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Abstract Imidazo[2,1-b][1,3,4]thiadiazoles have been
recognized to possess antiproliferative potency towards a
wide spectrum of cancer cell lines. QSAR investigations on a
set of 42 di(tri)substituted imidazo[2,1-b][1,3,4]thiadiazoles
were carried out to find the descriptors determining their
biological potency. Three-variable equations were obtained
by combinatorial protocols in multiple linear regression (CP
MLR) for all three studied cancer cell lines. They showed
that lipophilicity, electronic, and steric factors are decisive
for the antiproliferative potency of compounds and indicate
the important role of nitrogen atoms of imidazothiadiazole
ring in the interactions with the molecular target. The best
models gave high r squared values in the range from 0.887 to
0.924. They also have good predictive accuracy confirmed by
the high value LOO cross-validation coefficient R2

CV (from
0.842 to 0.904) and by the external validation quantities.
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Introduction

Imidazo[2,1-b][1,3,4]thiadiazoles exhibit different kinds of
biological activities. 2,6-Disubstituted imidazothiadiazole
derivatives are described as antifungal, antibacterial, and
antitubercular agents [1–3], while other analogs display
anti-inflammatory activity or inhibit cyclooxygenase-2 [4,
5]. Several imidazo[2,1-b][1,3,4]thiadiazole analogs have
been evaluated as potential anticancer agents [6–12] and
some inhibited proliferation in a wide panel of cancer cell
lines [7,13,14] with nM IC50 potency [6,8]. Molecular
mechanism studies have shown that most imidazo[2,1-
b][1,3,4]thiadiazoles induce apoptosis in cancer cell lines
[8,10,15,16].

2D and 3D quantitative structure activity relationship
(QSAR) models concerning anticancer agents are well
known [17–28]. In many cases, they use the Hansch equa-
tion taking into account lipophilicity as well as electronic
and steric parameters [21,22]. A multiple linear regres-
sion analysis of a set of indane carbocyclic nucleosides
with antiproliferative potency against L1210 and CEM cell
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lines gave a QSAR model including the lowest unoccupied
molecular orbital energy (Elumo) and the solvent accessible-
hydrophobic surface area [23].

Elucidation of the structure-antiproliferative activity
of 2- and 6-substituted-5,8-dimethoxy-1,4-naphthoquinones
against L1210 cells showed that the most important fac-
tor is hydrophobicity [24]. These results were confirmed
by Mekapati et al. who analyzed leukemia cells using
bis(heterocyclic-carboxamides) [25]. A 3D QSAR study on
the antiproliferative activity of 1,2,4,5-tetraoxane derivatives
showed that hydrophobicity and hydrogen bond donor fea-
tures are the main factors affecting antiproliferative activity
of the studied analogs against the HeLa (cervix carcinoma)
human cancer cell lines [27]. The established QSAR mod-
els were usually estimated by leave-one-out cross-validation
and tested through the use of external test sets of compounds
and characterized by good predictability [20,29,30].

In this paper, QSAR models for a set of imidazo[2,1-
b][1,3,4]thiadiazoles possessing antiproliferative activity
against three cancer cell lines were built and discussed. The
biological data used for this study came from a set of com-
pounds described previously [6,8]. For the building of our
QSARmodels lipophilicity, electronic, and steric parameters
were taken into account. The obtained models could explain
if cellmembrane permeability has an impact on the biological
potency of the compounds, provide information about criti-
cal ligand–target interactions [24], and indicate differences
in the structure of compounds that are crucial to antiprolifer-
ative activity.

Results and discussion

Dataset

Two different sets of imidazo[2,1-b][1,3,4]thiadiazoles were
the object of our QSAR studies. The first group includes 15
analogs of 2-bromo-N-[3-(imidazo[2,1-b][1,3,4]thiadiazol-
6-yl)phenyl]acrylamide modified in position 2 of the het-
erocyclic ring described by Romagnoli and co-workers
(Table 1) [6]. The second set consists of 27 compounds,
5,6-disubstituted 2-(4-chlorobenzyl)imidazo[2,1-b][1,3,4]
thiadiazoles presented by Kumar and co-workers (Table 1)
[8]. The antiproliferative potency of both groups of com-
poundswas evaluated against the same cancer cell lines using
the MTT assay. In the case of these QSAR studies, the IC50

values were converted to the logarithm of IC50 (Table 1).

Descriptors

The QSAR model construction was based on lipophilicity,
electronic, and steric descriptors obtained by computational
methods: the lipophilicity of compounds was expressed

as log P values estimated according to three different
approaches (Clog P, Mlog P, log P) [31,32] and is one of the
most important QSAR model descriptors. Electronic para-
meters include the atomic partial charges of some atoms
of heterocyclic skeleton and the Highest Occupied Molec-
ular Orbital (Ehomo) and the Lowest Unoccupied Molecular
Orbital (Elumo) were taken into account since they are asso-
ciated with the nucleophilic and electrophilic properties of
a molecule. Based on the energies of frontier orbitals, the
hardness (η) descriptor was obtained using the equation
η = (Elumo − Ehomo)/2 [33]. Polar surface area (PSA) was
also taken into account. Molar refractivity (MR, CMR deter-
mined according two different algorithms), volume, ovality,
and the surface area of a molecule were used as steric para-
meters (supplementary materials). The correlation matrix
between the parameters used in the QSAR model equations
is presented in Table 2.

QAAR studies

To compare sensitivity of the individual cancer cell lines
for the compounds under consideration, the quantitative–
activity–activity relationships (QAAR) were studied and the
results are presented in Table 3. They indicate that the activ-
ities of compounds against the studied cell lines are highly
correlated with r2 values in the range 0.771–0.924. The best
relationship was obtained comparing the antiproliferative
potency of compounds against human HeLa and CEM cells
which is described by the equation

log IC50(HeLa) = 0.907 log IC50(CEM) + 0.085 (1)

n = 37; r2 = 0.943; s = 0.161; F = 575.7
The highest correlations can be explained by the same

origin of both lines (human cells).

QSAR analyses

The dataset was divided into training (26–28 compounds)
and test (8 compounds) sets by the Kennard Stone method.
Using Multiple Linear Regression (MLR) and setting up the
selection criteria for descriptors, three-variable QSAR equa-
tions were constructed. QAAR studies showed that activities
of the studied compounds against the considered cell lines
are highly correlated; therefore, similar QSAR models were
expected to be obtained.

The best QSAR model of antiproliferative potency of
imidazo[2,1-b][1,3,4]thiadiazoles against the L1210 cell line
is described by the following equation:

log IC50(L1210) = 0.861(±0.067) log P + 1.409(±0.227)ELumo

−0.444(±0.0764)CMR + 2.149(±1.065)

(2)
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Table 2 Correlation coefficient
matrix (r2) for the descriptors
used in the QSAR models

log P Mlog P Elumo q(C2) q(N3) q(N7) PSA MR CMR

log P 1.00

Mlog P 0.048 1.00

Elumo 0.022 0.020 1.000

q(C2) 0.002 0.240 0.003 1.00

q(N3) 0.053 0.185 0.029 0.004 1.00

q(N7) 0.001 0.102 0.000 0.176 0.053 1.00

PSA 0.068 0.490 0.036 0.176 0.084 0.004 1.00

MR 0.044 0.194 0.010 0.185 0.003 0.016 0.436 1.00

CMR 0.012 0.116 0.006 0.145 0.001 0.020 0.436 0.960 1.00

Table 3 Correlation coefficient matrix (r2) between the antiprolifera-
tive activities of compounds against the studied cancer cell lines

log IC50(L1210) log IC50(CEM) log IC50(HeLa)

log IC50(L1210) 1.000

log IC50(CEM) 0.924; n = 37 1.000

log IC50(HeLa) 0.867; n = 37 0.943; n = 37 1.000

n = 27; r = 0.960; r2adj = 0.911; s = 0.266; F = 90.1;
p < 0.0001; Q2 = 0.896;Press = 1.63; (compound 22
outlier)

Other statistical metrics are presented in Table 4. The
calculated parameters are in the range recommended in
the literature about the QSAR models validation: R2

pred >

0.6; Q2 > 0.5; r2m (pred) (scaled) > 0.5; �r2m(pred) (scaled) >

0.2; k and k′ in the range of 0.85–1.15 and |R2
0 − R′2

0| < 0.3.
The statistical quantities for chance correlation (R2

r ,
cR2

p) as
well as r2m (LOO) and r2m (overall) confirm external prediction
ability of the obtained models (Table 4) [34–38].

Model Eq. (2) is theHansch equation including lipophilic-
ity as well as electronic and steric parameters. The equation
could estimate 91 % variance in the observed activity. The
model gives a leave-one-out cross-validation of 90 %. Other
models were obtained similar to Eq. (2) which included
ELumo, logP, and another steric descriptor:MR, surface area,
volume, or ovality that are highly correlated with CMR. The
predicted log IC50(L1210) values based on Eq. (2) and the
residues between the observed and predicted activities are
presented in Table 1 and graphically in Fig. 1.

The QSAR model similar to that in Eq. (2) was obtained
for the CEM cells, expressed by the following equation:

log IC50(CEM) = 0.646(±0.060)logP−0.0278(±0.009)MR

+1.017(±0.245)ELumo+1.191(±1.335)

(3)

(n = 25; r = 0.942; r2adj = 0.872; s = 0.265; F =
57.6; p < 0.0001; Q2 = 0.842; Press = 1.555 (compound
27 outlier)

A slightly better model was obtained including lipophilic-
ity (Mlog P) and two electronic parameters

log IC50(CEM) = 2.454(±0.578)q(C2) − 6.855(±2.346)q(N7)

+ 0.848(±0.085)Mlog P6.996(±1.404)

(4)

n = 26; r = 0.942; r2adj = 0.872; s = 0.241; F = 58.03;
p < 0.0001; Q2 = 0.850;Press = 1.544 (compound 27
outlier).

The other statistical quantities are presented in Table 4.
They confirm the predictability of the obtained models. The
log IC50(CEM) values predicted based on Eq. (4) and the
residues between the calculated and observed activities are
presented in Table 1.

In the case of HeLa cells, the best model also includes
lipophilicity as well as electronic and steric factors and is
expressed by

log IC50(HeLa) = 0.5378(±0.048) log P + 1.095(±0.1929)Elumo

−0.486(±0.068)CMR + 4.345(±0.954)

(5)

n = 27; r = 0.961; r2adj = 0.917; s = 0.221; F = 97.2;
p < 0.0001; Q2 = 0.904;Press = 1.129 (compound 27 is
outlier).

The above equation shows that the parameters log P,
Elumo, and CMR play a significant role in explaining the
variance (92 %) in the activity against the HeLa cells.

Another effective model is expressed by

log IC50(HeLa) = 3.050(±0.562)q(C2) − 7.891(±3.117)q(N3)

−0.033(±0.005)PSA − 3.598(±1.863)

(6)

n = 29; r = 0.906; r2adj = 0.799; s = 0.342; F = 38.24;
p < 0.0001; Q2 = 0.705;Press = 2.921 (compound 27 is
outlier).

123



216 Mol Divers (2017) 21:211–218

Table 4 Statistical metrics and validation parameters of the models

R2
pred Q2 r2m (pred) (scaled) r2m (LOO) �r2m(pred) (scaled) k/k′ |R2

0 − R2
0 | R2

r
c R2

p r2m (overall)

Equation (2) 0.950 0.896 0.885 0.851 0.044 1.103/0.885 0.008 0.130 0.870 0.902

Equation (3) 0.830 0.842 0.690 0.784 0.159 1.116/0.873 0.064 0.156 0.821 0.805

Equation (4) 0.911 0.850 0.851 0.794 0.080 1.085/0.909 0.012 0.134 0.837 0.828

Equation (5) 0.879 0.904 0.576 0.867 0.199 0.978/0.999 0.157 0.154 0.861 0.845

Equation (6) 0.732 0.705 0.576 0.622 0.199 0.965/1.000 0.039 0.131 0.766 0.695
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Fig. 1 Log IC50(L1210) observed versus predicted from. Eq. (2). Com-
pound 22 is the outlier

The log IC50(HeLa) values predicted from Eq. (5) and the
residues between the calculated and observed activities are
presented in Table 1.

The results showed that the best models, including all
studied cell lines, were obtained when lipophilicity parame-
ters were taken into account in the equations. Lipophilicity
determines a compound passage through cell membranes.
Biological potency of compounds is a parabolic function of
lipophilicity in its wide range [39,40]. Lipophilicity of the
studied compounds is limited as reflected by log P since val-
ues are in the 4.86–8.08 range. It can be assumed that the
considered compounds represent only one ram of parabola.
In that case, the antiproliferative activity is enhanced with a
decrease of compound lipophilicity.

The biological potency of the compounds is also con-
nected to the binding force of a ligand with a biomolecule
which is associated to the charge distribution in a molecule.
The charge of nitrogens N3 and N7 as well as that of carbon
C-2 of the imidazo[2,1-b][1,3,4]thiadiazole ring is a statis-
tically significant descriptor in the generated models. The
obtained results showed that low negative charge of nitro-
gen (q(N3), q(N7)) and low positive charge of carbon (qC(2))

atoms contribute to antiproliferative potency. The generated
models indicate the important role of the nitrogen atoms in
the imidazothiadiazole ring for interactions with a potential

molecular target. Elumo as an electronic factor that influences
biological potency and activity increased with a decreasing
Elumo. The antiproliferative activity of 1,3,4-thiadiazoleswas
also found to be a function of ELumo in a molecule [21].
The activity of the considered compounds is additionally
enhanced by the high MR parameter.

Conclusions

Using combinatorial protocols in multiple linear regres-
sion (CP MLR), statistically significant QSAR models were
obtained for all studied cell lines. For all systems three-
variable equations were obtained. As the activities of the
studied compounds against the individual cell lines were
highly correlated, similar dependences were obtained. The
constructed models gave high square correlation coefficient
values and exhibited good predictive accuracy confirmed by
internal and external validations as well as by a randomiza-
tion procedure.

Taking into account the descriptors of model equations,
there can be drawn some conclusions about the antiprolifer-
ative potency of imidazo[2,1-b][1,3,4]thiadiazoles: (1) com-
pounds should have suitable lipophilicity–hydrophobicity
character which determines cell membrane penetration; (2)
models indicate a significant role of nitrogen atoms which
can interact with a potential molecular target; (3) Elumo

influences the biological potency of the compounds; and (4)
activity promotes high MR of the molecule.

These conclusions will be the guidance for the design and
syntheses of novel compounds that could express significant
potency against the presented cancer cells.

Experimental section

Antiproliferative activity

The compounds presented in Table 1 were analyzed. Their
antiproliferative potency in vitro against the following can-
cer cell lines was assessed: murine leukemia (L1210), human
T-lymphocyte (CEM), and human cervix carcinoma (HeLa)
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cells [6,8]. Activity of compounds was expressed as IC50

values (μM), concentrations inducing a 50 % inhibition of
cells compared to the control. The cytotoxicity was evalu-
ated using the colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2H -tetrazolium bromide (MTT) assay.

Descriptors

The compounds were built with a standard bond length and
angles using the PC SPARTANProVer. 1.08molecular mod-
eling program [41]. The energy of amolecule wasminimized
using molecular mechanics methods followed by the semi-
empirical PM3method and used for the electronic properties
determination. Charge of atoms was determined (C, N, and
S) from the potential distribution. Other descriptors were cal-
culated from the ChemSketch 11.02 andMedChemDesigner
3.0 programs [42,43].

Methodology of QSAR studies

Combinatorial protocols in multiple linear regression (CP
MLR) was used to build the QSAR models [44,45]. The
strategy combines the MLR procedure and properly set-up
criteria for the selection of descriptors and equations: the
descriptors in terms of interparameter correlation cut off lim-
its in the subset regressions (0.79); t values of the regression
coefficients (2.0); square-root of adjusted multiple correla-
tion coefficient, r bar (0.71); the external consistency, R2

CV
(0.3 ≤ R2

CV ≤ 1.0) [28]. There was used the outlier crite-
rion: |Yobs. − Ycalc.| > 2 st. dev. The model selection and
statistics were made using the BuildQSAR version 2.1.0.0
and Statistica version 7.1 software packages [46–48]. Statis-
tical significance of the regression equation was tested by the
correlation coefficient (r), the adjusted r square coefficient
(r2adj), the standard error of estimate (s), and the variance ratio
(F). The leave-one-out cross-validation (LOOCV) algorithm
was applied to estimate the quality of the obtained equations
(Q2). The statistical quantities of external validation as well
as randomization test: R2

r ,
cR2

p were calculated.Additionally,
r2m (overall) was determined [34–38].
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