D molprint

Table 13 KPLS results on
training set

KPLS factors SD R2

1 0.8353 0.6792

2 0.5433 0.8733

3 0.2874 0.9671

Table 14 KPLS results on test
set

KPLS factors RMS deviation Q2

1 0.7885 0.6307

2 0.9594 0.4533

3 0.9333 0.4790
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Fig. 17 Actual versus
predicted training set
(fingerprint—fp dendritic)

Fig. 18 Actual versus
predicted test set (finger
print—fp dendritic)
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Fig. 19 Atomic contribution model for atom fingerprint—fp dendritic

Table 15 Activity prediction
(actual vs. predicted)

Structure Model set Pact Pred (pact) Error

tan1 Training 6.495 6.242 − 0.253

tan2 Training 5.509 5.474 − 0.034

tan3 Test 5.62 5.655 0.036

tan4 Training 6.553 6.499 − 0.054

tan5 Test 6.252 5.832 − 0.42

tan6 Training 6.201 6.002 − 0.198

tan7 Training 6.509 6.976 0.468

tan8 Test 6.638 5.121 − 1.517

tan9 Training 6.553 6.484 − 0.069

tan10 Training 7.284 6.975 − 0.309
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Table 15 continued
Structure Model set Pact Pred (pact) Error

tan11 Training 3.678 4.168 0.49

tan12 Training 3.225 3.24 0.015

tan13 Training 3.444 3.019 − 0.425

tan14 Training 3.633 3.58 − 0.052

tan15 Training 3.504 3.75 0.246

tan16 Test 3.071 4.364 1.293

tan17 Training 4.18 4.279 0.099

tan18 Training 5.222 5.363 0.141

tan19 Training 4.174 4.306 0.132

tan20 Test 3.565 4.239 0.673

tan21 Test 3.79 4.744 0.954

tan22 Training 3.836 3.554 − 0.281

tan23 Training 3.839 4.012 0.173

tan24 Test 5.155 4.364 − 0.791

tan25 Training 3.943 3.857 − 0.087

Fig. 20 Generation of Hash
codes in dendritic fingerprint

9765412354

9788623459

9678512567

9765412354

9675412987

9453678234

RING A
RING B 

RING C

Fig. 21 Interpretation of QSAR model

Conclusions

Kernel-based partial least square regression was performed
on a series of novel mono-substituted flavones using five
binary fingerprinting methods. The contribution of each fin-
gerprint model to the activity depends on several factors. In
the present study, the fingerprint atom pairs gave a statisti-
cally significant 2D QSAR model with excellent regression
values. The factors responsible for the success of pairwise
fingerprint are molecular size and molecular weight. All the
selected test compounds were bicyclic fused systems with
mono-substitutions on rings A and C. The molecular weight
of all the test compounds was in the range of 200–400 Dal-
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tons. The fingerprint atom triplets also gave a statistically
significant 2D QSAR equation due to the involvement of
atom triplets which occur at particular site and at a particu-
lar distance. The three remaining fingerprints, namely linear,
2DMolprint and dendritic, could not reach acceptable regres-
sion values. This failure may be attributed to the atom typing
scheme and structural variation. Suitable fingerprints should
be selected based on structure, molecular size, types of ring
systems and nature of extended branching.
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