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Abstract Current clinical studies have revealed that dia-
betic complications are multifactorial disorders that target
two or more pathways. The majority of drugs in clinical trial
target aldose reductase and protein kinase C (PKCβ), while
recent studies disclosed a significant role played by poly
(ADP-ribose) polymerase-1 (PARP-1). In light of this, the
current study was aimed to identify novel dual inhibitors of
PKCβ and PARP-1 using a pharmaco-informatics methodol-
ogy. Pharmacophore-based 3D QSAR models for these two
targets were generated using HypoGen and used to screen
three commercially available chemical databases to iden-
tify dual inhibitors of PKCβ and PARP-1. Overall, 18 hits
were obtained from the screening process; the hits were
filtered based on their drug-like properties and predicted
binding affinities (docking analysis). Important amino acid
residues were predicted by developing a fingerprint of the
active site using alanine-scanning mutagenesis and molec-
ular dynamics. The stability of the complexes (18 hits with
both proteins) and their final binding orientations were inves-
tigated using molecular dynamics simulations. Thus, novel
hits have been predicted to have good binding affinities for
PKCβ and PARP-1 proteins, which could be further investi-
gated for in vitro/in vivo activity.
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Introduction

Diabetes mellitus is a metabolic disorder characterized by
hyperglycemia, which leads to a number of microvascu-
lar abnormalities, such as diabetic nephropathy, retinopathy,
and neuropathy, resulting in morbidity, mortality, and dete-
rioration of one’s quality of life [1]. Hyperglycemia leads
to diabetes-associated anomalies via well-established mech-
anisms, including increased aldose reductase activity [2],
formation of advanced glycation end products (AGEs) [3,4],
activation of protein kinase Cβ [5], and hexosamine path-
way [6]. In addition, intracellular hyperglycemia causes
an increased mitochondrial production of reactive oxygen
species (ROS). ROS, in turn, causes DNA strands to break,
thereby activating poly (ADP-ribose) polymerase (PARP).
PARP reduces the activity of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). Reduced GADPH activity is
involved in activation of the polyol pathway, formation of
intracellular AGEs, activation of PKCβ, and subsequently,
nuclear factor κB (NFκB) and activation of the hexosamine
pathway flux [7].

Protein kinase C beta type, encoded by the PRKCB
gene, is a serine- and threonine-specific protein kinase
activated by calcium and diacylglycerol (DAG) and is
involved in lipid signaling [5]. Hyperglycemia-induced
activation of PKCβ leads to microvascular abnormalities,
such as retinopathy, nephropathy, and neuropathy. Acti-
vated PKCβ may increase retinal endothelial permeabil-
ity, basement membrane protein synthesis, and stimulates
angiogenesis. Ruboxostaurin, a selective PKCβ inhibitor,
has been clinically evaluated to treat diabetic retinopathy
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[8]. In the literature, PKCβ inhibitors with pyrrolopyra-
zole, N-alkylbisindolylmaleimide, macrocyclic bisindolyl-
maleimide, and balanol, as parent structures, have been
reported to manage diabetic complications [9–11].

Poly (ADP-ribose) polymerase (PARP-1), encoded by the
PARP1 gene, is a nuclear enzyme that regulates a number
of cellular events, including DNA repair, cellular division
and differentiation, DNA replication, transformation, gene
expression and amplification, mitochondrial function, and
cell death. The altered activity of PARP has been reported
in various pathological conditions, including diabetic com-
plications. Experimental data obtained from animal models
show that the overexpression of PARP in the retina of dia-
betic rats occur due to DNA damage induced by cell death
[12].

Diabetic complications are a multifactorial disease state;
progression is initiated in a number of different pathways (as
discussed earlier). Impeding more than one pathway would
be a beneficial strategy for ameliorating the disease state.
Working on this hypothesis, dual inhibitors of PKCβ and
PARP-1 have been designed to possibly act as benchmarks
toward the development of effective therapy in the man-
agement of diabetic complications. In this work, based on
reported molecules with experimental data, pharmacophore-
based 3D-QSAR models have been developed using the
HypoGen algorithm [13], which were further validated by
the test set prediction, calculation of the enrichment factor
(EF), and the goodness of hits (GH) score. The generated
pharmacophore models were utilized to screen the commer-
cial Asinex [14], Chembridge [15], andMaybridge databases
[16]. The obtained molecules were filtered on the basis of
their drug-like properties and docking analysis. Thus, the
combined approaches were utilized to obtain compound can-
didates that can act as potential therapeutic agents to treat
diabetic complications.

Computational methods

Molecular modeling

For the current study, computational analysis was performed
on a Fujitsu Celsius M730 workstation using a NVIDIA
Quadro K4000 GPU graphic card and the Linux operat-
ing system CentOS 6.5. Discovery Studio 4.1 software was
used to generate HypoGen pharmacophore models [17].
Molecular docking was performed using CDOCKER (a
CHARMm-based docking tool) [18], and molecular dynam-
ics simulations were carried out using Desmond software
(version 3.8) [19–21]. For purposes of performing molecu-
lar modeling studies, two proteins were considered: PKCβ

and PARP-1. For PKCβ, two human-derived structures were
available in the Protein Data Bank (PDB): the kinase domain

of PKCβ protein was available in complex with a bisin-
dolylmaleimide derivative (PDB ID: 2I0E, 2.60 Å), and a
full-length structure was available with phosphoaminophos-
phonic acid adenylate ester (PDB ID: 3PFQ, 4.00Å) [22]. On
the basis of resolution and cross-docking results, the structure
with the bisindolylmaleimide derivative (2I0E) was selected
for further analysis. On the other hand, for PARP-1, a total
of 31 crystallographic structures were available in PDB, for
which nine human-derived structures were chosen with a
resolution greater than 2.50 Å (Table S1) [23–30]. Based
on our cross-docking results, the 2RD6 protein was selected
for further analysis. The structures of the proteins were pre-
pared using the automated protein preparation protocol in
Discovery Studio 4.1 (DS). The task to be performed included
insertion of missing atoms in the incomplete residues, mod-
eling of missing loops, removal of water, and protonation of
titratable residues using predicted pKs at a pH value of 7.4
using the CHARMm forcefield.

Selection of training set molecules is critical for the
generation of pharmacophore models, which subsequently
govern the quality of the generated model. PKCβ and PARP-
1 inhibitors reported in the literature with experimental
inhibitory activities (reported as IC50 values) were selected
as the training set [31–41]. The training set molecules had
diverse chemical structures, and their activities spannedmore
than 4 orders of magnitude. The protonation states of all the
molecules were obtained using the Prepare Ligands proto-
col in DS (pH 6.5–7.5), and the molecular geometry of the
resulting compounds was calculated using the CHARMm
forcefield.

Pharmacophore analysis and validation

A pharmacophore hypothesis was generated using DS in
which a pharmacophore is defined as an ensemble of essential
chemical features or substructures and their correspond-
ing three-dimensional positions, which are responsible for
the molecular recognition of a ligand by a specific bio-
logical target to trigger (or block) its biological response.
Pharmacophore-based 3D-QSAR analyses for PKCβ and
PARP-1 inhibitors (based on the Catalyst HypoGen algo-
rithm) were carried out by considering the hydrogen bond
donor, hydrogen bond acceptor, hydrophobic, ring aro-
matic, and positive/negative ionizable features on the ligand
[13,17]. For this analysis, a training set of 23 and 31 mole-
cules were selected for PKCβ and PARP-1, respectively, on
the basis of their structural diversity and variation in activ-
ity. The activities of these compounds were classified as
highly active, moderately active, and inactive. A maximum
of 255 conformations were generated for each ligand using
“BEST conformation generation,” and an energy threshold
of 20 kcal/mol was considered to ensure maximum coverage
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of the conformational space. A total of 10 pharmacophore
models were generated by taking six maximum and four
minimum features. To assess the significance of the gener-
ated pharmacophore models, a Fischer’s randomization test
with 95 % confidence limits was used. While generating the
hypothesis, the minimum and maximum counts of features
for hydrogen bond acceptor (HBA), hydrogen bond donor
(HBD), hydrophobic feature (HY), positive ionizable (PI),
negative ionizable (NI), and aromatic ring (RA), were set as
0 and 5, respectively, for each feature type. This protocol
led to the generation of a total of 10 quantitative hypothe-
ses with their corresponding statistical parameters, including
cost values (null and fixed costs), correlation (R2), the root
mean square deviation (RMSD), and fit values. Fixed cost
represents the simplest model that fits the data perfectly. Null
cost represents the highest cost of pharmacophore with no
features and estimates the activity to be the average of the
activity of the training set compounds. The best model was
selected on the basis of the difference between two cost val-
ues (null cost minus total cost). A model with a difference
greater than 60 means that the model has a true correlation;
a difference of 40–60 indicates a prediction correlation of
70–90 %, and a difference below 40 reflects difficulty in
prediction.

The best pharmacophore model is able to differentiate
active from inactive molecules. Selected pharmacophore
models were assessed using the Fischer’s method, and their
validation was carried forth using the test set molecules. The
Fischer’s method assesses the correlation between chemical
structure and biological activity and overrules the probability
of chance correlation. Test set was utilized to determine the
ability of the hypothesis to predict the molecules and catego-
rize themaccording to their range of biological activities. The
prediction was carried out in DS using the BEST algorithm
and Flexible fitting option.

The generated hypotheses were further validated using
calculation of the enrichment factor (EF) and Goodness
of hits (GH) [42]. The enrichment factor (EF) was calcu-
lated to check the ability of the models to predict the active
molecules over the inactives (decoys) using the formula:
EF = (Ha/Ht)/(A/D), while the goodness of hits was
assessed by screening themodel through a database of known
actives and inactives and the results were evaluated using the
Güner-Henry (GH) scoring method based on the following
equation:

GH = {[Ha × (3A + Ht)] /4HtA} × {(Ht−Ha) / (D−A)}

where D is the total number of compounds in the database, A
is the number of actives, Ha is the total number of actives on
the hit list, and Ht is the total number of compounds on the
hit list. The calculated GH scores range from 0 (null model)
to 1 (ideal model).

Docking and molecular dynamics simulation

All the docking simulations were carried out using the
CDOCKER module in DS 4.1 [18], which works on the
CHARMm-based forcefield, and molecular dynamics sim-
ulations in the Desmond software, which works on the
OPLS_2005 forcefield [19–21]. All the reported PKCβ and
PARP-1 inhibitorswere docked in the preparedPKCβ protein
(PDB: 2I0E) andPARP-1 protein (PDB: 2RD6), respectively.
The resultswere analyzed for the presence of hydrogen bond-
ing, hydrophobic and π–π interactions between molecules,
and the active site of the proteins.

The molecule with the highest target affinity for each
class of reported inhibitors docked with the PKCβ and
PARP-1 proteins was used in molecular dynamics simu-
lations (10 ns) using Desmond. The simulations helped
to stabilize the complex and analyze the most probable
interaction by studying its simulation–interaction diagram.
From this analysis, the important interactions for each pro-
totypic ligand were assessed and can be utilized for further
designing.

For molecular dynamics simulations, the system was first
built using the TIP3P solvent model with orthorhombic box
shape; the pH was adjusted by adding Na+ ions, and the salt
concentration was set at 0.15 M. The simulation was carried
out using the NPT ensemble and a time step of 1.0 fs; the
temperature was fixed at 310K using the Nose-Hoover Chain
method as the thermostat and pressure of 1.01325 bar using
Martyn–Tobias–Klein as the barostat.

Alanine-scanning mutagenesis

Alanine-scanning mutagenesis is a method that systemati-
cally substitutes residues with alanine for the identification
of functional epitopes. This alanine substitution removes
all the side chain atoms after the β-carbon; thus, the role
of side chain functional groups at a particular position can
be assessed from alanine mutations. In the present work,
a computational alanine scanning mutagenesis was carried
out, wherein Binding Mutational Energy was calculated
using DS under the Macromolecules toolbar [17]. In this
protocol, the energy effect of each mutation on the bind-
ing affinity (mutational energy, ��Gmut) was calculated as
the difference between the binding free energy in mutated
and wild-type protein [��Gmut = ��Gbind(mutant)
−��Gbind(wildtype)]. Alanine scanning for all amino acid
residues of the active site of PKCβ and PARP-1 was per-
formed.

Based on the results obtained from the molecular dynam-
ics simulation and alanine-scanning mutagenesis, various
amino acids present in the active site were ranked based on
their participation in binding the inhibitor at the active site.
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The scores obtained from the simulation and mutation analy-
ses were used as markers for the current study.

Virtual screening protocol

The process of virtual screening is the most critical step
in the theoretical process; thus, we combined a ligand-
based and structure-based approaches to obtain better results.
A ligand-based approach, i.e., pharmacophore screening,
helps to obtain features common in all of the highest active
molecules included in the dataset, while the structure-based
approach, i.e., docking analysis helps to obtain molecules
that can potentially have the best interaction with the PKCβ

and PARP-1 protein. A hierarchical virtual screening pro-
tocol was followed to screen the commercially available
Asinex, Chembridge, andMaybridge databases consisting of
296,321, 49,962, and 54,262 molecules, respectively, using

theFlexi searchmethod inDS by PKCβ and PARP-1 pharma-
cophoremodels in a stepwise fashion. This led to the retrieval
of hits that fit all of the features of the selected pharmacophore
model. The obtained hits were filtered based on Lipinski’s
rule of five, where a drug could be absorbed when it has less
than 10 hydrogen bond acceptors, less than five hydrogen
bond donor groups, a molecular weight of less than 500 Da,
and the number of rotatable bonds is less than 10.

The calculation of absorption, distribution, metabolism,
excretion, and toxicity (ADMET) properties was carried
out using the ADMET Descriptor protocol in DS. Vari-
ous parameters calculated in this process include human
intestinal absorption (HIA), aqueous solubility, blood–brain
barrier penetration (BBB), cytochrome P4502D6 (CYP2D6)
enzyme inhibition, and hepatotoxicity. Human intestinal
absorption is calculated on the basis of a model developed
using descriptors, including AlogP98 and 2D polar surface
area (PSA_2D) [43,44]. The absorption is ranked in four pre-

Table 1 Cost analysis and
correlation data for the
pharmacophore hypothesis of
PARP-1

Hypothesis Total cost Error cost RMS Correlation (R) Feature

Hypo1 100.83 82.91 1.08 0.93 HBA, HY, PI, RA

Hypo2 101.82 84.39 1.14 0.93 HBA, HBA, HY, PI

Hypo3 107.33 92.26 1.42 0.88 HBA, HBA, HY, PI

Hypo4 109.23 94.49 1.48 0.87 HBA, HY, HY, PI

Hypo5 109.32 94.54 1.47 0.87 HBA, HY, PI, RA

Hypo6 110.81 95.86 1.54 0.86 HBA, HY, HY, PI

Hypo7 110.94 95.82 1.54 0.86 HBA, HBA, HY, PI

Hypo8 114.87 99.48 1.66 0.84 HBA, HY, HY, PI

Hypo9 116.51 101.53 1.71 0.83 HBA, HY, HY, PI

Hypo10 120.53 105.31 1.82 0.80 HBA, HBA, PI, RA

Null cost = 169.89,Fixed cost = 85.29, Configuration cost = 13.67, All costs are in units of bits.
All pharmacophores consist of four features including hydrogen-bond acceptor (HBA), hydrogen-bond
donor (HBD), hydrophobic (HY), polarizable (P), and aromatic ring (RA)

Table 2 Cost analysis and
correlation data for the
pharmacophore hypothesis of
PKCβ

Hypothesis Total cost Error cost RMS Correlation (R) Feature

Hypo-1 92.58 75.63 1.11 0.89 HBA, HBA, HBD, HY

Hypo2 93.44 77.52 1.19 0.87 HY, HY, PI, RA

Hypo3 94.09 78.09 1.22 0.87 HY, HY, PI, RA

Hypo4 95.00 78.51 1.22 0.87 HBA, HBA, HBD, HY

Hypo5 97.21 80.78 1.29 0.85 HBA, HBD, HY, PI

Hypo6 97.83 81.69 1.38 0.83 HY, HY, RA, RA

Hypo7 98.56 82.54 1.38 0.83 HBA, HBD, HY, PI

Hypo8 98.62 82.34 1.40 0.82 HY, HY, HY, RA

Hypo9 99.03 83.03 1.42 0.82 HBD, HY, PI, RA

Hypo10 99.27 83.37 1.42 0.82 HY, HY, PI, RA

Null cost = 122.89,Fixed cost = 79.66,Configuration cost = 14.74, All costs are in units of bits.
All pharmacophores consist of four features including hydrogen-bond acceptor (HBA), hydrogen-bond
donor (HBD), hydrophobic (HY), polarizable (P), and aromatic ring (RA)
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diction levels: 0, 1, 2, and 4, referring to good, moderate, low,
and very low absorption, respectively. Aqueous solubility is
calculated using a predictive model for aqueous solubility
[43], and ranking for the same is denoted as 0, 1, 2, 3, 4,
or 5, corresponding to extremely low, very low, low, good,
optimal, or very soluble profile of compounds, respectively.
The blood–brain barrier penetration is also calculated using a
quantitative regression model [45], where the 0, 1, 2, 3, and 4
values correspond to very high, high,medium, low, and unde-
fined penetration. Based on a Bayesian model, a compound
could be predicted as a CYP2D6 inhibitor or hepatotoxic
[46–48].

Compounds fulfilling the criteria of drug-likeliness were
chosen for molecular docking studies using CDOCKER as
discussed above. Selected molecules were docked against
PKCβ (PDB ID: 2I0E) and PARP-1 (PDB ID: 2RD6), and
the interactions were evaluated with the fingerprint residues
of the protein that were extracted as mentioned earlier. The
final hits were further simulated for 10 ns to assess their
stability at the active sites of PKCβ and PARP-1.

Results and discussion

As per our design strategy, we first sketched and prepared
the ligand molecules identified in the literature known to be
PKCβ and PARP-1 inhibitors. A total of 23 PKCβ and 31
PARP-1 inhibitors were identified with experimental IC50

values. Using the selected training set molecules, the 3D-
QSARpharmacophore analysiswas carried out, and a total of
10 hypotheses were generated. The top hypothesis consisted
of four features: hydrogen bond acceptor (HBA), hydropho-
bic (HY), positively ionizable (PI), and ring aromatic (RA)
for both PKCβ and PARP-1. The results of the cost analysis
and correlation of the pharmacophore hypothesis for PARP-
1 and PKCβ are shown in Tables 1 and 2, respectively. The
best Hypo-1 hypothesis from each pharmacophoric hypoth-
esis was selected for further investigation based on statistical
results. The value of the total cost was closer to the fixed-cost
value, which is required for a good hypothesis. For PKCβ

and PARP-1, the difference between the null cost hypoth-
esis and fixed-cost hypothesis was found to be 43.23 and
84.6 bits, respectively. The values of the null-cost hypothesis
and total cost of the best models of PKCβ and PARP-1 were
found to be 122.89 and 92.58 bits, and 169.89 and 100.83
bits, respectively. The correlation between the experimen-
tal and estimated activities of the training set compounds
yielded correlation coefficient (R2) values of 0.89 and 0.93
for PKCβ and PARP-1, respectively (Fig. 1). The pharma-
cophores of both models mapped well onto the highest active
molecules with good fitness scores of 9.5 and 9.3 for PKCβ

and PARP-1, respectively. The estimated activities of the
training set compounds obtained from Hypo1 of PKCβ and

Fig. 1 Correlation between experimental and estimated activities of
training set compounds of Hypo 1 of PKCβ (blue) and PARP-1
(maroon). (Color figure online)

PARP-1 are shown in Tables S2 and S3, respectively. Sim-
ilarly, for test set compounds, estimated activities are given
in Tables S4 and S5. Important features identified in both
the pharmacophore models follow binding interactions of
the active molecules docked within the PKCβ and PARP-
1 active site. The hypothesis selected for PKCβ consists
of two acceptors: one donor and one hydrophobic group
(Fig. 2a). Superimposition of the hypothesis over the highest
activemolecule (PKC-J, Supplementary Table S2) suggested
that the two acceptors and one donor group lie over the
carbonyls and NH moiety of maleimide of the molecule,
respectively (Fig. 2b). In our docking analysis, these groups,
i.e., the two carbonyls and NH moieties were involved in the
hydrogen-bond formation with Thr404, Glu421, and Val423
amino acids. In addition, the hydrophobic group lies over the
methyl group, which fits into the small hydrophobic pocket
of the active site. The hypothesis selected for PARP-1 con-
sists of one acceptor, one hydrophobic, one aromatic ring,
and one positively polarizable feature (Fig. 2c). It is evi-
dent from Fig. 2d that the acceptor feature lies over the
carbonyl of the amide group of the highest active molecule
(PARP-1, Supplementary Table S3); the hydrophobic fea-
ture lies over the indazole ring; the aromatic ring feature
lies over the phenyl group; and the positive polarizable fea-
ture lies over the NH of the molecule (Fig. 2d). The amide
group formed hydrogen-bond interactions with Gly202 and
Ser243, the indazole ring forms π–π interactions with
Tyr246, while the positive ionizable NH lies in the solvent-
accessible area and improves the solubility profile of the
molecule.

For the validation of the pharmacophore models, a test
set of 8 and 15 known PKCβ and PARP-1 inhibitors were
identified and categorized as active, inactive, and moder-
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Fig. 2 The best pharmacophore
model Hypo 1 of a PKCβ

contains two hydrogen bond
acceptors (HBA: green), one
hydrogen bond donor (HBD:
magenta), and one hydrophobic
(HY: blue). b Alignment of
Hypo 1 of PKCβ over the most
active compound. c PARP-1
contains one hydrogen bond
acceptor (HBA: green), one
hydrogen bond donor (HBD:
magenta), one aromatic ring
(RA: orange), and one
hydrophobic (HY: blue). d
Alignment of Hypo 1 of PARP-1
over the most active compound.
(Color figure online)

Fig. 3 Correlation between experimental and estimated activities of
test set compounds of Hypo 1 of PKCβ (blue) and PARP-1 (maroon).
(Color figure online)

ately active. The selected hypotheses for both targets were
able to predict the test set molecules according to their
activity range and displayed q2 values of 0.63 and 0.76
for PKCβ and PARP-1, respectively. The selected hypothe-
ses also showed good correlation between the experimental

and estimated activity (Fig. 3). Thus, the test set validation
results demonstrated that the hypotheses can discriminate
between actives, moderately actives, and inactives. Further
validation of the pharmacophore model was carried out by
screening a database of 56 and 222 known PKCβ and PARP-
1 inhibitors, respectively, consisting of 26 and 156 actives
(IC50 ≤ 100 nM), and 30 and 66 inactives (IC50 ≥ 1μM)

molecules, respectively, which were screened through their
respective pharmacophore models. Moderately active mole-
cules (IC50 = 100 nM to 1μM) were not considered in
the database to differentiate between the actives and inac-
tives. The PKCβ and PARP-1 pharmacophore models gave
an enrichment value of 1.77 and 1.19, respectively (Supple-
mentary Table S6). A GH score of 0.69 and 0.49 for PKCβ

and PARP-1, respectively, indicates the models are of signif-
icant good quality.

In order to improve the selectivity of the design process,
a structure-based design approach was incorporated into the
protocol. For this reason, the protein of PKCβ (PDB ID:
2I0E) was selected on the basis of resolution and cross-
docking results. The protein was first prepared to correct
any missing hydrogen atoms, ambiguous protonation states,
and flapped residues. Then, all the dataset molecules were
docked at the active site of the prepared protein. The docking
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results showed good correlation between the experimental
activity and CDOCKER interaction energy, with a correla-
tion coefficient value of 0.65 (Supplementary Fig. S1). Thus,
the crystal structure 2I0E was used and the protein’s chain
A was selected on the basis of the B-value for further analy-
sis. Furthermore, the protein-ligand complexes of the most
potent active molecules from each series were simulated for
a period of 10 ns to establish the stability of the compound’s
interactions with the amino acid residues. Our simulation
showed that meleimide of co-crystal ligand interacts with
the hinge region amino acids Glu421, Val423, and Thr404
(Supplementary Fig. S2A). The NH of the ring acted as a
hydrogen bond donor to the backbone carbonyl of Glu421
amino acid residue, while the carbonyls of the ring formed a
hydrogen bond interaction with Thr404 and Val423. Further
analysis revealed that hydrophobic interactions with Phe353,
Val356, and Ala483 also played a key role in ligand binding
(Supplementary Fig. S2B). Similarly, the macrocyclic bisin-
dolylmaleimides parent structure containing clinical trial
molecule ruboxostaurin formed hydrogen-bonding interac-
tions with Glu421 and Val423 (Supplementary Fig. S3).
In addition, hydrophobic interactions were observed with
Phe353, Ala483, Met473, Ala369, and Val356. The PKCβ

inhibitor with pyrrolopyrazole scaffold (PKC-9, Supplemen-
tary Table S2) formed three hydrogen-bonding interactions,
i.e., NH of pyrazole with Glu421, nitrogen of pyrazole
with Val423 and NH of the amide group on 3rd posi-
tion of pyrrolopyrazole ring with Val423 of the PKCβ

active site (Supplementary Fig. S4). PKC-9 also formed
hydrophobic interactions with amino acid residues Phe353
and Val356 (Supplementary Fig. S5). Information regard-
ing contacts of the ligands with amino acid residues was
obtained in the form of an interaction fraction value that
helped to rank the amino acids in the order of their
importance.

In the case of PARP-1, out of a total of nine available
PDB structures and based on cross-docking analysis, the
crystal structure 2RD6 was selected and prepared for fur-
ther analysis. All the molecules were docked in the protein
and the CDOCKER interaction energy was correlated with
experimental activity with a correlation coefficient of 0.55
(Supplementary Fig. S6). The critical analysis of all avail-
able crystal structures with inhibitor molecules suggested the
presence of some common interactions that may be consid-
ered important for inhibiting the PARP-1 protein. The major
interactions assessed from the available crystal structures are
mentioned in Supplementary Table S7. Based on our results,
we determined that interactions with amino acid residues
Gly202 and Ser243 are essential for activity, aromatic amino
acid residues Tyr246 and His201 formed π–π interactions
with the aromatic ring system of the inhibitor and Lys242 is
involved in π-cation interaction in some of the crystal com-
plexes.

The information obtained from molecular dynamics sim-
ulations is not sufficient to rank the active site amino acid
residues. Thus, an alanine-scanning mutagenesis was carried
out to rank the amino acid residues at the active site. For this,
mutational energies were calculated by mutating different
amino acid residues with alanine. The mutational energies
were calculated to evaluate the effect of mutations on the
binding affinity of ligands in protein-ligand complexes. We
performed combinatorial alanine-scanning mutagenesis on
a set of selected amino acid residues by mutating them to
alanine. The energy effect of each mutation on the binding
affinity (mutational energy) was calculated as the difference
between binding free energy in the mutated structure and
wild protein: ��Gmut = ��Gbind (mutant) - ��Gbind

(wild type). The binding free energy (��Gbind) refers to the
difference between the free energies of the protein-ligand
complex and protein in an unbound state. All the respective
calculations were performed using the CHARMm forcefield
and Generalized Born implicit water model. In this calcu-
lation, an empirical summation of electrostatic interaction,
Van der Waal interaction, entropy contribution of changes
in side-chain mobility, and a nonpolar surface-dependent
contribution to solvation energy was designated as the total
energy. The results obtained from the single point alanine
mutagenesis can be scaled according to its values, mutational
energy less than −0.5 kcal/mol is referred to as stabiliz-
ing, mutational energy between −0.5 and 0.5 kcal/mol is
described as neutral, and mutational energy greater than 0.5
kcal/mol is destabilizing. The alanine-scanning mutagene-
sis was carried out for the active site amino acid residues,
taking ligands with different scaffolds. The mutational ener-
gies obtained for each amino acid residue of the active site
of PKCβ and PARP-1 from this scanning are summarized in
Supplementary Tables S8 and S9, respectively.

The information obtained from the simulation studies and
alanine scanning mutagenesis helped to rank the different
amino acids in the PKCβ andPARP-1 active sites and develop
fingerprint of active sites of these two targets (Tables 3, 4).

In the PKCβ active site, the amino acid residues Glu421,
Val423, and Thr404 present in the hinge region turn out to be
important in simulation studies. It was observed that amino
acids Leu348, Phe353, and Val356 form a hydrophobic
groove on the roof of the active site, where the hydrophobic
groupof inhibitor canbewell accommodated.A small groove
was also present at the bottom of the active site, formed by
Met473 and Ala483 amino acid residues. These hydropho-
bic grooves are also crucial because the amino acid residues
constituting the groove are ranked high in the above analy-
ses. The edge of the active site consists of acidic amino acids
Asp427, Asp470, Asp484, and Glu390, which are observed
to line the active site and interact with the positively charged
group in the inhibitor molecule. The back of the active site
is lined up with hydrophobic residues, such as Met420 and
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Table 3 Ranking of active site
amino acid residues of PKCβ by
molecular dynamics simulation
and alanine scanning
mutagenesis

Amino acid Rank Reason

Glu421 1 Constitute hinge region interaction (simulation study)

Val423 2 Constitute hinge region interaction (simulation study)

Phe353 3 Form hydrophobic interaction (simulation and computational mutagenesis)

Thr404 4 Constitute hinge region interaction (simulation study)

Val356 5 Form hydrophobic interaction (simulation and computational mutagenesis)

Met473 6 Form hydrophobic interaction (simulation and computational mutagenesis)

Leu348 7 Form hydrophobic interaction (simulation and computational mutagenesis)

Tyr422 8 As calculated from simulation and mutagenesis score

Asp484 9 As calculated from simulation and mutagenesis score

Asp470 10 As calculated from simulation and mutagenesis score

Met420 11 As calculated from simulation and mutagenesis score

Lys371 12 As calculated from simulation and mutagenesis score

Glu390 13 As calculated from simulation and mutagenesis score

Table 4 Ranking of active site
amino acid residues of PARP-1
by Crystal structure
scrutinization and
alanine-scanning mutagenesis

Amino acid Rank Reason

Gly202 1 Crystal structure scrutinization

Ser243 2 Crystal structure scrutinization

Tyr246 3 Crystal structure scrutinization and computational mutagenesis

Tyr235 4 Crystal structure scrutinization and computational mutagenesis

His 201 5 Crystal structure scrutinization and computational mutagenesis

Lys242 6 Crystal structure scrutinization and computational mutagenesis

Tyr228 7 Crystal structure scrutinization and computational mutagenesis

Glu327 8 Computational mutagenesis

Glu102 9 Computational mutagenesis

Ala369. The amino acid residues Lys371 and Glu390 form
a salt-bridge interaction and act as gatekeeper residues in
the active site. Furthermore, based on interactions of the
reported crystal structures for PARP-1, molecular dynam-
ics simulation, and mutational analysis, amino acids of the
active site were ranked, as shown in Table 5. Thus, a fin-
gerprint of the PARP-1 active site was developed: Gly202
and Ser243 are important amino acids that form backbone
acceptor–donor interactions with the inhibitor; the amino
acids His201, Tyr235, Ala237, and Tyr228 line the base of
the active site; and Lys242 and Tyr246, which present at the
roof of the active site, are involved in forming π−π and π-
cation interaction. The acidic amino acid Glu327, present at
the edge of the active site,was observed to forman interaction
with the positively-charged entity in the inhibitor.

A hierarchical virtual screening protocol was utilized, as
shown in Fig. 4. The pharmacophoric features of the selected
hypothesis play a critical role in screening out novel hits
from commercially available chemical databases. The phar-
macophore hypothesis of PKCβ mapped 194,995, 28,295,
and 23,796 molecules from the Asinex, Chembridge, and
Maybridge databases, respectively, while screening from the

pharmacophore hypothesis of PARP-1 led to retrieval of
19,169, 8511, and 713 hits, respectively. The hits were first
filtered on the basis of their fitness scores: compoundswith fit
values greater than 8.5 and 7.5were considered for PKCβ and
PARP-1, respectively. These hits from the PKCβ and PARP-
1 screening were filtered using the Lipinski’s and ADMET
filter. In order to calculate the pharmacokinetic profile of the
hits, the ADMET properties were calculated, such as blood–
brain barrier (BBB) penetration, solubility, hepatotoxicity,
human intestinal adsorption (HIA), and CYP450 2D6 inhi-
bition. For BBB, solubility, and absorption, compounds with
values of 3, 3, and 0 were assigned to low penetration, good
aqueous solubility, and low absorption, respectively. Addi-
tionally, based on Bayesian model the hits were predicted as
CYP2D6 inhibitor and nonhepatotoxic.

The hits obtained from the PKCβ screening were sub-
sequently cross-screened through PARP-1 and vice versa
to obtain dual inhibitors. Hits from cross-screening process
were combined and docked against PKCβ (PDB ID: 2I0E)
and PARP-1 (PDB ID: 2RD6) and evaluated for their bind-
ing orientations within the active site. The whole process
yielded a total of 18 potential dual inhibitors with a purine-
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Table 5 2D- Structures of hits screened from Anisex database along with estimated activities of PKCβ and PARP-1

Code Structure Estimated
activity PKCβ

Estimated
Activity
PARP-1

MM-GBSA
(PKCβ)

MM-GBSA
(PARP-1)

BAS17260509 8.9 3.5 −72.26 −92.63

BAS17260501 9.04 1.97 −72.20 −90.68

BAS02999118 8.78 5.05 −72.05 −66.37

ASN17260521 8.5 1.82 −70.50 −85.65

ASN00387070 9.00 3.42 −68.41 −67.55

BAS17260446 8.51 1.26 −70.50 −90.92

BAS17260422 8.52 1.68 −66.77 −85.54
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Table 5 continued

Code Structure Estimated
activity PKCβ

Estimated
Activity
PARP-1

MM-GBSA
(PKCβ)

MM-GBSA
(PARP-1)

BAS17260425 9.06 1.45 −66.63 −88.04

BAS01122536 9.14 1.46 −66.41 −85.48

BAS06502901 8.54 1.01 −65.33 −104.94

BAS13765774 9.02 2.5 −65.33 −91.26

BAS13117570 8.57 6.5 −63.74 −81.79

BAS04914706 9.03 3.09 −63.58 −97.82
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Table 5 continued

Code Structure Estimated
activity PKCβ

Estimated
Activity
PARP-1

MM-GBSA
(PKCβ)

MM-GBSA
(PARP-1)

BAS04914704 9.09 2.39 −61.70 −96.40

BAS07401527 9.03 2.03 −60.53 −95.04

BAS17260444 8.9 4.4 −60.40 −83.78

BAS13117571 8.63 6.27 −57.10 −87.31

BAS02999084 8.72 6.5 −48.83 −72.38
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Fig. 4 Virtual screening protocol followed to identify 18 potential dual-target hit molecules

2,6-dione scaffold (Table 5). Thebestmoleculesmappedover
the PKCβ and PARP-1 pharmacophore models are shown in
Supplementary Figs. S5AandB. Finally, amolecular dynam-
ics simulation was used to assess the binding stability of the
obtained hits with the respective protein targets. Thus, all the
complexes, i.e., Asinex molecules in complex with PKCβ

and PARP-1 proteins, were subjected to MD simulations for
a period of 10 ns. To analyze stability of the protein-ligand
complexes, the RMSD values of protein backbone and hit
compounds were calculated; they ranged from 0.5 to 3.5 Å
for proteins and 0.8 to 4.3 Å for the ligands. The graph of
the root mean square deviation (RMSD) values for the best
molecule simulated with PKCβ and PARP-1 are shown in
Supplementary Figs. S7A and S7B, respectively. Variations
in RMSD, noted during the initial intervals, were due to an
initial adjustment of the hits into the active site of the respec-
tive proteins. However, ligands showed stability after initial
adjustment in terms of RMSD, as well as interactions within
the active site. All structures superimposed onto the reference

ligand showed a similar binding pose. The hit-1with a purine-
2,6-dione substructure showed hydrogen-bond interactions
with the hinge region amino acids Thr404, Glu421, and
Val423 of PKCβ protein (Fig. 5c). In addition, hit-1 showed
hydrophobic interactions with Ala369 and Ala483. These
interactions were found to be stable throughout a molecular
dynamics simulation period of 10 ns. Hit-1 also displayed
stable hydrogen-bond interactions with Gly202 and Ser243
at the PARP-1 active site (Fig. 5d). It also formed a sta-
ble π−π interaction with Tyr246 and hydrophobic contacts
with Tyr228 and Tyr235 amino acid residues. Because the hit
compounds showed good interactions within the active sites
of both proteins, the final hits can be considered promising
candidates as potential dual inhibitors of PKCβ and PARP-1.

The binding energies of the complexes between identified
hits and PKCβ and PARP-1 proteins were also calculated
using the MM-GBSAmethod to determine the relative affin-
ity of the obtained hits (Table 5). The binding energies of
the PKCβ-ligand complex were −90.69 kcal/mol (PKC-
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Fig. 5 Final best-hit compound mapped onto the best pharmacophore model of a PKCβ, b PARP-1. The HBA, HBD, RA, and HY features are
displayed in green, magenta, orange and cyan, respectively. Docking interaction of the best-hit compound with proteins of c PKCβ, d PARP-1.
(Color figure online)

hit1), while for the PARP-1-ligand complex it was −72.26
kcal/mol (PARP-hit1). In addition, it was checked whether
these compounds had earlier been evaluated for PKCβ and
PARP-1 inhibitory activities or not usingPubChem Structure
online search tool (September, 2015, https://pubchem.ncbi.
nlm.nih.gov/). This search confirmed that the hits were not
experimentally tested earlier for the inhibition of PKCβ and
PARP-1. These results concluded that the final hits could
provide a potential architecture for designing novel dual
inhibitors of PKCβ and PARP-1.

Conclusion

In recent years, rigorous work has been done to develop
appropriate therapeutic agents for diabetic complications.
Activation of multiple pathways related to the disease leads
to therapy complications. Thus, in our present work, we
aimed to identify dual inhibitors of two well-established

targets of diabetic complications: PKCβ and PARP-1. For
this, rigorously validated pharmacophoremodelswere devel-
oped for PKCβ and PARP-1 inhibitors, and these phar-
macophore models were utilized for virtual screening. To
improve the sensitivity and specificity of the process, dock-
ing analysis was carried out, which helped to determine
key interactions and key amino acids at the active site. A
hierarchical virtual screening approach was used to iden-
tify dual inhibitors of PKCβ and PARP-1 that may be
utilized as potential agents for the treatment of diabetic
complications.
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