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Abstract The current study was conducted to elaborate
a novel pharmacophore model to accurately map selective
glycogen synthase kinase-3 (GSK-3) inhibitors, and per-
formvirtual screening and drug repurposing. Pharmacophore
modeling was developed using PHASE on a data set of
203 maleimides. Two benchmarking validation data sets
with focus on selectivity were assembled using ChEMBL
and PubChem GSK-3 confirmatory assays. A drug repur-
posing experiment linking pharmacophore matching with
drug information originating from multiple data sources
was performed. A five-point pharmacophore model was
built consisting of a hydrogen bond acceptor (A), hydro-
gen bond donor (D), hydrophobic (H), and two rings (RR).
An atom-based 3D quantitative structure–activity relation-
ship (QSAR)model showed good correlative and satisfactory
predictive abilities (training set R2 = 0.904; test set: Q2 =
0.676; whole data set: stability s = 0.803). Virtual screen-
ing experiments revealed that selective GSK-3 inhibitors are
ranked preferentially by Hypo-1, but fail to retrieve non-
selective compounds. The pharmacophore and 3D QSAR
models can provide assistance to design novel, potential
GSK-3 inhibitors with high potency and selectivity pattern,
with potential application for the treatment of GSK-3-driven
diseases. A class of purine nucleoside antileukemic drugs
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was identified as potential inhibitor of GSK-3, suggesting
the reassessment of the target range of these drugs.
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Abbreviations

GSK-3 Glycogen synthase kinase-3
CMGC Kinase group named after the initials of some

members, which include key kinases: the
MAPK growth and stress response kinases,
the cell cycle CDK (cyclin-dependent
kinases), andkinases involved in splicing and
metabolic control

CDK-2 Cyclin-dependent kinase-2
DISCO DIStance COmparison (DISCO) technique
DUD Directory of useful decoys
MUV Maximum unbiased validation
HTS High-throughput screening
NCI National Cancer Institute
CDK-4 Cyclin-dependent kinase-4
PKC Protein kinase C
RMSD Root mean squared deviation
PDB Protein Data Bank
FDA Food and Drug Administration
ROC Receiver operating characteristic
AUC Area under the curve
AROCE Addition of ROC enrichment
eROCE Exponential ROC enrichment
OPLS Optimized potentials for liquid simulations
PLS Partial least squares
CoMFA Comparative molecular field analysis
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NF-kappaB Nuclear factor kappa-light-chain-enhancer
of activated B cells

XIAP X-linked inhibitor of apoptosis protein
MLL Myeloid/lymphoidormixed-lineage leukemia
CLL Chronic lymphocytic leukemia
MM Multiple myeloma
AML Acute myeloid leukemia
CML Chronic myelogenous leukemia
T-ALL T-cell acute lymphoblastic leukemia
T-LBL T-cell acute lymphoblastic lymphoma
PI3K Phosphatidylinositol-4,5-bisphosphate

3-kinase
Akt Serine/threonine kinase Akt (also known as

protein kinase B or PKB)
mTOR Mechanistic target of rapamycin, also known

as mammalian target of rapamycin (mTOR)
FOXO Forkhead box O3
Cn Calcineurin
Bcl-2 B-cell lymphoma 2
MCL-1 Induced myeloid leukemia cell differentia-

tion protein Mcl-1
B-CLL B-cell chronic lymphocytic leukemia
p53 Tumor protein p53
HCL Hairy cell leukemia
Wnt Wnt signaling pathway
Mdm2 Mouse double minute 2 homolog
VEGFR Vascular endothelial growth factor receptor
5-HT3 5-Hydroxytryptamine receptor
IBS Irritable bowel syndrome

Introduction

Glycogen synthase kinase-3 (GSK-3) is a member of the
CMGC family of serine/threonine protein kinases, which
catalyze the transfer of the γ -phosphate group of adeno-
sine triphosphate (ATP) to the target substrate, i.e., a ser-
ine/threonine residue [1]. GSK-3 represents one of the most
attractive therapeutic targets due to its crucial role in a multi-
tude of biological processes including microtubule stability
[2], protein translation [3], and β-catenin degradation [4].
Therefore, potent and selective GSK-3 inhibitors are scruti-
nized for promising new leads to be launched in clinical trials
for diabetes, Alzheimer’s disease, inflammation, and cancer
[5–8]. GSK-3 may act as a “tumor suppressor” for particular
types of cancers by decreasing cell survival and proliferation,
inducing cell senescence and apoptosis, sensitizing tumor
cells to chemotherapeutic agents [9] and ionizing radiation
[10], as well as for different types of tumors, such as skin,
breast, oral cavity, salivary glands, larynx, and esophagus
[11]. Nevertheless, while several structurally diverse ATP-
competitive GSK-3 inhibitors [12–16] displaying different
degrees of selectivity, such as maleimides [12], indirubins

[13], paullones [14], aloisines [15], and hymenialdisine [16],
none has reached commercial status. To date, the most
advanced inhibitor is tideglusib (NP-12, NP031112), a non-
ATP-competitiveGSK-3 inhibitor [17],which has undergone
Phase IIa [18] and IIb clinical trials for Alzheimer’s disease
and paralysis supranuclear palsy [19].

Maleimides show picomolar inhibitory activity and sig-
nificant selectivity for GSK-3 [20], prevent neuronal death
in Alzheimer’s disease [21,22], and demonstrate therapeu-
tic potential for insulin-resistant type-2 diabetes [23,24].
Computer-aided development of bioactive small molecules
by virtual screening (VS) has become an attractive technique
in the early drug discovery stages due to cost savings and
time efficiency [25]. Based on substantial biological informa-
tion aboutGSK-3 inhibition, computational strategies such as
ligand–protein docking [26–30], three-dimensional pharma-
cophore identification [31–33], and quantitative structure–
activity relationships (QSAR) [28,30,34] have been used
to improve two critical aspects: potency and selectiv-
ity. Heretofore, 2D QSAR [34] and Hansch analysis [27]
revealed that the GSK-3α inhibitory activity of maleimides
is improved by electron-withdrawing and hydrophobic sub-
stituents.

A pharmacophore model based on four potent and
selective inhibitors of GSK-3 over cyclin-dependent
kinase-2 (CDK-2) including3-anilino-4-arylmaleimide,
oxadiazole, triazole, and macrocyclic polyoxygenated
bis-7-azaindolylmaleimide derivatives [32] was devel-
oped using distance comparison (DISCO) and vali-
dated by virtual screening. Agarwal et al. [31] built
a pharmacophore model based on 31 GSK-3 ligands,
which subsequently identified 50 novel potential GSK-
3 ligands from ZincPharmer [35].

Benchmarking data sets are valuable tools for compu-
tational chemists to assess their theoretical methods and
innovative concepts before implementing to real-world prob-
lems [36,37]. Thus, we assembled novel benchmarking
data sets including selective/nonselective GSK-3 inhibitors
and experimentally validated GSK-3 inactive compounds,
to certificate the accuracy of pharmacophore hypothesis
used in this work [38]. Picomolar inhibitors are of inter-
est in drug design because they reveal key interactions
with protein [39,40]. Hence, this study focuses on: (i)
the development of a pharmacophore model based on low
nanomolar/picomolar selective inhibitors (maleimide deriva-
tives); (ii) validate the pharmacophore hypothesis by means
of 3D atom-based QSAR to obtain comprehensive QSAR
models that explain the quantitative differences in inhibitory
activities; (iii) assemble discriminative benchmarkingvalida-
tion data sets for GSK-3 adjusted for selectivity; (iv) perform
pharmacophore-based virtual screening on benchmarking
data sets; (v) propose a reliable, integrative drug reposi-
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Fig. 1 Template of maleimide derivatives (class 1. R1 = H, COMe,
CONMe2 and R2= aza-annulatedindole, pyridinyl, pyrazolo-pyridinyl
[43]; class 2. R3 = H, Cl, OMe, NO2 and R4 = H, Cl, SMe, CO2H,
Cl–OH [12]; class 3. Ar = 3-(7-azaindolyl); 1-naphthyl; 2-thienyl;
2-pyridyl; R5 = H, NEt, Cl, F, CF3, OH, OMe; R6 = HO(CH2)3;
MeO(CH2)3; MeN(CH2)3; Boc-N(CH2)3; HC(O)NH(CH2)3 [41];

class 4. A = C, N; B = C, N; n = 1–4 [44]; class 5. R7 = CH2OH,
OH, OCH3, F, cyclopropylmethoxy; R8 = F, Cl, Br, I, CN, OH,
CH2OH, CH2Me [20]; class 6. R9 = (CH2)n-imidazol-1yl, (CH2)n-
dimethylamino-1yl, (CH2)n-piperidin-1yl, morpholino; R10 = H,
OCH3, F, Br [42]

tioning experiment by associating pharmacophore search,
chemical and biological data.

Materials and methods

Data set for analysis

A broad inspection of the literature concerning GSK-3 inhi-
bition identified the maleimide class as the most potent class
of GSK-3 inhibitors. A total of 203 maleimide derivatives
(excluding metal complexes) (Fig. 1) were identified with
GSK-3 IC50 inhibitory activities [12,20,41–44] (see sup-
plementary information). The ten most active and selective
maleimide compounds, which display low nanomolar and

picomolar inhibitory activity (class 1 and 3, Fig. 1), were
used to build a pharmacophore model.

The experimental IC50 values were converted to a log-
arithmic scale (pIC50 = −logIC50) before atom-based 3D
QSAR modeling. The biological activities are normally
distributed, spanning over 5.124 logarithmic units (see sup-
plementary information). The molecular structures of the
203 maleimide derivatives were sketched, saved as isomeric
smiles strings using ChemAxon’s MarvinSketch software
[45], and checked for duplicates prior to processing.

Validation data set for virtual screening

In the absence of a standardized validation data set for GSK-
3 [37], we assembled validation sets focused on selectivity,
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Fig. 2 Distribution of similarity values between actives and inactives (a); the distribution of similarity values between selectives and nonselectives
(b)

benchmarked them, and adjusted them correspondingly in
size to test the accuracy of our pharmacophore model.

Artificial enrichment was circumvented by providing
ligand–decoy similarity for physical properties [36], which
most of the existing benchmarking sets comply with [46].
In order to select decoys, the authors of Directory of use-
ful decoys (DUD) enforced a topological dissimilarity filter
[36] to select the actives. This favors artificial enrichment
since a number of decoys actually bind to targets they were
not initially designed for [46,47]. One of the most challeng-
ing issues in the validation of data sets is the false negative
problem which lowers ligand enrichment [47].

Maximum unbiased validation (MUV) sets prepared by
G. Rohrer and K. Baumann [37] used chemical and biolog-
ical data from high-throughput experiments (HTS), actives
from confirmatory screenings, and inactives from primary
screenings. Although MUV sets rely on a robust theory, i.e.,
spatial statistics, the chemical sphere of MUV is restricted to
14 targets (i.e., e-DUDdefine 102 targets). Zefirov et al. elab-
orated a validation data set for GSK-3 based on 1226 actives,
209 inactives, 2000 decoys (compounds from NCI diversity
set), and CDK-2DUD decoys [48,49]. Thus, we assembled a
validation data set for GSK-3 by selecting confirmed actives
deposited in ChEMBL [50], Binding DB [51], and from ref-
erence [43] showing inhibitory activities below 20µMwhile
also displaying inhibition data against other phylogenetically
related kinases, such as CDK-2, cyclin-dependent kinase-4
(CDK-4), and protein kinase C (PKC).

After removing duplicates using Instant JChem [52],
237 unique compounds remained which were then divided
as function of selectivity ratio (SR = IC50CDK-2/CDK-
4/PKC: IC50GSK-3). Thus, the data set was divided as
follows: 149 compounds are selective (11,800 < SR >

1) and 88 are nonselective (selectivity ratio in the range
0.00023 < SR ≤ 1). The decoys were chosen from true
inactives attested in confirmatory PubChem [38] assays
against GSK-3 AID434954 and AID 463203 [38], which

matched low-dimensional physicochemical properties of
actives. After applying a drug-like filter with the FILTER
software [53–59] (HBA = 1–7, HBD = 1–7, MW= 200–600,
RBN = 0–13, XLogP = −1.26–6.2, 2dPSA = 45–155), only
2106 compounds out of 3170 inactive compounds remained
displaying 751 unique Bemis–Murko chemotypes. Since the
negative validation set (inactives) has a crucial relevance on
VS results, we removed the uncertainties related to artificial
decoys by using experimentally confirmed inactives [60,61].

Before proceeding to evaluate the pairwise 2D Tanimoto
similarity between the 237 actives and 2106 inactives, the
values of continuous descriptors (physicochemical and func-
tional) [53–59] were mean-centered and scaled such as their
values lies between 0 and 1. The actives–inactives pairwise
similarity values display a distribution shifted toward high
values (0.8–1) (see Fig. 2a), as well as selective–nonselective
inhibitors (Fig. 2b, templates shown in Figs. 3, 4) which
makes our experiments more challenging. This situation is
encountered in combinatorial libraries where a large number
of close analogues are enclosed. The selective and nonse-
lective data sets were subjected to scaffold extraction using
ChemAxon software [52] resulting in 59 and 52 Bemis–
Murko chemotypes [52,62] from which 14 scaffolds are
shared.

According toNicholls [63], the selectivity directed bench-
markingdata sets display sufficient sampling, selectives/inac-
tives andnonselectives/inactives ratios of 1/14.14 and1/23.94,
respectively. To the best of our knowledge, this is the first
attempt at building a validation data set for GSK-3 using
confirmed inactives.

Pharmacophore modeling

The pharmacophore hypotheses were generated using the
“Develop Pharmacophore Model” module of the Phase soft-
ware implemented in theSchrödinger suite [64]. LigPrep [65]
was used to convert the 2D structures to 3D and to enumerate
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Fig. 3 Representative scaffolds of selective GSK-3 inhibitors

the ionization states and tautomers in a pH range of 7 ± 2.
The conformational space around each ligand was expanded
using ConfGen [66] to generate a maximum number of
100 conformers per rotatable bond and 1000 conformers
per structure, which were then further subjected to energy
minimization based on the optimized potentials for liquid
simulations (OPLS)-2005 force field engaging the distance-
dependent dielectric algorithm for solvation treatment [67].
The minimized conformers were filtered within an energy
window of 50 kJ/mol [68], whereas redundant conformations
were discarded if their heavy atoms root mean squared devi-
ation (RMSD) exceed 2 Å. The pharmacophore hypotheses
were generated using the 10 most active (pIC50 > 9) (selec-
tivity ratio > 10) compounds (class 1, 3, see Table1; Fig. 1),
whereas the threshold for inactivity was set to 6 pIC50 units
[69] (16 compounds display pIC50 < 6, see supplementary
information) using Phase [64], with default settings.

The ranking of the generated hypotheses to identify the
best alignment of the actives was performed using a max-
imal root mean squared deviation (RMSD) of 1.2 Å. Each
alignment is assessed by three parameters: (i) the root mean
squared deviation in the site point locations—denoting the
alignment score; (ii) the vector score designated by the aver-

age cosine of the angles between the corresponding pairs
of vector pharmacophores (aromatic rings, acceptors, and
donors) in the aligned molecules; and (iii) the volume score
evaluated as function of van derWaals superimposingmodels
of heavy atoms within each pair of ligands. Hydrogen bond
acceptor/donor, hydrophobic, and aromatic ring sites were
detected in the pharmacophore models generated, and sub-
sequently ranked based on survival score (Eq.1), calculated
as follows [64]:

S = WsiteSsite + WvecSvec + WvolSvol

+WselSsel + Wm
rew − WE�E + WactA (1)

whereW designates the weights and S the scores; Ssite stands
for the alignment score and is calculated as the root mean
square deviation in the site point position; Svec denotes the
vector score and accounts for the cosine of the angles created
by the analogous pairs of vector features in superimposed
structures; Svol is the volume score estimated by the overlap-
ping of van der Waals volumes of heavy atoms in each pair
of structures; and Ssel represents the selectivity score, which
describes the fraction of compounds which are expected to
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Fig. 4 Representative scaffolds of nonselective GSK-3 inhibitors

Table 1 Inhibition of GSK-3 IC50(nM) and related kinases by the most potent maleimides used to build the pharmacophore model Hypo-1

Compound GSK-3 CDK-2 CDK-2/cyclin E CDK-2/cyclin A CDK-4 CDK-4/cyclin D1 PKC beta II
IC50(nM) IC50(nM) IC50(nM) IC50(nM) IC50(nM) IC50(nM) IC50(nM)

21 0.9 [42] 9 [42]a 60 [42]a 422 [42]a

22 1 [42] 13 [42]a 98 [42]a 375 [42]a

24 0.8 [42] 49 [42] 158 [42]a

34 1.3 [42] 620 [42]a 1327 [42]a 1305 [42]a

39 1.3 [42] 5300 [42]a 1700 [42]a 1100 [42]a

149 0.35 [20] 237 [20]

154 0.95 [20] 11700 [20] 10600 [20] 18300 [20]

162 0.51 [20] 337 [20] 550 [20] 1080 [20]

180 0.23 [20] 3880 [20] 4090 [20] 8620 [20]

181 0.73 [20]

a Calculated from selectivity ratio

match the hypothesis in addition to their biological activity
toward the receptor. Wsite, Wvec, Wvol, Wrew are set up to
1.0 value by default, but Wsel has a reference value of 0.0.A
penalty for high-energy structuresWE�E is included as well
as an activity penalty term denotedWactAwhere A stands for
biological activity. The hypotheses were ranked by survival
score [64] which eliminated those hypotheses that do not
discriminate actives from inactive compounds. We started
generating the pharmacophore hypotheses with 5, 6, and 7

features, but amidst the generated hypotheses, only 5 feature
hypotheses were acceptable in accord with the highest sur-
vival score and atom-based3DQSARvalidation.Hypotheses
that do not discriminate the pharmacophoric pattern of active
versus inactive maleimides were discarded.

Effective pharmacophore models have to comply with
statistical criteria and to be accurate in identifying active
or even selective compounds. The stability of the phar-
macophore hypotheses generated was internally validated
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by means of statistical parameters: the squared correla-
tion coefficient (R2), correlation coefficient for the test
set (Q2), the standard deviation of regression (SD), Pear-
son’s correlation coefficient (Pearson’s R), statistical sig-
nificance (P), and variance ratio (F). The evaluation and
validation of a pharmacophore model are crucial before
its utilization for virtual activity profiling. Furthermore,
the best pharmacophore hypothesis Hypo-1 was validated
by checking the overly of ligand conformations iden-
tified by pharmacophore Hypo-1 with the experimental
structure of 3-(5-fluoro-6-iodo-1-methyl-1H-indol-3-yl)-4-
(7-methoxy-1-benzofuran-3-yl)-1H-pyrrole-2,5-dione (PDB
ID:TSK) extracted from co-crystallized complexes of GSK-
3 with ligand (PDB ID: 3SD0) from the Protein Data Bank
(PDB) [70,71] and evaluation of all heavy atom RMSD.

Atom-based 3D-QSAR

Atom-based3D-QSARismore advantageousover pharmaco-
phore-based 3D-QSAR since the former ignores the struc-
tural aspects of the ligand beyond the pharmacophore model,
i.e., steric clashes with the receptor [72]. The best pharma-
cophore hypothesis was used to align all data set molecules
in order to develop an atom-based 3D-QSAR. In 3D atom-
based QSAR, a molecule is depicted as overlapping van der
Waals sphereswhich are assigned to the following categories:
hydrogen bond donor (D), electron withdrawing (i.e., includ-
ing hydrogen bond acceptors,W), hydrophobic (H), negative
ionic (N), positive ionic (P), and miscellaneous (X) [64].

The training set includes 70%randomly selectedmolecules
(143 compounds), whereas the remaining 30% (60 com-
pounds) was used to validate the model (test set). To develop
a 3D atom-based QSAR model, the van der Waals spheres
of the aligned training set compounds were positioned into
a standardized grid of cubes, where each cube was ascribed
zero or more “bits” to register the distinct types of atoms
belonging to the training set which fill the cube. This chart
leads to binary-valued patterns that were employed as inde-
pendent variables to generate partial least squares (PLS)
atom-based QSAR models.

The atom-based 3D-QSAR regression model was devel-
oped usingmaximumfivePLS factors, since a supplementary
increase in the PLS factors did not lead to an improvement in
statistics or predictive abilities. Atom-based QSAR models
were built for all pharmacophore hypotheses developed using
the randomly chosen training set of compounds, with a grid
spacing of 1.0 Å. Internal and external validation parameters
for atom-based 3D QSAR were squared correlation coeffi-
cient (R2 training set), squared correlation coefficient for test
set (q2), standard deviation (SD), Pearson’s correlation coef-
ficient (Pearson’s R for test set), statistical significance (P),
and Fisher’s test (F). The Spearman’s (rho) rank correlation

coefficient was calculated using the R software to evaluate
statistical associations based on the ranks of the data [73].

Virtual screening

Virtual screening experiments were performed to validate
the existence of distinct chemical spaces that describe the
unique pharmacophore arrangement Hypo-1 which corre-
sponds to GSK-3 high-affinity inhibition. A retrospective
virtual screening experiment based on pharmacophoreHypo-
1 was carried out using Advanced Pharmacophore Screening
implemented in PHASE, against validation data sets for
GSK-3 according to the protocol described. The matching
of pharmacophore was carried out by applying default toler-
ance for each inter-feature distance in the pharmacophore
hypothesis; hence, all data set molecules whose pharma-
cophore featuresmiss the distance cutoff are discarded.When
a molecule from the data set generates a match, its pharma-
cophore site points are aligned to the hypothesis by means
of standard least squares algorithm. Since not all molecules
from the validation data sets showed all five features dis-
posed geometrically to fit Hypo-1, we chose to loose the
criteria basedon some set of features common to all of them to
minimum 2 features. Thus, all molecules including inactives
displaying 2–5 features can be evaluated. Only one match
per molecule was retained, the best ranked conformer by
fitness score. The resulting enrichment lists were evaluated
using an in-house developed program called Evaluation Tool
In ChemInformatics (ETICI). The impact of pharmacophore
model on validation data sets in terms of efficacy of rankings
provided in various conditions (actives, selectives, nonselec-
tives) was evaluated comparatively using several evaluation
metrics focused on overall enrichment (AUC), overall plus
early enrichment (AROCE and eROCE), and early enrich-
ment (TP at 2, 5, 10% FP).

Drug bank repurposing

The old reductionist concept ‘compound-single-target’ is
nowadays translated to a more realistic approach named
polypharmacology, according towhich drugs exert their clin-
ical effects by interactingwithmultiple (desired) targets [74].
Complex diseases, such as cancer and neurodegenerative dis-
eases, have a genetic background involving a large number of
genes [75], i.e., in cancer cells almost 1000 tagged proteins
displayed an effective response to a cytotoxic agent [76].HTS
experiments and in silico approaches such as pharmacophore
and docking identified several Food and Drug Administra-
tion (FDA) approved drugs as actives against novel targets,
which facilitate the repositioning for other diseases [77].
Being independent on 3D structure of the target, pharma-
cophoremethods aremore general and hold scaffold hopping
potential. The pharmacophore Hypo-1 identified on-target
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selective inhibitors, and it was used for a drug repurpos-
ing experiment. In the absence of thoroughly scrutinized
chemical and target spaces [78,79], this experiment may pro-
vide intriguing outcomes, i.e., to identify either new ligands
for GSK-3 or putative targets for known drug. Moreover,
our approach correlates drug information originating from
multiple data sources to support a more predictable drug
repositioning attempt [74]. Therefore, we considered the bio-
logical pathways common to GSK-3 and the hit drug targets
on one side and on the other side themain signaling pathways
involved in the disease treated by these drugs relevant for the
therapeutic mechanism [74]. Hence, we correlate signaling
pathwayswhere the identified drugs andGSK-3 take part and
are involved in the same therapeutic problem, as reported in
the literature. The information about targets associated with
drug therapeutic functions was extracted from Drug Bank
[80], whereas additional biological activities of the drugs
were scrutinized in the PubChem data base [38,81].

Evaluation techniques

Each individual virtual screening experiment was validated
according to widely recognized virtual screening assessment
parameter receiver operating characteristic (ROC) [60,61],
which uses sensitivity (Eq.2) to account for the fraction of
actives predicted as actives, and specificity (Eq.3) which
records the fraction of inactives predicted as inactives. The
area under the curve (AUC) is the area below the ROC curve,
ranging of [0, 1] where the value 1 designates the perfect sep-
aration (all the actives are recovered at the top of the hit list)
and 0 denotes the complete antiselection (all the actives are
found at the end of the hit list) [60,61].

Se = TP

TP + FN
(2)

Sp = TN

TN + FP
(3)

where TP represents the true positives, TN designates the
true negatives, FP denotes the false positives, and FN stands
for false negatives, and each of the above quantities was cal-
culated at any threshold.

The AUC metric captures the necessary criteria of a good
measure as stated by Jain and Nicholls [82] including robust-
ness, independence to extensive variables, the absence of free
parameters, readily interpretable and intuitive, but is not suf-
ficiently sensitive to early enrichment. The enrichment factor
(EF) is defined on the early part of the hit list as suggested
by Jain and Nicholls [82] to record the performance of vir-
tual screening methods in terms of ROC enrichment, e.g.,
register the ratio of true positive rates (TPR) at 2, 5, and
10% of false positive rates (FPR). In addition, we calculated
the values of two early enrichment evaluation parameters

developed by one of us, namely addition of ROC enrichment
(AROCE) [83] and exponential ROC enrichment (eROCE)
[84]. AROCE consists of the addition of early, discontin-
ued TPR/FPR ratios multigrade relevance intervals for the
TPs [83]. The exponential parameter eROCE (Eq.4) seeks
to smooth the effect of hard cutoffs by attributing decreas-
ing weights to each active detected along the hierarchical list
[84].

eROCE = 1

NA

NA∑

i=1

εi (4)

ε = e−FPRα (5)

The parameter α (in Eq.5) adapts the exponential weights
of the TPs. The exponential function εi (Eq. 4) fits the weight
assigned to the ithTP identified at the respective false positive
rate (FPRi). If a TP is detected before all false positives, the
FPR is zero results εi of one, and vice versa, if the TPs are
situated at the bottom of the ranking list, the FPR is close to
one, and the value is close to zero [84]. NA denotes the total
number of actives. Similarly to AUC, the eROCE range is
between zero and one.

All evaluation parameters were calculated using an in-
house developed program called ETICI.

Results and discussions

Pharmacophore modeling

Among all pharmacophore models developed, only five-
point pharmacophores displayed the highest values of sur-
vival score.A total of 355five-point pharmacophore hypothe-
ses were generated, from which 238 hypotheses were exter-
nally validated by atom-based 3D QSAR (R-Pearson >

0.770). In Fig. 5, it is shown the pharmacophore display-
ing the highest adjusted survival score mapped to the most
active compound 180. The best pharmacophore model is
represented by the Hypo-1 pattern. The distribution of phar-
macophore features into the model includes one hydrogen
bond donor, one hydrogen bond acceptor, one hydropho-
bic, and two rings. The maleimide ring is represented by
one hydrogen bond acceptor (=O) and one hydrogen bond
donor (N) sites, whereas at least one substituent of the most
active maleimides is a fused ring, i.e., indole (see Fig. 5).
Whereas the interaction with Asp133 and Val135 is crucial
to improve the affinity for GSK-3, it does not contribute to
selectivity over other kinases [85]. The acceptor and donor
group of maleimide ring interacts effectively with GSK-3
binding site residues; thus, the spatial arrangement of accep-
tor and donor sites inside Hypo-1 hypothesis is supported
by experimental evidence [86]. The hydrophobe site, which
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Fig. 5 Pharmacophore hypothesis Hypo-1 inter-feature distances and
putative interaction points: acceptor (A4, pink), donor (D7, blue),
hydrophobic (H8, green), ring (R10, R12 orange) superposed on the
most active compound 180. (Color figure online)

is placed on 1-methyl substituent of 1H-indol-3-yl (Fig. 6),
makes hydrophobic interactions with Pro136. Interactions
with Pro136, which strengthen the interaction of the lig-
and with the backbone, are being encountered in a number
of GSK-3β complexes (Fig. 6) [85]. Structural differences
between Pro136 and His84 in CDK-2 may afford the forma-
tion of the salt bridge in the GSK-3β [87]. A hydrophobic
interaction with Asp200 in the 3SD0 co-crystal occurs in
the selectivity areas defined by Cys199, Asp200, Gln185,
and Arg141. A ruthenium-coordinated GSK-3 maleimide
ligand networks with the flexible glycine-rich loop form-
ing a small hydrophobic pocket Ile62, Gly63, Phe67, and
Val70 which appears to be essential for activity and selec-
tivity [88]. The benzofuran ring of the ligand TSK in the
3SD0co-crystalmakes hydrophobic interactionswith Phe67,
Lys85, and Asp200, whereas the indolyl ring interacts with
Val70, Pro136, and Leu188 [88].

In GSK-3β, Lys85 forms a salt bridge with Glu97
and simultaneously with Asp200 [89]. The interactions of
inhibitor with Lys85, Glu97, and Asp200 can increase the
activity and selectivity toward GSK-3 [85].

A distinct structural feature of highly potent maleimides,
designated to build the pharmacophore model, is a fused aro-
matic ring at position 3 (135 of potent maleimide compounds
share a fused aromatic ring at this position, class 1 and 3, see
Fig. 1) confirming the presence of two fused rings in the phar-
macophore Hypo-1. The distances between pharmacophoric
A, D, H, R sites of the pharmacophore hypothesis Hypo-1 are
shown in Fig. 5. The pharmacophore hypothesis displaying
the maximum adjusted survival score Hypo-1 was selected
to generate the atom-based 3D QSAR model.

Pharmacophore validation

The resulting RMSD of 0.616Å is suggesting that the phar-
macophore fitted conformer of compound 180 is closely
similar in space to the experimental receptor-bound X-ray
conformation, thus validating the pharmacophore hypothe-
sis Hypo-1 (Fig. 7).

The selected pharmacophore Hypo-1 was validated using
the methodology implemented in Phase including Fischer’s
randomization test at 95% significance level, scoring inac-
tives, and 3D QSAR model.

Atom-based 3D QSAR

The best atom-based 3D QSARmodel M1 (5 PLS factors) is
statistically robust, internally, and externally (Table2). The
correlation coefficient for the training set (R2) is higher than
0.9, suggesting that the X and Y matrices are strongly corre-
lated. The predictive abilities of the model are satisfactory as
illustrated by the value of the correlation coefficient for the
test set (Q2 > 0.6) and Pearson’s R (>0.8). The large values
of F test (258.2) indicate a statistically significant QSAR
model, which is underlined by the very low value of the sig-
nificance level of variance ratio P (see Table2). The results
obtained for the test set demonstrated that our atom-based 3D
QSAR model is stable and predictive. In Fig. 8, it is depicted
the plot of observed versus predicted biological activities for
the training and test sets obtained for atom-based 3D QSAR
model M1.

The value of Spearman nonparametric rank correlation
for experimental and predicted IC50 values (203maleimides)
suggests a strong correlation of the pairs. In order to analyze
the obtained atom-based 3D-QSARmodel and to investigate
the correlation of the most important variables with biologi-
cal activity, three property fields (HBD, hydrophobicity, and
electronwithdrawing) were generated for several most active
(34, 149, 162, 180) and least potent reference ligands (191,
192, 194, 199) (Fig. 9a–c). The most favorable features are
depicted in blue, whereas the detrimental features are shown
in red. The blue cubes at the hydrogen bond donor sites indi-
cate that this feature has a positive contribution for biological
activity, i.e., NH belonging to maleimide ring [12]. Indeed,
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Fig. 6 Interactions of 3-(5-fluoro-6-iodo-1-methyl-1H-indol-3-yl)-4-(7-methoxy-1-benzofuran-3-yl)-1H-pyrrole-2,5-dione (PDB ID: TSK) with
binding site aminoacids: hydrogen bond (green), and hydrophobic (purple) [90]. (Color figure online)

theNHgroupofmaleimide ring is essential forGSK-3 inhibi-
tion since the substitution ofNHbyCH3 leads to a dramatical
drop of affinity [12]. Another blue area situated on hydrox-
yethyl(methyl) substituent at position 6 on benzofuran-3-yl
ring was observed for compounds 149 and 162, whose affini-
ties are very high (pIC50 = 9.456, 9.292). A detrimental
hydrogen bond donor area centered on the nitrogen atom of
3-indolyl moiety was observed for weak inhibitors (Fig. 9a
compounds 191, 199). Most likely, in this area the donor
groups cannot make nonbonding interactions with binding
site residues or steric constraints are possible.

In Fig. 9b, we can observe a large, favorable hydropho-
bic zone (H8) on most active compounds localized mostly
on indolyl ring where the presence of 1-methyl substituent
increases the inhibitory activity (see compounds 149, 162,
180). An extended blue area in the same region is present
also on diazepine ring of compound 34, which have a 1-
ethyl substituent [43]. On the other hand, the absence of
hydrophobic groups at this position decreases the activity

(compounds 192, 194). Previous theoretical investigations
did not identified explicitly the positive influence of the CH3

group attached to indole nitrogen (interacting with Pro-136
[70]) on affinity, although Kim et al. determined a sterically
favored region with the help of comparative molecular field
analysis (CoMFA) [20,29]. Some hydrophobic areas are also
situated on benzofuran ring, i.e., methyl substituent in the
ligand TSK co-crystallized with GSK-3 (PDB ID: 3SD0),
which interacts with phenyl ring of Phe67 [70]. Phe67 is
a flexible residue located into the ATP-binding site, which
participates in substrate recognition processes contributing
to substrate binding and selectivity [40,91]. The analysis of
the conformational space spanned by Phe67 in the crystal
structure of unphosphorylated, ligand-free GSK-3β (PDB
ID: 1I09, 1H8F), and maleimide-bound GSK-3β complexes
(PDB ID: 1R0E, 1Q4L, 2OW3, 3SD0), indicates that Phe67
is a flexible residue which points toward ligand (PDB ID:
1R0E, 2OW3, 3SD0) or is directed outward (PDB ID: 1Q4L,
1I09). The various positions of the Phe67 occur as a result

123



Mol Divers (2017) 21:385–405 395

Fig. 7 Overlay of 3-(5-fluoro-6-iodo-1-methyl-1H-indol-3-yl)-4-(7-
methoxy-1-benzofuran-3-yl)-1H-pyrrole-2,5-dione bound conforma-
tion extracted from co-crystal 3SD0 (carbon depicted in black) and
its pharmacophore-derived conformation (carbon depicted in gray)

of different conformations of the Gly-rich loop, which was
experimentally observed in Ser/Thr protein kinases [92].
In unphosphorylated GSK-3β (PDB ID: 1I09), the confor-
mation of the activation loop is similar to that detected in
activated kinases [93], even in the absence of segment phos-
phorylation activation, the catalytically active conformation
is achieved; see 4-(2-hydroxyethyl)-1-piperazine ethanesul-
fonic acid bound into substrate binding cleft of GSK-3β
(PDB ID: 1H8F) [94]. In the case of the most active com-
pound 180, which is a close analogue of the bound ligand
TSK in the GSK-3β co-crystal PDB ID: 3SD0, we noticed
the same 1-methyl substituent on benzofuran ring, which
undergoes hydrophobic interactionwith Phe67 (distance 3.6-
3.8Å) promoted by the intrinsic flexibility of Phe67 [70]. It
can be observed also the presence of a red area on benzofuran
ring for compounds 149, 162, and 180. Indeed, at least one
of the methoxy, hydroxymethyl, 2-hydroxyethyl substituents
are present at position 6 and/or 7 in the majority of the most
active and selective maleimides (see Fig. 3 class 3, R5 and
supplementary information) [20].

Fig. 8 Plot of experimental versus predicted pIC50 values for atom-
based 3D QSAR model M1

The presence of hydrophilic groups (–OH, –CH2–OH, –
CH2–O–CH3) at positions 6, 7 of the indolyl ring increases
binding affinity, i.e., the most active compound 180 bears a
methoxymethyl moiety at position 7 [20]. The maleimides
holding a hydoxymethyl group at position 6 of benzofu-
ran ring exhibit increased affinity for GSK-3 as well as
good selectivity against CDK-2 [20]. This fact is consistent
with the electron-withdrawing chart of the compoundswhich
show that the presence of such groups on both substituents of
maleimide ring is beneficial for affinity. The positive influ-
ence of electrostatic field on benzofuran-indolyl-maleimides
was also pointed out by Kim et al. [29]. This effect is
noticeable on the indolyl ring of compound 149 which
displays a larger unfavorable hydrophobic area at similar
positions with respect to weak inhibitors. The presence of
the second halogen produces a sharp decrease in biological
activity, probably due to steric effects [20]. In conclusion,
we identified several common pharmacophore features on
the most active benzofuran-indolyl maleimides and bisaryl-
maleimides, which trigger maximal biological effect. Thus,
the phamacophore hypothesis Hypo-1 validated by 3D atom-
based QSAR and confirmed by experimental findings can be
used further to prioritize novel molecules with increased sus-
ceptibility to inhibit GSK-3.

Table 2 Statistical parameters obtained for the atom-based 3D QSAR model

ID PLS factors SDa R2a Fa Pa Stabilityb RMSEc Q2c Pearson-Rc Spearman’s rhob

M1 5 0.343 0.904 258.2 6.96E–68 0.803 0.448 0.676 0.837 0.921

a Training set
bWhole data set
c Test set
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Fig. 9 a Hydrogen bond donor
fields observed on most active
(34, 149, 162, 180) and least
active (191, 192, 194, 199)
maleimides (order of decreasing
activity). b Representation of
hydrophobic fields for most
active (34, 149, 162, 180) and
least potent (191,192, 194, 199)
maleimides (order of decreasing
activity). c Electron-
withdrawing regions observed
on most active (34, 149, 162,
180) and least potent (191, 192,
194, 199) maleimides (order of
decreasing activity)
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Table 3 Performance of pharmacophore models Hypo-1 and Hypo-1.1 against validation data sets

Evaluation parameter Validation data set

Actives/inactives Selectives/inactives Nonselectives/inactives

Hypo-1a Hypo-1.1b Hypo-1a Hypo-1.1b Hypo-1a Hypo-1.1b

Actives mapped 33 111 20 59 13 52
Inactives mapped 126 2097 126 2097 126 2097

AROCE 0.370 0.285 0.510 0.329 0.153 0.235

eROCE 0.374 0.290 0.517 0.337 0.154 0.238

%TP at 2% FPs 36.364 33.333 50.000 30.508 15.385 21.154

%TP at 5% FPs 36.364 30.630 50.000 35.593 15.385 25.000

%TP at 10% FPs 39.394 26.126 55.000 37.288 15.385 28.846

AUC 0.579 0.648 0.747 0.713 0.321 0.566

AUC (SD) 0.073 0.034 0.081 0.040 0.092 0.057

AUC 95% CI 0.566–0.591 0.646–0.649 0.727–0.755 0.711–0.714 0.305–0.337 0.563–0.568

a Hypo-1 designates 5 features pharmacophore defined in the section pharmacophore modeling
b Hypo1.1 - a pharmacophore which retain any 2 to 5 features of Hypo-1

Virtual screening

The accuracy of the selected pharmacophoremodel (Hypo-1)
was further validated by demonstrating its ability to prioritize
actives (selective and nonselective) GSK-3 inhibitors against
inactive compounds (see Table3) by using actives/inactives,
selectives/inactives and nonselectives/inactives validation
data sets. We sought to label similar compounds and at
the same time distinct Bemis–Murko chemotypes at the top
of the ranking lists. Only 33 actives (61%) (20 selectives
and 13 nonselectives) and 126 (6%) inactives displayed an
exhaustive correspondence of their spatially mapped phar-
macophoric sites with the corresponding sites of the Hypo-1.
Whereas the success rate of structure based VS experiments
was of 34.8% [95], our method identifies 38.46% selective
and 22.03% nonselective inhibitors. The low number of inac-
tives, which match the five-point pharmacophore Hypo-1,
suggests that theHypo-1 pattern is useful in discarding a high
number of biologically inactive compounds (94%), but also
nonselectives (78.97%). When the pharmacophore Hypo-
1 was reduced to 2 up to 5 features (any features) hereby
denoted Hypo-1.1, all 111 (100%) actives and 2097 inac-
tives (99.57%) were mapped.

The overall enrichment of GSK-3 selective inhibitors
measured by AUC yields satisfactory discriminative perfor-
mance (0.747) as well as early enrichment metrics AROCE
and eROCE, whose values higher than 0.4 are satisfactory
[83,84]. The AUC value which is based on more informa-
tion content accounting for the whole hit list is higher for
the target selective compounds against inactives (0.747 and
0.713), whereas the AUC values for nonselective inhibitors
are very poor (0.321 and 0.566). AROCE involves adjust-
ments to introduce early performance to AUC (five-grade
weighing scheme of TP at 0.5, 1, 2, 5, 10% FPR), but this

fact narrow its propensity to compare with the ROC–AUC
curves above the chosen thresholds (10% FPR). eROCE
which has been demonstrated as a reliable measure for the
early performance of VS applications [82] is summed up on
the entire ranking list. The values of AROCE and eROCE
parameters are very close, showing the highest values in
the case of selective compounds, but very poor discrim-
inative power for nonselectives. The difference in terms
of early enrichment between target selective versus non-
selective compounds is obvious. The highest retrieval of
selective compounds at 2% FP is of 50.000%, whereas the
enrichment of nonselective compounds displays lower val-
ues (15.385÷ 17.154%). The largest differences in terms of
evaluation parameters between selectives and nonselectives
are variable, and the highest is registered by AUC (0.426),
followed by eROCE (0.363), and AROCE (0.288). We have
shown that the pharmacophores Hypo-1 and Hypo-1.1 pro-
vide significant enrichment for selective GSK-3 inhibitors,
but fail to retrieve nonselective compounds. The enrich-
ments obtained by us using inactives attested in confirmatory
screenings, which display a high degree of similarity to
actives, might represent an extremely difficult case, but are
more realistic than in the case of other benchmarking data sets
where the decoys were not confirmed experimentally (DUD-
E) [46] or the inactives were tested in primary screenings
(MUV) [37]. However, our results can provide information
about the lowest discriminative limit of the pharmacophores
Hypo-1 and Hypo-1.1.

A number of 38 inactives which display 19 distinct
BMF scaffolds match pharmacophore Hypo-1 (see in Fig. 10
the highest ranked compounds). These molecules display
a highly flexible fragment consisting of 6–10 consecutive
flexible bonds; hence, they can artificially fit the Hypo-
1 motif (see Fig. 11). High flexibility and large structural
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Fig. 10 Highest scored inactives matched by Hypo-1

Fig. 11 Overly of inactives onHypo-1 (compound180 shown inblack)

diversity make the application of pharmacophore difficult;
therefore, recurrent structural features, which render high
affinity/selectivity, have to be identified [96]. In order to
reduce further the false positive rates, a careful visual analy-
sis by the experimented chemist is needed.

The features encoded by pharmacophore Hypo-1 proved
its ability to identify very potent compounds exhibiting selec-
tivity toward GSK-3 (see Table4).

Generally speaking, a pharmacophoremodel should cover
structurally diverse ligands, which are attached at the same

Table 4 Scaffold hopping abilities of pharmacophores Hypo-1 and
Hypo1.1

Actives Selectives Nonselectives

Initial Chemotypes 97 59 52

Chemotypes identified
by Hypo-1 (10%)

11 10 2

Chemotypes identified
by Hypo-1.1 (10%)

32 22 15

Chemotypes identified
by Hypo-1 (100%)

29 20 13

Chemotypes identified
by Hypo-1.1 (100%)

97 59 52

protein binding site. Low 2D similarity of chemotypes
ensures a wide range of molecular diversity associated
simultaneously with a good suitability of steric and phar-
macophoric features and facilitates the identification of
molecular areas involved in making critical interactions. In
our particular case, we mined high-affinity, target-selective
compounds to derive a pharmacophore, which may retrieve
active and selective compounds. The top 10% ranking lists
were analyzed to evaluate the number of distinct scaffolds
that were prioritized by Hypo-1 and Hypo-1.1 (Fig. 12). The
more the specific pharmacophoreHypo-1 (retaining all 5 fea-
tures), the lower the number of individual scaffolds detected
in top 10% of ranking list and vice versa. However, it is
important to retain these essential featureswhen searching for
novel hits aiming at enlarging the chemical space of GSK-3
inhibitors. In the future, we will extend the current pharma-
cophore investigation on highly selective inhibitors including
other biological targets.
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Fig. 12 Distinct selective chemotypes detected by Hypo-1.1 in top 10%, excluding maleimides

Drug repositioning

In the following, we use the pharmacophore Hypo-1 to assist
“scaffold hopping” and potentiality expand the chemical
space of GSK-3 inhibitors by using approved drugs from
Drug Bank. Excluding marketed drugs such as lithium and
valproic acid, only two clinical trials for GSK-3 inhibitor
NP031112 in Phase I/II, one in Alzheimer disease and the
other in progressive supranuclear palsy, were accomplished
[19,97]. The objectives pursued, including computational
drug repositioning, were: (i) to identify drugs which comply
with the pharmacophoric features of Hypo-1; (ii) to investi-
gate extensively the biological activity profile and the targets
of these drugs; (iii) to underline the involvement of GSK-3 in
various signaling pathways where the targets of repositioned
drugs are also involved; and (iv) to identify in the literature
the synergies between hit drugs and GSK-3 inhibitors.

Thus, among 1510 approved drugs, we identified 30 hits,
which display distinct scaffolds and match the pharma-
cophore sites of Hypo-1. The top hits retrieved by Hypo-1
include drugs used to treat various diseases such as: (i)
leukemias (nelarabine, fludarabine, cladribine and clofara-
bine); (ii) nausea/vomiting (granisetron); (iii) irritable bowel
syndrome (IBS) inwomen (alosetron); and (iv) heart diseases
(betablocker bopindolol) (Fig. 13) [80]. Alosetron, which
was withdrawn from the market in 2000 due to serious
life-threatening adverse effects (reintroduced in 2002 with
restricted use), and bopindolol which is an ester-based pro-
drug were excluded from the current analysis [80].

Nucleoside analogues are prodrugs, which are trans-
formed into their active triphosphate form by means of a
series of enzymatic reactions, and are subsequently incor-
porated into DNA [98]. Nelarabine is used to treat T-cell
acute lymphoblastic leukemia (T-ALL) and T-cell acute

lymphoblastic lymphoma (T-LBL) [99,100]. Fludarabine
is the most potent purine derivative used for the first-
and second-line treatment in B-cell chronic lymphocytic
leukemia (B-CLL) and lymphoma [101,102]. Cladribine is a
purine nucleoside prodrug used in the treatment of hairy cell
leukemia (HCL) and chronic lymphocytic leukemia (CLL)
[103]. Clofarabine is a second-generation purine nucleoside
antimetabolite [80] which is being recommended to treat
relapsed or refractory acute T-cell and B-cell lymphocytic
leukemia [80].

According to fitness scores, the nucleoside analogues
nelarabine, fludarabine, cladribine, clofarabine (see Figs. 13,
14) can be suggested as novel GSK-3 inhibitors.

GSK-3 biological functions related to various types of
leukemia and cancer

Since the majority of drugs prioritized by Hypo-1 are used
to treat blood malignancies, first we will demonstrate the
potential of GSK-3 for therapeutic intervention in leukemia
exemplified in experimental literature. GSK-3 is described as
a potential therapeutic target in myeloid/lymphoid or mixed-
lineage leukemia (MLL), chronic lymphocytic leukemia
(CLL),multiplemyeloma (MM), and acutemyeloid leukemia
(AML) as reviewed by McCubrey [104], and indicated in
reference [105]. GSK-3 holds extensive regulatory ability
related to cellular proliferation [11]. Evidences for thera-
peutic response resulting from targeting GSK-3 in various
leukemia types include: (i) activation of apoptosis in CLL
cells induced by GSK-3 inhibition [106]; (ii) GSK-3 inhi-
bition in MLL murine model preclinical studies produced
an effective response [107]; and (iii) innovative therapy
resulted from combining GSK-3 inhibitors with imatinib
in chronic myelogenous leukemia (CML) [108]. Curcumin
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Fig. 13 Chemical structure of the drugs identified by pharmacophore Hypo-1

Fig. 14 Three-dimensional structure of nelarabine superposed on
pharmacophore Hypo-1 and compound 180 (carbon depicted in black)

a known GSK-3 inhibitor [109] suppresses constitutively
activated targets of phosphatidylinositol-4,5-bisphosphate 3-
kinas (PI3K) such as protein kinase B/Akt, forkhead box O3
(FOXO), and GSK-3 in T-ALL cells and initiates caspase-
dependent apoptosis [110]. Promotion of apoptosis observed
in T-ALL cells by dual calcineurin (Cn) and GSK-3 inhibitor
indicates an innovative therapeutic opportunity [111]. Never-
theless, GSK-3 interacts with many substrates to induce the
proapoptotic effect [112], i.e., the prosurvival B-cell lym-
phoma 2 (Bcl-2)-related myeloid cell leukemia sequence 1
(MCL-1) is directly inhibited by GSK-3, through an impor-
tant mechanism for the regulation of apoptosis by growth
factors, PI3K, and Akt [113]. However, the role of GSK-3
in cancer is confusing since GSK-3 is involved in both cell
survival and apoptosis [114]. Although recent developments
suggest an active role of GSK-3β in various human cancers,
its role in tumourigenesis and cancer progression remains
controversial [115].

Mutual biological functions of GSK-3 and antileukemic
drug hits

By the virtue of the fact that GSK-3 is a key cellular
protein kinase capable of interacting with a plethora of pro-
teins to regulate a wide range of cellular functions, [116]
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we attempted to correlate additional biological activities of
the hit drugs identified in PubChem with GSK-3 biologi-
cal roles [38]. Shared biological activities observed for the
antileukemic drugs identified by Hypo-1 and for GSK-3
inhibitors include: (i) tumor protein p53 agonist (fludarabine
and clofarabine) [38,117]; (ii) Wnt modulation (fludarabine
and clofarabine) [38,104]; (iii) inhibition of mouse double
minute 2 homolog (Mdm2), a negative regulator of the p53
(cladribine, fludarabine) [38,118]; (iv) inhibition of vascular
endothelial growth factor receptor (VEGFR) (clofarabine)
[38,86]; (v) modulators of the neurotransmitters serotonin
and dopamine which are central targets for mood disorders,
depression, psychosis, and addictions [38,116]; (vi) involve-
ment in critical pathways which are dysregulated in cancer,
i.e., transforming growth factor beta (TGF-β) [38,119]; (vii)
regulation of insulin secretion [23,38]; (viii) inhibition of
Plasmodium falciparum proliferation [37,120]. Wherefore,
our investigation suggests that there may be value in the
review of the target space of these drugs. Likewise, new com-
binations of antileukemic drugs with GSK-3 inhibitors might
bring therapeutic benefit over the existing therapies [121].

Complex disorders such as leukemias are characterized by
multiple signaling abnormalities where the deregulated path-
waysmight be redundant [122]. Therefore, it would be appro-
priate to develop preclinical studies to investigate the use of
GSK-3 inhibitors combined with existing cytotoxic thera-
pies, since in complex diseases it is difficult to find the right
combinations of targets for just onedrug [123]. In somecases,
GSK-3 isoforms exhibit different tissue-specific physiolog-
ical functions, suggesting therapeutic improvement arising
from specific targeting of GSK-3alpha or GSK-3beta in var-
ious diseases [124]. Isoform-specific inhibitors could spawn
more specific treatments, i.e., mutation of Arg96 in GSK-3β
to Ala (GSK-3α) has repercussion on the ability of GSK-3β
to phosphorylate primed versus unprimed substrates [124].
GSK-3β has been investigated intensely, but some biochem-
ical studies have demonstrated novel functions for GSK-3α
in drug resistance and cancer stem cells [125]. The cur-
rent approach integrates diverse information sources such as
chemical/biological properties, synergistic effects, and addi-
tional observations from the literature to assist the delivery
of more steady, predictable drug repositioning model.

Conclusions

In this study, we have identified a novel GSK-3 pharma-
cophore Hypo-1 which can be successfully involved for
“selectivity search.” The identification of a selective phar-
macophore has exciting implications for GSK-3-induced
diseases, specifically since protein kinases have structurally
similar ATP-binding sites. The obtained 3D atom-based
QSAR model M1 is robust, stable and display good correl-

ative (R2 > 0.9) and satisfactory predictive (Q2 > 0.6)
abilities. Based on these results, restricted to the current
study, the straightforward pharmacophore and validation
methodology can be applied to our ongoing efforts to search
for novel GSK-3 inhibitors as potential therapeutic agents.
The benchmarking validation data sets specifically cre-
ated for GSK-3 involve experimentally attested actives and
inactives in order to challenge the pharmacophore hypothe-
sis developed. Thus, Hypo-1 was successfully involved to
prioritize active and selective compounds in retrospective
VS experiments. Even if the evaluation parameters display
merely satisfactory values, they could be more close to real
situation. Similar validation data sets involving confirmatory
HTS data assembled according to the methodology devel-
oped in this paper can be extended to other targets, in order
to strengthen the knowledge regarding the true, accurate
potential of virtual screeningmethods. A computational drug
repurposing experiment identified a class of purine nucleo-
side antileukemic drugs as potential inhibitors of GSK-3,
suggesting the reassessment of the target rangeof these drugs.
Even controversial in the case of CLL, several biological
activities of the hit drugs were correlated with those of GSK-
3 inhibitors suggesting potential common narrow spectra of
therapeutic relevance.
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