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Abstract The human P-glycoprotein (P-gp) efflux pump is
of great interest for medicinal chemists because of its impor-
tant role in multidrug resistance (MDR). Because of the
high polyspecificity as well as the unavailability of high-
resolution X-ray crystal structures of this transmembrane
protein, ligand-based, and structure-based approaches which
were machine learning, homology modeling, and molecu-
lar docking were combined for this study. In ligand-based
approach, individual two-dimensional quantitative structure–
activity relationship models were developed using different
machine learning algorithms and subsequently combined
into the Ensemble model which showed good performance
on both the diverse training set and the validation sets.
The applicability domain and the prediction quality of the
developed models were also judged using the state-of-the-
art methods and tools. In our structure-based approach, the
P-gp structure and its binding region were predicted for a
docking study to determine possible interactions between
the ligands and the receptor. Based on these in silico tools,
hit compounds for reversing MDR were discovered from the
in-house and DrugBank databases through virtual screening
using predictionmodels andmolecular docking in an attempt
to restore cancer cell sensitivity to cytotoxic drugs.
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Introduction

Human P-glycoprotein (P-gp), encoded by the ABCB1/MD-
R1 gene, is one of the most important and widely studied
members of the ATP-Binding Cassette (ABC) transporter
superfamily [1,2]. The energy-dependent efflux activity
with broad substrate specificity (natural products, anti-
cancer agents, peptides, steroids, lipids, cytokines, dyes,
and ionophores) as well as the widespread distribution in
normal tissues (intestine, brain, testis, placenta, liver, and
kidney) and tumors of this protein support its roles in human
physiology and drug therapy [3]. Taking part in the phys-
iological defense mechanism against xenobiotics such as
toxins and drugs, P-gp should be considered as an antitar-
get in company with hERG (human ether-a-go-go related
gene), Cytochrome P450s, and PXR (pregnane X-receptor)
in the drug discovery and development process [4,5]. Block-
ing this nontarget with inhibitors (e.g., ketoconazole) could
change the concentration of a co-administered drug or its
metabolite in blood (e.g., terfenadine) and consequently lead
to drug–drug interactions and unwanted side effects (e.g.,
QT prolongation/Torsades de Pointes) [6]. Conferring a mul-
tidrug resistance (MDR) phenotype of cancer cells through
active outward transport of cytotoxic drugs, P-gp has been
also counted as a clinical target in chemotherapy [7]. P-gp
inhibition is subjected to overcome MDR in cancer patients
by increasing the intracellular accumulation of substrate
drugs and thus their cytotoxicity [8].

With regard to structure, P-gp is a 170 kDa transmembrane
protein [9] formed by two symmetrical halves: N-terminal
and C-terminal. Each half of the molecule contains six trans-
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membrane (TM) domains, followed by a nucleotide-binding
domain (NBD). The inward facing conformation (which
is stabilized by TMs 4, 5, 10, and 11) makes up a large
internal cavity (∼6,000 Å3) opened to both the cytoplasm
and the inner leaflet for multispecific drug binding [10].
Until now, ABCB10 is the only human ABC transporter
resolved for structure-based approaches, apart from X-ray
structures of several other ABC transporters from prokary-
otes (e.g., bacteria) and eukaryotic organisms (e.g., mice)
[11,12]. To dealwith the unavailability of its crystallographic
3D structures at high-resolution, homology models of P-
gp were generated using the resolved relevant structures as
templates. For example, the recent work of Ambudkar et
al. [13] revealed multiple active-binding sites for substrates
and modulators including one primary site in a large flex-
ible pocket in the TM domains and secondary sites from
the combination of homology modeling, molecular docking,
site-directed mutagenesis, and cell- and membrane-based
assays.

The concept of using small molecule inhibitors (SMIs)
of P-gp for resensitization of tumor cells to chemothera-
peutic drugs has been universally acknowledged [14]. Over
the last three decades, three generations of P-gp inhibitors
have been developed and examined in preclinical and clini-
cal studies [15]. However, no clinically used drugs for P-gp
blockade are yet available and the failure of candidates may
be attributed to their unfavorable properties (e.g., poor sol-
ubility, poor specificity, and toxicity) and pharmacokinetic
interactions [15–19]. In this context, flavonoids (polypheno-
lic compounds) that are ubiquitous in nature have emerged as
reversal agents of the efflux pump-mediated MDR because
of their advantages, including dual effects (P-gp modula-
tion and antitumor activity) and safety and formed the third
generation, nonpharmaceutical category of P-gp inhibitors
[15,20–24]. Chemical modifications on flavonoids of herbal
origin have been implemented for structure–activity rela-
tionship (SAR) studies. For example, Ecker et al. [25] have
recently reported a series of new synthetic chalcones with
good biological evaluation results and indicated the impor-
tance of specific groups for P-gp inhibitory activity based on
2D- and 3D-QSAR analyses.

Computer-aided drug design (CADD) methods including
QSAR, molecular modeling, and docking are helpful to pre-
dict and elucidate ligand–protein interactions in the early
stage of the drug discovery process [12,26]. For this rea-
son, the present study aimed to develop high-performance
2D-QSAR models (individual and ensemble) for predict-
ing P-gp inhibitory activity. In addition, we endeavored to
identify binding sites as well as plausible binding modes
into P-gp homology model of the compounds having the
best predicted pIC50 values from two libraries of in-house
chalcones and drug-bank compounds by means of dock-
ing.

Fig. 1 Study flowchart (a) and nodes in Clementine (b)

Materials and methods

The research process including machine learning, homology
modeling, and molecular docking is summarized as shown
in Fig. 1 and described in detail as follows:

Data sources

Databases for predicting P-gp inhibitory activity

As proven in the work of Ecker et al. [27], it was impos-
sible to create a large chemical diverse dataset of P-gp
inhibitors whose bioactivity values derived from different
assays. For this reason, three SAR datasets based on the
same daunorubicin efflux assay in MDR CCRF vcr1000
cells were compiled and combined: (i) 198 chemical com-
pounds from the publication of Ecker et al. [27]; (ii) 159
tested compounds from the PubChem BioAssay with Assay
Identification (AID) number 281137, comprising 141 active
compounds and 18 unspecified compounds; and (iii) 303
tested compounds from the PubChem BioAssay with AID
number 781331, comprising 274 active compounds and 29
unspecified compounds. In fact, they were all presented in
the ChEMBL open source database [28]. In addition, 22
chalcone derivatives whose IC50 values were measured in a
daunomycin efflux inhibition assay using the mentioned cell
line were also collected from another publication of Ecker
et al. [25] to broaden the chemical space of QSAR mod-
els. These four datasets were merged using MOE 2008.10
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[29]. After inspection, two duplicates (CID: 13504844 and
CID: 9976755) in the AID 281137 database having their
structures identical to those of two other compounds (CID:
73357260 and CID: 73346637) in the AID 781331 database
were removed. As a result of this process, a final dataset
of 499 compounds with chemical structures and bioactivity
values (IC50) was obtained for the generation of prediction
models (Supplementary Material 2, SM2-DB1). The neg-
ative logarithm of IC50 (pIC50) was used as the dependent
variable. Among them, we randomly took 99 compounds (20
%) as an external test set to assess the extrapolation capacity
of generated models.

Databases for virtual screening

In this work, we utilized an in-house library of 87 chalcones
for in silico screening to seek novel efflux pump inhibitors
which might help to overcome MDR in tumors (Supplemen-
tary Material 2, SM2-DB2). Furthermore, another library of
6874 compounds belonging to six groups, namely approved,
experimental, investigational, nutraceutical, withdrawn, and
illicit, was downloaded fromDrugBank [30–33] for the same
purpose to exploit existing drugs (SupplementaryMaterial 2,
SM2-DB3).

Attribute calculation and selection

The 2D structures were built in ChemBioDrawUltra 12.0
[34] if not available and subsequently energy minimized in
MOE [29] before attribute calculation. Chemical descriptors
converting chemical compounds into descriptor vectors to be
understood by computers are of great importance in predict-
ing protein–ligand interactions [35]. On one hand, 184 2D
molecular descriptors which are physicochemical properties,
subdivided surface areas, atom and bond counts, Kier&Hall
connectivity and Kappa shape indices, adjacency and dis-
tance matrices, pharmacophoric features, and partial charges
were computed for 499 database compounds using MOE
[29]. In addition, their 1444 1D-2D descriptors represent-
ing 63 different molecular properties were also calculated
using PaDEL-Descriptor 2.21 [36].

Feature selection aims to remove redundant or irrelevant
features for improving model quality and reducing computa-
tional cost [37]. First of all, the compounds with no missing
attributes were filtered using RapidMiner 5.3.008 [38]. Sub-
sequently, removing useless and correlated attributes and
optimizing selection by a genetic algorithm (GA) were also
implemented in RapidMiner [38]. Finally, the search method
BestFirst in Weka 3.7.9 [39] that searches the space of
attribute subsets by greedy hill-climbing augmented with a
backtracking facility was used to select attributes with 10-
fold cross validation. All parameters in the variable selection
process were set to default.

Data partition into training and test sets

For internal validation, the database of 400 remaining com-
pounds was divided into the training set (75 %) and the
internal test set (25 %) using two tools in MOE [29], Rand
and Diverse Subset. The Rand function assigning a random
number between 0 and 1 to each compound was used to
split the database randomly. In contrast, the Diverse Subset
application assigning a rank to each compound by a rank-
ing process whose methodology can be found in detail in the
software was used to determine the farthest ones in the study
population for the diverse training set.

Applicability domain determination

Topredict a new compound truly using aQSARmodel, deter-
mining the applicability domain (AD) is necessary. This term
was interpreted in different ways [40–42] but it could be sim-
ply understood as “the response and chemical structure space
in which the QSAR model makes predictions with a given
reliability” [43]. There are available methods for defining
the domain of applicability such as Ranges in the descrip-
tor space; Geometrical methods; Distance-based methods;
Probability density distribution; and Range of the response
variable andMiscellaneous [40,42,44]. Recently, a new sim-
ple method has been suggested by Roy et al. [43] to identify
the X-outliers in case of training set and the compounds out-
side the AD in case of the test set. Its principle is based
on the theory of standardization approach, considering mean
±3 standard deviation (SD) as the zone of most training set
compounds (99.7 %) and the remainder as the zone of dis-
similar compounds. Following this method, an X-outlier (if
in the training set) or outside AD (if in the test set) could be
specified by computing the standardized descriptor Si(k), the
maximum Si(k) value ([Si]max(k)), the minimum Si(k) value
([Si]min(k)) (if necessary), the Snew(k) (if necessary) and com-
paring them with 3 (threshold value). In the present study,
we employed the software “Applicability domain using stan-
dardization approach” also developed by Roy et al. [43] to
execute this process.

Machine learning methods

Machine learning provides the technical basis of data mining
for a variety of purposes. In drug discovery and devel-
opment, machine learning tools and techniques are being
increasingly applied to predict pharmacodynamic (inhibitor,
substrate, antagonist, agonist, blocker, and activator) and
pharmacokinetic (ADMET) properties of the compounds
[45]. In the present study, we used two nodes, Numeric Pre-
dictor and Ensemble in Clementine 12.0 [46], for predicting
P-gp inhibitory activity. The Numeric Predictor node can
estimate the models for a maximum of six machine learn-
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ing algorithms, viz Neural Network, C&R Tree, CHAID,
Regression,GeneralizedLinear, andSupportVectorMachine
(SVM). And Ensemble is the node used for combining pre-
dictions from the most accurate models to avoid limitations
of individual models and achieve a higher overall accuracy.
The principles and the application examples of thesemethods
were described in detail elsewhere [37,46,47].

Model evaluation

In this study, statistical parameters and validation criteria
used to measure the QSAR model performance for predic-
tivity were presented as follows:

Internal validation

The internal quality of models is judged by the squared
correlation coefficient R2 and the cross-validated squared
correlation coefficient Q2. Leave-one-out (LOO) is a par-
ticular case of k-fold cross validation where k equals the
number of compounds in the data [48]. In the case of LOO
cross validation, the Q2 metric [49] is calculated according
to the following formula:

Q2
LOO = 1 −

∑nTR
i = 1

(
ŷi − yi

)2

∑nTR
i = 1 (yi − ȳ)2

. (1)

In Eq. (1), yi , and ŷi are, respectively, the observed and pre-
dicted activity values and ȳ is the mean value of yi in the
training set. For an acceptable model, R2 ≥ 0.7, Q2

LOO ≥
0.6 and

∣
∣R2 − Q2

LOO

∣
∣ ≤ 0.1 are required [50–53].

For further internal validation, model randomization or y-
randomization was implemented on the training set. In this
process, the values of the dependent variable (y) were ran-
domly scrambled 10 times and new models were developed
fromeachy-randomized training set. The R2

p metric proposed
by Roy et al. [49] to ensure the models not to be developed
by chance is calculated by the following formula:

R2
p = R2

√
R2 − R2

r ) (2)

In Eq. (2), R2 and R2
r are the squared correlation coefficient

of the nonrandomized model and the squared mean corre-
lation coefficient of randomized models, respectively. For a
predictive QSARmodel, the value of R2

p should bemore than
0.5 [49].

External validation

The more widely used parameters Q2
F1[54]; Q

2
F2 [55]; Q2

F3

[56,57]; r2m; r2m;�r2m [58–60]; and CCC (concordance cor-
relation coefficient) [61] were applied to externally validate

themodels for their predictions on the compounds not involv-
ing the model development. Apart from them, mean absolute
error (MAE) was also employed to assess the predictability
on the external test set [57]. These metrics are calculated
based on the following formulas:

Q2
F1 = 1 −

∑nEXT
i = 1

(
yi − ŷi

)2

∑nEXT
i = 1 (yi − ȳTR)2

(3)

Q2
F2 = 1 −

∑nEXT
i = 1

(
yi − ŷi

)2

∑nEXT
i = 1 (yi − ȳEXT)2

(4)

Q2
F3 = 1 −

[∑nEXT
i = 1

(
yi − ŷi

)2
]
/nEXT

[∑nTR
i = 1 (yi − ȳTR)2

]
/nTR

(5)

r2m = r2
(

1 −
√
r2 − r20

)

(6)

r ′2
m = r ′2

(

1 −
√
r ′2 − r ′2

0

)

(7)

r2m = r2m + r ′2
m

2
(8)

�r2m = ∣
∣r2m − r ′2

m

∣
∣ (9)

CCC =
2

∑nEXT
i = 1 (yi − ȳ)

(
ŷi − ¯̂y

)

∑nEXT
i = 1 (yi − ȳ)2 + ∑nEXT

i = 1

(
ŷi − ¯̂y

)2 + nEXT
(
ȳ − ¯̂y

)2

(10)

MAE = 1

n
×

∑nEXT

i = 1

∣
∣yi − ŷi

∣
∣ (11)

In Eqs. (3), (4), (5), (10) and (11), yi and ŷi are, respectively,
the observed and predicted activity values, while ȳ and ¯̂y are,
respectively, the mean values of yi and ŷi . In Eq. (6) and (7),
r2 and r20 are, respectively, the determination coefficients in
the regression function with and without intercept in case of
using experimental data on the y-axis and predicted data on
the x-axis, while r ′2 and r ′2

0 are, respectively, the same coef-
ficients in the opposite case. The most stringent validation
criteria thresholds including Q2

Fn ≥ 0.7; r2m ≥ 0.65; CCC
≥ 0.85 [62,63]; r2m ≥ 0.5 [49]; and �r2m ≤ 0.2 [64] were
applied to verify the external predictivity of good models.
Using the MAE-based criteria lately proposed by Roy et al.
[65], the predictions could be considered good when MAE
≤0.1 × training set range and MAE + 3 σ ≤ 0.2 × training
set range and bad whenMAE > 0.15 × training set range or
MAE + 3 σ > 0.25 × training set range. In this study, we
employed the software “XternalValidationPlus” also devel-
oped by Roy et al. [65] to execute this process.

Homology modeling

Due to the lack of high-resolution crystal structures of
transporter proteins such as P-gp, homology modeling is
considered as a feasible solution to obtain their structural
information [66]. In the present study, the I-TASSER (Iter-
ative Threading ASSEmbly Refinement) server which is
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one freely available online system for automated protein
3D structure prediction [67,68] was employed to gener-
ate homology or comparative models of P-gp for docking
studies. The I-TASSER methodology based on the state-of-
the-art algorithms was described in detail elsewhere [69,70]
and summarized in three stages: (i) multiple threading, (ii)
structural assembly, and (iii) model selection and refine-
ment [68]. Before running, the P-gp sequence of 1280 amino
acids was submitted in FASTA format [71] without assign-
ing additional restraints and templates. The output including
the confidence score (C-score), the template modeling score
(TM-score), the root mean square deviation (RMSD), the
number of decoys, and the cluster densitywas provided by the
server for quantitative assessments of the predictions (mod-
els).

C-score is an estimate of the confidence of structure pre-
diction. In a typical range of [−5, 2], the higher value of
C-score indicates the better quality and the C-score value
>−1.5 indicates the correct topology of predicted model.
RMSD is an average distance of all residue pairs in the pre-
dicted structure and the native structure, ranging between 1
and 2 Å for high-resolution models and between 2 and 5 Å
for medium resolution models. Since RMSD might be influ-
enced by a local error, TM-score which also measures the
structural similarity between two structures is proposed to
solve this problem. TM-score <0.17 means random predic-
tions and TM-score>0.5means correct topology for all sizes
of proteins [72]. The cluster density is the number of struc-
ture decoys (low temperature replicas) at a unit of space in
the SPICKER cluster and a higher cluster density means a
better quality model.

In addition to the above parameters, the stereochemical
quality of the final model was checked using PROCHECK
[73]. Our structure in PDB format was uploaded to PDB-
sum to produce its Ramachandran plot of the phi–psi torsion
angles for all residues in the structure, except those at the
chain termini. Because glycine residues are not restricted to
any particular region of the plot, they are separately identified
by triangles. Based on an analysis of 118 structures of reso-
lution of at least 2.0 Å and R-factor no greater than 20.0, a
good quality model would be expected to have over 90 % in
the most favored regions [A,B,L] (also called core regions).

Molecular docking

Ligand and protein preparation

Both ligands and protein were prepared to be used for
docking. The 2D structures of the ligandswere built inChem-
BioDrawUltra [34] if not available and subsequently energy
minimized in MOE [29]. The best P-gp homology model
in complex with ligand was protonated, tethered, and min-
imized by the LigX tool in MOE [29] and the ligand was

subsequently removed. The binding site of the target pro-
tein was also predicted by the I-TASSER server based on the
similar binding site of template protein.

Docking

Potential P-gp inhibitors which were previously identified
before by the QSAR models from two virtual screening
databases (in-house and drug-bank) were docked into the
ligand-binding pocket of P-gp homology model using the
FlexX package in LeadIT 2.0.2 [74] to provide insights
into molecular recognition via protein–ligand interactions.
In this process, the triangle matching algorithm was chosen
for the place base fragment, while the maximum numbers of
solutions per iteration and per fragmentation were defined as
1000 and 200, respectively. Compounds having both good
predicted pIC50 values and docking scores were more likely
to be the hits for P-gp inhibitory activity.

Results and discussion

2D-QSAR models

A total of 1628 MOE and PaDEL descriptors were initially
computed for the whole dataset of 499 compounds. Among
them, five descriptors (Kier1, Kier2, Kier3, apol, and bpol)
which were determined as duplicates were eliminated. All
400 training and internal test set compounds with no miss-
ing attributes were used for selecting features. The feature
reduction in RapidMiner, including raw filter by the Remove
Useless Attributes and Remove Correlated Attributes opera-
tors, and GA-based optimization by the Optimize Selection
(Evolutionary) operator resulted in 383 attributes. This num-
ber of attributes which was still abundant for the model
development was continuously reduced to 89 attributes with
number of folds ≥10 % by the BestFirst algorithm in Weka.
However, only the 34 most relevant attributes with number
of folds ≥80 % (Supplementary Material 1, SM1-Table 1)
were chosen to generate the machine learning models. All
parameters in the variable selection process were set to the
default.

Out of the selected attributes, the ones computed by
PaDEL were in the majority compared with the ones com-
puted byMOE (27/7) to represent for thewhole dataset.MOE
descriptors belonged to three classes: Adjacency and Dis-
tanceMatrix Descriptors (2), AtomCounts and Bond Counts
(1), andPartialChargeDescriptors (4),while PaDELdescrip-
tors belonged to 10 classes: Autocorrelation (4); Barysz
matrix (4); Burdenmodified eigenvalues (9); Atom type elec-
trotopological state (4); Information content (1); Longest
aliphatic chain (1); Molecular linear free energy relation (1);
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Ring count (1); Topological charge (1) and Topological dis-
tance matrix (1).

As mentioned above, the Numeric Predictor node with
integrated machine learning algorithms was put in a simple
stream in Clementine for automated modeling of the rela-
tionship between chemical structure (descriptors) and P-gp
inhibitory activity (a numeric range target), using 300 train-
ing set compounds derived from the diverse and random
partitions. Based on the 34 chosen descriptors, all six candi-
date models as mentioned in the machine learning methods
(Neural Network, C&R Tree, CHAID, Regression, Gener-
alized Linear and SVM) were created by default to predict
these continuous numeric outcomes for each type of division
(Supplementary Material 1, SM1-Table 2). Having the same
results in both separation cases, only one (Regression) of the
twomodels (Regression andGeneralized Linear) was chosen
for further analysis.

The generated models were compared together using
the squared correlation coefficient (R2) which indicates a
stronger relationship when being closer to 1. In the diverse
partition, the R2 values in the training set were less than those
in the test set in cases of the Regression, SVM, and Neural
Network models and vice versa in cases of the CHAID and
C&R Tree models. In the random partition, the R2 value in
the training set was less than that in the test set in case of
the Neural Network model and vice versa in cases of the
CHAID, C&R Tree, Regression, and SVM models. Further-
more, although the R2 values of all models in the diverse
division were approximate to those in the random division in
case of the training set, most of these values in the diverse
division were considerably greater than those in the random
division in case of the test set. The obtained results demon-
strated the diverse training set was more appropriate than
the random training set to be used for the development of
machine learning models.

Based on the R2 values, the CHAID and C&R Tree mod-
els ranked best in both diverse and random training sets
(85.80, 85.91, 82.56, and 84.00 %, respectively), while two
pairs of models SVM, C&R Tree and Neural Network, C&R
Tree performed best in the diverse and random internal tests,
respectively (81.21, 81.20, 74.14, and 73.69%, respectively).
The greatest difference in R2 between the training and inter-
nal test sets was found in case of CHAID with the random
partition. Conversely, there was no remarkable difference
in this metric between the diverse and random training sets
as well as the diverse and random internal test sets in case
of Neural Network. To avoid such limitations of individual
models, the solution of combining predictions from multiple
models was put forward in our study.

Apart from Generalized Linear, the remaining models
were combined into a single aggregated model using the
Ensemble node. To compare each of the individual models
with the Ensemble model, the option “Filter out fields gener-

ated by ensembled models” was not selected. The ensemble
scores for this range target were generated by averaging
the scores for the individual models. One frequent bene-
fit of this approach is the ability to yield more accurate
predictions than can be gained from any one model [46].
Indeed, the Ensemble model with its aggregated predic-
tions gained the high performance in the diverse training set
(R2 ≈ 0.84, Q2

LOO ≈ 0.70,
∣
∣R2 − Q2

LOO

∣
∣ ≈ 0.14, r2m ≈

0.80, r ′2
m ≈ 0.64, r2m ≈ 0.72, and �r2m ≈ 0.16), while the

individual models failed at least one of the mentioned valida-
tion criteria, viz Q2

LOO and
∣
∣R2 − Q2

LOO

∣
∣ in the CHAID and

C&R Tree models; r2m in the Regression, SVM, and Neural
Networkmodels, and�r2m in theRegressionmodel (Table 1).
All six models had

∣
∣R2 − R2

Yi

∣
∣ ≥ 0.2 andmet the criterion of

R2
p(≥0.5) in the y-randomization process (Table 1). Despite

being not quite as well as the individual models in some
concrete conditions, the combination ofmultiple models per-
formed as the best in overall. The Ensemble model showed
itself as robust one which is likely to perform better when
applied to other datasets in general terms, without having to
dig deeply into the specifics of any one model.

The QSAR models were subsequently validated by the
internal and external test sets. For the internal test set, the
Ensemble model continued performing as the best with
Q2

F1 ≈ 0.83, Q2
F2 ≈ 0.83, Q2

F3 ≈ 0.81, r2m ≈ 0.80, r ′2
m ≈

0.64, r2m ≈ 0.72,�r2m ≈ 0.16 and CCC ≈ 0.90 (Table 2).
For the external test set, the best model of all was surpris-
ingly SVM whose predictions showed the square value of
the correlation coefficient (R2 ≈ 0.74) only higher than that
of Neural Network (R2 ≈ 0.73) on the diverse training set
(Table 1). In this case, the Ensemble model showed its per-
formance that was comparable to the best model SVM with
Q2

F1 ≈ 0.83, Q2
F2 ≈ 0.82, Q2

F3 ≈ 0.83, r2m ≈ 0.82, r ′2
m ≈

0.67, r2m ≈ 0.74,�r2m ≈ 0.16, and CCC ≈ 0.90 (Table 3).
These results proved the benefits of combining multiple
models for handling diverse problems in biological datamod-
eling.

Gramatica and Chirico [63] in their quantitative analy-
sis revealed the importance of evaluating the scatter plot
of experimental and predicted data to discover unacceptable
QSARmodels hidden by good statistical values. The plots of
regression of predicted pIC50 values by observed pIC50 val-
ues on P-gp for the Ensemble model are displayed with error
bars in Fig. 2 in cases of the training set (a), the internal test
set (b), and the external test set (c). The points clustered along
the diagonal visually indicated a good correlation between
observed and predicted values for all the datasets. In other
words, the generated Ensemblemodelwas a good fit for these
data.

For decades, the ligand-based approaches (SAR, 2D-
QSAR, 3D-QSAR, and pharmacophoremodeling) have been
mainly employed for the discovery and design of novel and
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Table 1 Internal validation
results of the QSAR models
generated from the diverse
training set

Parameter CHAID C&R Tree Regression SVM Neural network Ensemble

R2 0.858 0.826 0.754 0.742 0.727 0.840

Q2
LOO 0.499 0.524 0.674 0.718 0.682 0.701

∣
∣R2 − Q2

LOO

∣
∣ 0.359 0.301 0.081 0.025 0.045 0.139

r2m 0.858 0.826 0.754 0.726 0.693 0.798

r ′2
m 0.728 0.670 0.544 0.546 0.541 0.642

r2m 0.793 0.748 0.649 0.636 0.617 0.720

�r2m 0.130 0.156 0.210 0.180 0.153 0.155

R2
r 0.079 0.277 0.108 0.137 0.012 0.295

R2
p 0.757 0.612 0.606 0.577 0.614 0.620

Table 2 Validation results of
the QSAR models on the
internal test set

Parameter CHAID C&R Tree Regression SVM Neural network Ensemble

Q2
F1 0.791 0.813 0.771 0.814 0.751 0.830

Q2
F2 0.789 0.811 0.768 0.812 0.747 0.828

Q2
F3 0.773 0.797 0.751 0.798 0.729 0.815

r2m 0.740 0.801 0.744 0.798 0.709 0.803

r ′2
m 0.676 0.630 0.535 0.629 0.602 0.643

r2m 0.708 0.715 0.639 0.714 0.656 0.723

�r2m 0.064 0.171 0.209 0.169 0.106 0.160

CCC 0.890 0.895 0.864 0.895 0.863 0.903

Table 3 Conventional
validation results of the QSAR
models on the external test set

Parameter CHAID C&R Tree Regression SVM Neural network Ensemble

Q2
F1 0.682 0.753 0.808 0.847 0.778 0.826

Q2
F2 0.681 0.752 0.807 0.846 0.777 0.825

Q2
F3 0.693 0.762 0.814 0.852 0.785 0.831

r2m 0.607 0.671 0.770 0.826 0.750 0.825

r ′2
m 0.583 0.679 0.590 0.684 0.624 0.665

r2m 0.595 0.675 0.680 0.755 0.687 0.745

�r2m 0.024 0.009 0.181 0.143 0.126 0.160

CCC 0.839 0.876 0.888 0.915 0.879 0.904

potential P-gp inhibitorswhen the structure of this protein has
still not been resolved [26]. The molecular mechanisms of
MDRmodulation in general and P-gp inhibition in particular
not being yet fully understood until now have been chal-
lenging QSAR studies of P-gp inhibitors [75]. Apart from
binary classifiers for predicting P-gp inhibition (inhibitor:
1; noninhibitor: 0), many other 2D-QSAR studies [25,76–
86] treating P-gp inhibitory activity as a range target (e.g.,
pIC50, pK d)were also published in the past and summarized
inTable 4.Usingdifferentmethods fromsimple (multiple lin-
ear regression) to complex (neural networks, support vector
machine, hybrid), these studies showed satisfactory statisti-
cal results and contributed to determine structural features
necessary for P-gp- mediated MDR reversal. Nevertheless,
the applicability of the reported models to other datasets is

questionable because of their limited numbers of investigated
molecules.

In our study, the AD determination process resulted in 7
outliers (C89, C288, C381, C411, C422, C433, and C472)
among 300 diverse training set compounds; 1/100 inter-
nal test set compounds (C358); and 2/99 external test set
compounds (C40, C407) residing outside the AD. Without
excluding these compounds, two individual models (Regres-
sion, SVM) and the Ensemble model were categorized as
“good” and three individual models (CHAID, C&R Tree,
Neural Network) were categorized as “moderate” based
on the estimation of MAE-based metrics after removing
5 % external test set objects with high residual values
(Table 5; Supplementary Material 2, SM2-MAE). The prob-
lems related to classical R2-based metrics and CCC (their
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Fig. 2 Experimental against predicted P-gp pIC50 plots for the Ensem-
ble model: a in the training set; b in the internal test set and c in the
external test set

values which are influenced by the range and the distrib-
ution of response values around the training/test set mean
of the test set compounds) may lead to the wrong conclu-
sion on the model acceptability [65]. By determining the
allowable error limit using the training set response range,
the MAE-based criteria suggested by Roy et al. [65] help
to examine the predictive error values. The determined AD
and the checkedMAE-based criteria in this study showed the
internal and external test set compounds lied in both chemi-
cal and response domains of the training set. In other words,
the “good” predictability of our QSAR models was asserted

with higher confidence by the combination of conventional
and new validation methods.

Based on the same experimental assay, cell line, and
cytotoxic agent, our data from different sources that are
relatively comparable were merged to increase the data-
base size and ensure sufficient structural diversity for the
model development. Strict validation criteria also helped to
confirm the high quality of the developed QSAR models,
especially the Ensemble model which averaged the scores
of the remaining models. From obtained results, this aggre-
gated model is expected as a promising in silico tool which
could be subjected to high throughput screening to yield
rapid and accurate predictions for P-gp inhibitory potency
of candidate drugs. Additionally, there was a good agree-
ment between the present work and the previously published
works in importantmolecular physicochemical properties for
P-gp modulation such as the surface area, the lipophilic-
ity, the longest aliphatic chain, and the positive charge
(Table 4) that were represented by PEOE_VSA_FHYD,
PEOE_VSA_FPNEG, PEOE_VSA_FPPOS, LipoaffinityIn-
dex, nAtomLAC, and PEOE_RPC+, respectively, in our
work. This information may help to orient the synthesis
through suitable structural modifications resulting in activity
enhancement.

Homology models

As a result of molecular modeling by the automated I-
TASSER server, four P-gp homologymodels were generated
for molecular docking in the next step. Four proteins whose
PDB ID codes are 3g61A [10], 4m1mA [87], 4f4cA [88],
and 3g5uA [10] were used by this server as the top threading
templates. The quality estimation is shown in Table 6, with
only the first model (model 1) having TM-score and RMSD
values predicted. Since the correlation of C-score and quality
of lower-ranked models were much weaker than that for the
first model, the absolute quality (TM-score and RMSD) of
the lower rank models could not be meaningfully estimated.
However, the relative quality of lower rank models could be
predicted based on the relative rank and their C-score infor-
mation [68].

With its best quality according to I-TASSER indicators
(C-score = 0.58, TM-score = 0.79, RMSD = 8.1, number
of decoys = 1850, and cluster density = 0.1667), the model
1 which was built from the chain A of P-gp in mus mus-
culus/house mouse (3g61) [10] was subsequently used for
generating Ramachandran plot. In black-and-white, this plot
showed themost favorable regions in the darkest gray and the
less favorable regions in progressively lighter tones (Fig. 3).
The statistics indicated that among 1150 nonglycine and
nonproline residues, 78.7 % (905 residues), 16.4 % (189
residues), 3.0 % (35 residues), and 1.8 % (21 residues) were,
respectively, found in the most favored regions [A,B,L]; the
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Table 5 Other validation results
of the QSAR models on the
external test set, using
MAE-based criteria applied on
95 % data

Parameter CHAID C&R Tree Regression SVM Neural network Ensemble

MAE 0.368 0.375 0.334 0.286 0.362 0.306

MAE+3*SD 1.192 1.096 0.985 0.900 1.110 0.956

Prediction Quality Moderate Moderate Good Good Moderate Good

Table 6 Top 4 models with templates and estimated parameters predicted by I-TASSER

Model Used templates C-score TM-score RMSD Number of decoys Cluster density

1 3g61A 0.58 0.79 ± 0.09 8.1 ± 4.4 Å 1850 0.17

2 4m1mA 0.96 – – 1200 0.24

3 4f4cA 0.38 – – 1212 0.14

4 3g5uA –2.11 – – 84 0.01

Fig. 3 Ramachandran plot of the best P-gp homology model, in which
the most favored regions, the additional allowed regions, the gener-
ously allowed regions and the disallowed regions were labeled [A,B,L];
[a,b,l,p]; [∼a,∼b,∼l,∼p] and [XX], respectively. The darker area rep-
resented the more favorable phi–psi combination

additional allowed regions [a,b,l,p]; the generously allowed
regions [∼ a,∼ b,∼ l,∼ p]; and the disallowed regions
[XX]. Below 90% of residues in the core regions as expected
could be attributed to the resolution of the structure on which
the homology model had been based (4.35 Å). For docking
in virtual screening, its binding pocket was also predicted
using the same template protein but from the chain B with
the ligand 0JZ (cyclic-tris-(R)-valineselenazole/QZ59-RRR)
(Fig. 4). This result was completely in accordance with the
information revealed by Chang et al. [10] about the internal
cavity of P-gp responsible for polyspecific drug binding.

In the past, many efforts were made for homology model-
ing of human P-gp from the resolved structures of bacterial
pumps such as MsbA [89], Sav1866 [90,91], and BtuCD

[92,93] to enable structure-based drug design [26]. How-
ever, to obtain a high- quality homology model, the template
protein must be of high resolution and have a high sequence
identity with the target protein [26]. This explains why the
crystallization and structure determination of mammalian P-
gp had great expectations. TheX-ray structure ofmouse P-gp
in complex with 0JZwhich was used in this study has the res-
olution of 4.35 Å, 87% sequence identity to human P-gp and
≈ 100% identity of residues in the binding cavity excepting
mSer725/hAla729 [10,94]. Although this structure has a reg-
ister shift of one amino acid (Tyr303/Ile302), it seems to be
a suitable template to generate homology models of human
P-gp for docking rather than new and corrected crystal struc-
tures of mouse P-gp (PDB ID: 4KSB, 4KSC, and 4KSD)
which did not have bound ligands [95], since a reference lig-
and (0JZ in this case) is necessary to make the binding site
prediction in I-TASSER and to exactly specify this region for
docking-based virtual screening in LeadIT.

In silico screening

Bioactivity prediction The generated QSAR models were
applied on two libraries of 87 in-house chalcones and 6874
drug-bank compounds to make predictions for their bioac-
tivity (IC50 or pIC50) on the multidrug resistance efflux
pump P-gp, aiming to identify potential inhibitors with pre-
dicted IC50 values ≤ 15µM (threshold value) [96]. Based
on 34 descriptors provided in Supplementary Material 1,
SM1-Table 1, the compounds having no missing values were
quickly searched for the unusuals in combination with 499
compounds of the whole dataset used for training and vali-
dating QSAR models, using the Anomaly Detection node in
Clementine. The percentage of most anomalous compounds
was set to 1 %. In addition, a principle component analysis
(PCA) of all these compounds was also conducted with the
maximum number of five components.
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Fig. 4 P-gp homology model
with the ligand-binding site
predicted by I-TASSER

After the preliminary screening, 73 potential anomalies
were detected from 6763 drug-bank compounds with no
missing attributes (Supplementary Material 2, SM2-AD).
Based on two first principal components, the distribution of
the compounds belonging to different databases is presented
in Supplementary Material 1, SM1-Fig. 1. The first scat-
ter plot (Supplementary Material 1, SM1-Fig. 1a) showed
the rationality of eliminating anomalous compounds which
somewhat separated from the others in two-dimensional
space. While the second scatter plot (Supplementary Mate-
rial 1, SM1-Fig. 1b) showed the dispersion of 87 in-house
chalcones within the chemical space of the database of 499
compounds for the development of prediction models, the
third scatter plot (Supplementary Material 1, SM1-Fig. 1c)
showed many points scattered outside this area. In other
words, the QSAR models might be succeeded in bioactiv-
ity prediction for chalcones in the in-house database but are
likely to inaccurately predict for some compounds in the
DrugBank database.

The detailed results of bioactivity prediction on two men-
tioned databases by all generated QSAR models could be
found in the Supplementary Material 2 (SM2-BAP). The
prediction process by the best model (Ensemble) resulted
in 22/87 in-house chalcones and 2374/6690 drug-bank com-
pounds having their predicted IC50 values less than or equal
to the threshold value of 15µM to be considered as P-
gp inhibitors. Based on the substituents, these chalcones
could be categorized into five groups: 2′-hydroxy, 4′-bromo,
methoxy, amino, and heterocyclic ring A (Supplementary
Material 1, SM1-Table 3). Among 44 drug-bank compounds
with their predicted pIC50 values ≥7 (Supplementary Mate-
rial 1, SM1-Table 4), Amiodarone, Tacrolimus, Indinavir,

Ritonavir, Cyclosporine, and Saquinavir are well-known
inhibitors of P-gp according to the U.S. Food and Drug
Administration [97].

All 22 hit chalcones with their predicted activity values
were taken into account for the structure–activity relation-
ship (SAR) hypotheses of P-gp inhibition: (i) the presence
of ortho-hydroxyl group on the ring A of chalcone scaf-
fold makes the bioactivity decrease (F7 and F29), while the
para-halogen group substitution (bromo) on this ring leads
to a contrary result (F18 and F14); (ii) the replacement of
methoxy group by dimethyl amino group at the para position
on the ring B helps to increase the inhibitory activity (F4 and
F18); (iii) the heterocyclic ring A is not necessary for good
inhibitors (F18 and F65); (iv) methoxy substituents at the
ortho and para positions on the ring A (F29, F33, and F36)
have a positive influence on the effect of inhibitors; and (v)
the inhibitory potency is enhanced by halogen group (cloro)
at the ortho position (F44 and F45) or methoxy group at the
ortho or meta position (F4, F5 and F7) on the ring B (ortho
substitution is better: F35, F36 and F37).

Molecular docking A set of 22 in-house chalcones and 44
drug-bank compounds derived from the in silico prediction
was applied for docking to determine their possible bind-
ing modes and affinities with the best homology model of
P-gp, using FlexX in LeadIT. In addition, docking study
was also implemented with 65 remaining chalcones, Reser-
pine, Tariquidar, and Elacridar (small molecule inhibitors of
P-gp) [22] for comparison purpose. With no flips, protona-
tion, and torsions, the binding site of protein was defined
by choosing the ligand in the predicted binding site (0JZ)
as a reference to include amino acids within radius of 6.5
Å. A total of 120 small molecules including 87 chalcone
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Fig. 5 Docking images of two
most potential ligands into P-gp
homology model

derivatives and 33 drug-bank compounds were successfully
docked into the active site of receptor. However, the docking
algorithm failed on 11 other drug-bank compounds because
of their complex and bulky structures. The docking results
could be found in detail in the Supplementary Material 2
(SM2-MD).

With docking scores ranging from −23.853 to −10.828
kJ/mol, the in-house chalcones showed good binding abil-
ities into the internal cavity of P-gp homology model. The
consensus of prediction and docking results suggested F45
as the most promising chalcone for inhibiting P-gp function
(SupplementaryMaterial 1, SM1-Table 3). Despite of having
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predicted IC50 values >15 µM, F57, F53 and F55 with
docking scores of −23.853, −21.750, and −21.483 kJ/mol,
respectively, were the derivatives possessing the highest
binding affinities for P-gp out of all 87 chalcones. Higher
docking scores in general displayed weaker binding abil-
ities of the drug-bank compounds in comparison with the
chalcone derivatives, although they had significantly lower
predicted IC50 values (Supplementary Material 1, SM1-
Table 4). Apart from the compounds unable to be docked,
there were 7/33 drug-bank compounds having positive dock-
ing scores. As well as F45, some drug-bank compounds such
as DB01578, DB0278, DB02009, DB04378, and DB01232
stood out for both prediction and docking results. Compared
with docking scores of Reserpine, Tariquidar, and Elacridar
which were −3.465, −13.262, and −22.858 kJ/mol, respec-
tively, hit compounds derived from the DrugBank database
(e.g., DB01578, DB02785, DB02009, and DB04378) and
our private database (e.g., F44 and F45) emerged as poten-
tial candidates to modulate P-gp-mediated drug efflux and
reverse MDR in cancer cells.

Docking poses of three in-house chalcones having the
highest predicted pIC50 or the lowest predicted IC50 val-
ues (F45, F17, and F44); three in-house chalcones having
the lowest docking scores (F57, F53, and F55); three drug-
bank compounds having the highest predicted pIC50 or
the lowest predicted IC50 values (DB01118, DB01578, and
DB01362); three drug-bank compounds having the lowest
docking scores (DB01232, DB02785, and DB01578) and
three P-gp inhibitors (Reserpine, Tariquidar, and Elacridar)
are illustrated in Fig. 5 (F45, DB01578) and Supplementary
Material 1, SM1-Fig.F2 (other ligands). These images indi-
cated key residues responsible for receptor–ligand-binding
interactions (hydrogen bonding, arene-cation, and hydropho-
bic),whichwereHis61,Gln946, Tyr950, Leu65, Phe194, and
Gln195 in case of chalcones and Gln347, Phe343, Phe194,
Gln195, Ser344, and Gln946 in case of drug-bank com-
pounds. Amino acids Phe194, Gln195 in TM3 and Gln946,
Tyr950 in TM11 reaffirmed the drug binding pocket located
at the TM3/TM11 interface which was indicated before in
the work of Chiba et al. [14]. Other methods such as pho-
toaffinity labeling, site-directed mutagenesis, thiol probes
and co-crystal structural studies of P-gp in the presence of
mentioned ligands could be used to validate residues identi-
fied by our docking study.

Conclusions

In this work, we employed multiple different machine learn-
ing methods on a large and diverse database of compounds
whose bioactivity values (IC50) are comparable to develop
QSAR models for ligand-based design of P-gp inhibitors.
The results of internal and external validation processes with

strict validation criteria proved the predictivity of these mod-
els, especially the Ensemble model. In addition, high-quality
homology models of P-gp were also generated for structure-
based design. Based on these in silico tools, virtual screening
was applied on two databases, one from in-house source and
one from Drug Bank to discover new P-gp-mediated MDR
reverters. Finally, structural optimization formore potent and
safer drug candidates is required before further experimental
investigations.
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The supplementary material associated with this article is
presented in one PDF file (additional tables and figures)
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aly detection, bioactivity prediction, and molecular docking
results).
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