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Abstract Mutated epidermal growth factor receptor (EGFR-
T790M) inhibitors hold promise as new agents against can-
cer. Molecular docking and QSAR analysis were performed
based on a series of fifty-three quinazoline derivatives to elu-
cidate key structural and physicochemical properties affect-
ing inhibitory activity. Molecular docking analysis identified
the true conformations of ligands in the receptor’s active
pocket. The structural features of the ligands, expressed
as molecular descriptors, were derived from the obtained
docked conformations. Non-linear and spline QSARmodels
were developed through novel genetic algorithm and arti-
ficial neural network (GA-ANN) and multivariate adaptive
regression spline techniques, respectively. The former tech-
nique was employed to consider non-linear relation between
molecular descriptors and inhibitory activity of quinazoline
derivatives. The later technique was also used to describe the
non-linearity using basis functions and sub-region equations
for each descriptor. Our QSAR model gave a high predic-
tive performance (R2

p = 0.881, Q2
LOO = 0.923, R2

LSO =
0.828 and r2m = 0.772) using diverse validation techniques.
Eight new compounds were designed using our QSAR
model as potent EGFR-T790M inhibitors. Overall, the pro-
posed in silico strategy based on docked derived descriptor
and non-linear descriptor subset selection may help design
novel quinazoline derivatives with improved EGFR-T790M
inhibitory activity.
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Introduction

The mutation or overexpression of EGFR (epidermal growth
factor receptor) has been observed in many human tumors,
and is under intense investigation as a novel anticancer
molecular target [1]. The EGFR pathways can lead to the
initiation of cancer proliferation and increased neoangiogen-
esis and metastatic potential. EGFR inhibition by inhibitors
such as erlotinib and gefitinib results in a relatively effec-
tive treatment for patients for a while [2]. However, many
patients will ultimatelymanifest disease progression because
of drug resistancedue toT790Mmutation in theEGFRkinase
domain especially in squamous head, neck carcinomas, ovar-
ian, lung, andbreast cancers [3].Despite the rapid advances in
EGFR oncology therapeutics over the past decade, substan-
tial room for improvement remains. Several challenges exist
in the effective inhibition of T790M clinically. Previously
designed EGFR inhibitors did not demonstrate distinctly
improved efficacy against T790M mutations which is par-
tially attributed to the dosage limitation imposed by the
drugs’ toxicity [4]. The design of EGFR-T790M inhibitors
with high activity and low dosage has proven to be quite
challenging since only few reports exist [5]. Therefore, more
studies are needed to find potent, promising, and compara-
bly efficacious inhibitors against EGFR-T790M resistance
tumor. Recently, some novel quinazoline derivatives have
been shown to selectively inhibit EGFR-T790M with high
potency and good binding affinity [6] which prompted us to
explore the relationship between the structures of quinazoline
derivatives and EGFR-T790M inhibition. The cost-effective
computational routines can speed up the procedure of drug
design by predicting the biological activity of drug-like
molecules and identifying receptor–ligand interactions [7].
Molecular docking andQSAR (quantitative structure activity
relationship) techniques can be used to guide lead optimiza-
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tion and in silico evaluation for EGFR-T790M inhibitors.
This may help find and design new targets that fall within
applicability domain.

To the best of our knowledge, noQSAR study has yet been
reported on quinazoline-basedEGFR-T790M inhibitors. The
main aim of the present contribution was to develop val-
idated QSAR models to predict the inhibition profiles of
quinazolines. In silico evaluation was performed keeping the
following points in mind. First, molecular docking studies
have been used to identify the position and orientation of lig-
ands (inhibitors) in the active pocket of the EGFR-T790M
receptor and to facilitate an interpretation of receptor–
ligand molecular interactions. Second, various classes of
molecular descriptors were calculated from the optimum lig-
and conformation obtained from docking results. Third, a
straightforward non-linear descriptor selection method was
used based on aGA-ANN (genetic algorithm-artificial neural
networks) strategy to investigate the non-linear dependen-
cies between descriptors and inhibitory activities [8]. Fourth,
an interpretable MARS (multivariate adaptive regression
spline) algorithm was employed to find sub-region equa-
tions and spline functions describing the non-linearity in
selected descriptors [9]. Fifth, as a critical step to evalu-
ate the predictive power and reliability of QSAR models,
internal and external validations were performed using an
external prediction set, leave-one-out (LOO) cross-validation
(C.V.), leave-some-out (LSO) procedure, diversity analysis,
Y-scrambling, and applicability domain together with other
statistical parameters.

Methods and materials

Biological data set and molecular optimization

In the present QSAR analysis, a series of fifty-three
quinazoline-based EGFR-T790M inhibitors, together with
their inhibitory concentrations, were taken from the liter-
ature [6]. The inhibitory concentration (IC50) value was
converted to its corresponding logarithmic scale pIC50 value
which was taken as the dependent parameter for QSAR
analysis. The IC50, an inhibition activity parameter, is a mea-
sure of a compound’s inhibitory effectiveness and refers to
the concentration required for a compound to reduce the
level of EGFR activity by 50 %. The structures of EGFR
inhibitors and their corresponding pIC50 values are pre-
sented in Table 1. The 2D structures of the inhibitors in
Table 1 were sketched and their 3D structures were sub-
jected to energyminimization using themolecularmechanics
force field (MMFF) method implemented in the Molecular
Operating Environment (MOE2014.09, Chemical Comput-
ingGroup, Inc.) packagewith a convergence criterion of 0.01

kcal mol−1 and partial atomic charges. The optimized struc-
tures were used for molecular docking in the next section.

Energy minimization and molecular docking

The coordinates of the EGFR crystal structure were obtained
from the Protein Data Bank (www.rcsb.org) (PDB ID:
2JIU). Molecular docking studies were carried out using
MOE2014.09 in order to explore the interaction mecha-
nismand probable bindingmode of quinazoline-basedEGFR
inhibitors at the active pocket of the 2JIU protein crystal. The
energy minimization algorithm of MOE was used to mini-
mize the energy of the protein using theMMFF94x force field
with conjugant gradientmethod [10]. Formolecular docking,
the ligandwas considered fully flexible,while the proteinwas
considered rigid. All the torsion angles in the inhibitors were
also set free to perform flexible docking with a grid-point
spacing of 0.3 Å. The docking calculations were performed
by setting a 70 × 70 × 70 Å3 grid map centered in the bind-
ing pocket of EGFR using all the amino acid residues within
the grid map. A total of 50 conformations were saved for
each ligand using the default parameters in MOE. Simulta-
neously, all appropriate conformations and orientations were
predicted with the best binding free energy. Then, the best
docked conformation for each inhibitor was used to calculate
molecular descriptors.

Molecular descriptor generation

Different types of molecular descriptors (constitutional,
one dimensional, two dimensional, and three dimensional)
were used for QSAR analysis. These molecular descrip-
tors encoded significant structural features of molecules. A
total of 287 descriptors were calculated using the E-Dragon
software [11] based on molecular structures and the quan-
tum theory of atoms in molecules after removing invariable
descriptors for all molecules and correlated descriptors (R
> 0.9). The list of these descriptors, their meaning, and the
calculation procedures are provided in the literature [12].
These descriptors can be categorized into eighteen different
descriptor families: Constitutional, Topological, 2D auto-
correlations, Walk and path counts, Connectivity indices,
Information indices, Edge adjacency indices, Randic mole-
cular profiles, Geometrical descriptors, RDF, 3D-MoRSE,
BCUT, Topological charge indices, WHIM, GETAWAY,
Charge,Molecular properties, and Eigenvalue-based indices.

Descriptor selection and modeling tools

Descriptor selection is one of the most crucial steps in the
development of QSAR models [13]. For the selection of m
descriptors from the descriptor poll (n descriptors), there are

n!
m!(n−m)! possible combinations. Many conventional descrip-
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Table 1 Experimental and
calculated inhibitor data using
GA-ANN/MARS strategy for
quinazoline derivatives together
with their structures used in
QSAR study

No Sub 
seta R1 R2 R3 Exp. 

pIC50

Pred. 
pIC50

No Sub 
set R1 R2 R3 Exp. 

pIC50

Pred. 
pIC50

1 S3 H 6.99 7.11 28p S4 8.22 7.83

2p S2 H 8.74 8.44 29 S2 8.09 7.63

3 S4 H 6.94 7.37 30 S3 8.28 8.29

4 S1 H 6.71 6.78 31 S5 8.68 8.99

5 S5 H 6.25 6.08 32p S1 6.28 6.09

6p S1 H 7.14 7.36 33 S3 -OCH3 7.57 7.59

7 S4 H 6.87 6.88 34 S5 8.05 8.23

8 S2 H 7.00 7.36 35 S4 -OCH2CH3 8.26 8.29

9 S3 H 7.49 7.41 36 S1 6.96 6.78

10p S2 H 6.98 7.30 37p S4 6.45 6.21

11 S5 H 6.78 7.28 38 S2 -OCH2CH3 9.05 9.47

12 S1 H 8.24 8.54 39 S5 -OCH3 8.68 9.07

13 S2 H 6.92 7.33 40 S3 8.19 8.16

14 S3 8.92 8.88 41 S5 -OCHF2 8.02 7.94

15 S2 6.24 6.16 42 S1 -OCH2CHF2 8.16 8.45

16 S3 6.99 6.76 43p S2 -OCH3 6.85 7.32

17 S5 7.04 7.01 44 S5 8.15 8.43

18 S1 8.27 7.98 45 S3 8.28 8.51

19 S4 8.00 7.89 46p S4 -OCH3 8.57 8.86

20p S3 8.92 9.18 47 S1 -OCH2CH3 8.21 8.32

21 S1 8.52 8.32 48 S3 -OCH3 8.48 8.93

22 S4 6.29 6.61 49 S2 -OCH2CH3 8.62 8.75

23 S3 6.87 6.46 50 S2 8.25 8.58

24p S2 8.09 8.54 51p S5 -OCH3 8.10 7.71

25 S5 8.05 7.59 52 S1 -OCH2CH3 8.38 8.46

26 S4 8.92 9.03 53 S4 8.19 8.36

27 S1 6.83 6.77

a S1–S5 subsets
b Prediction set in MARS

tor selection methods provide one solution which may fall
into a localminima andmiss the globalminima.Despite these
methods, GA is an evolutionary stochastic method that can
find the population of solutions. In each population, the chro-
mosome of length k (the number of features) consists of zeros

and ones indicating selected descriptors. The population in
each generation is the result of the geneticmanipulation of the
chromosome found in the previous population through one-
point crossover and mutation based on their fitness scores.
This cyclic process was performed to obtain the best fitness
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Fig. 1 Flowchart of our GA-ANN/MARS strategy together with validations used in the present QSAR study

score or satisfactory result. In the present study, artificial
neural network (ANN) technique is defined as the fitness
function in the GA due to its ability to measure a non-linear
dependency between the descriptors (in the chromosome)
and target variable (pIC50). To calculate the fitness score, a
multi-objective fitness function was used to account for both
the residual errors and the number of selected descriptors
according to the following equation:

Fitness score = 1

RMSETrain + RMSETest +
√
k
, (1)

where RMSETrain and RMSETest are the root mean square
errors of the train and test sets, respectively, and k is the num-
ber of selected descriptors in the corresponding chromosome.
Previous reports of GA-ANN strategies [14] were modified
for effective descriptor selection as shown in Fig. 1. It should
be mentioned that the Levenberg–Marquardt weight update
function [15] was used in ANN due to its fast and remark-
able performance. Formore accurate descriptor selection, the
dataset was divided into five subsets (S1, S2, S3, S4, and S5)
as shown in Table 1, and a variable selection process was
performed for different combinations of these subsets. Four
subsets were used for calibration (train and test subsets) in
developing the model and one subset was used for predicting

and evaluating the generated model. The ANN models were
developed using the train set, while the test set was used to
prevent over-fitting. Ten possible combinations of train, test,
and prediction subsets were used in the present study for
descriptor selection. The most frequent selected descriptors
were chosen as the most important descriptors describing the
variance of the inhibitory activities.

For modeling purpose, MARS was employed as a simple
and interpretable technique [16]. The main idea of MARS
is dividing the whole space of each independent descriptor
into various sub-regions and then defining a different math-
ematical equation for each region. This makes the MARS
regression technique more flexible than the other regression
techniques. For each descriptor, some break points (knot
points) are defined using right and left side splines. These
two left and right spline functions (basis functions) are used
for relating the independent descriptors to the dependent vari-
able. Generalized cross-validation (GCV) was employed to
determine the importance of each basis function. Moreover,
theMARSalgorithmcanbeused to describe the non-linearity
with little data preparation. The theory of this algorithm
has been described elsewhere [9]. MATLAB Version 11.1
(Mathwork) [17] was used to run the GA-ANN algorithm
and MARS toolbox.
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Fig. 2 a Docking pose of the most potent inhibitor (compound 38) in
the EGFR-T790M active site. b 2D interaction of receptor compound
38 and surrounding amino acid residues

Results and discussion

As a necessary step in drug design, molecular docking stud-
ies can be used to identify receptor–ligand interactions in a
protein’s binding pocket. The inhibitors listed in Table 1were
docked into the EGFR receptor usingMOE. Themost impor-
tant interactions of EGFR with the most potent inhibitor
(compound 38) from our molecular docking results are
shown in Fig. 2a. A graphical receptor–ligand interaction is
shown in Fig. 2b. As this figure shows, there are two hydro-
gen bonds between Glu762 and the inhibitor (compound 38).
In addition, the amide group and ethyl ether also form two
hydrogen bonds with Glu758. Another important hydrogen
bond is between Asp761 and the N atom in the quinazoline
ring. The inhibitor approaches residues Ala871 and Val876
from the α-face and makes direct non-polar contacts (van
der Waals interaction); however, residues Tyr869, Gly873,

Gly874, and Glu872 make polar contacts with the inhibitor.
The two quinazoline rings can make aπ−π interaction with
Phe856. The polar interactions between the halide atoms (F
& Cl) and residues Gly863 and Glu866 have been detected
in docking results as shown in Fig. 2b. Lastly, the opti-
mized conformation for each inhibitor was obtained from
the receptor–ligand docked results. The obtained conforma-
tions of the inhibitors were used for molecular descriptor
generation and further QSAR studies.

In the descriptor selection procedure, a GA-ANN strat-
egy was used with a population of 30 chromosomes for
1000 generations. All parts of this process are illustrated
in Fig. 1. As mentioned before, the dataset was randomly
split into five subsets (S1, S2, S3, S4, and S5) in such a way
that they consisted of all range of pIC50 values consider-
ing chemical diversity. A diversity analysis was performed
as illustrated in Fig. 3 to show that the inhibitors in each
subset (S1–S5) can represent the whole data. In this figure,
the mean distances of inhibitors were plotted against pIC50

illustrating the diversity of the inhibitors in the five subsets.
The descriptor selection and model generation will be more
stable using the diversity analysis. For ten possible combina-
tions of subsets (10 runs), the whole GA-ANN process was
carried out using different calibration (train and test sets)
and prediction sets. The statistical results of the calibration
and prediction sets are shown in Table 2 for ten runs using
the GA-ANN algorithm. The average values of R2

Cal, R
2
p,

RMSECal, and RMSEp are 0.793, 0.735, 0.438, and 0.544,
respectively, which indicate that the performance of the GA-
ANN is acceptable. The selected descriptors in each run and
the repetition frequency for each descriptor in the GA-ANN
are shown in Table 2. Each descriptor was at least repeated
in seven runs from ten runs, which shows that the descrip-
tor selection process is consistent and reliable. Inspection
of this table also reveals that the five RDF030p descrip-
tors (RDF descriptor, Radial Distribution Function weighted
by polarizability), G2s (WHIM descriptor, 2nd component
symmetry directionalWHIM indexweighted by electrotopo-
logical state), Mor04v (3D-MoRSE descriptor, 3D-MoRSE
weighted by van der Waals volume), MATS2e (2D auto-
correlation descriptor, Moran autocorrelation weighted by
electronegativity) and RDF055m (RDF descriptor, Radial
Distribution Function weighted by mass) appeared more fre-
quently in 10 runs compared to the other descriptors.

The information about the selected descriptors is easily
accessible from the x , y, z coordinates of the inhibitor atoms
and other quantities attached to these coordinates, such as
molecular volume, electronegativity, polarizability, covalent
radii, interatomic distances, and distances from a specified
origin. They reflect aspects related to molecular size, shape,
charge, and the steric interactions. Hence, they encode dif-
ferent aspects of their inhibition mechanism. RDF030p and
RDF055m are the radial distribution functions on a spheri-
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Fig. 3 Scatter plot of five
subsets (S1–S5) obtained from
diversity analysis

cal volume of radius of 3.0 and 5.5 angstroms weighted by
atomic polarizability and atomic mass, respectively. These
descriptors are based ongeometrical interatomic distance and
provide valuable information about interatomic distances and
ring types [18]. G2s is the geometric mean of the directional
symmetries and it estimates dispersion and distribution of
molecular electronic and topological state properties around
the second component symmetry geometric center. This
WHIM descriptor is built in such a way as to capture relevant
molecular 3D information regarding electrotopological state.
It should be mentioned that the electrotopological state is a
measure of the electronic accessibility and can be interpreted
as a probability of interaction with another molecule [19].
The Mor04v descriptor is among the 3D-MoRSE descrip-
tors. In order to calculate this descriptor, the sum of all
atomic van der Waals volumes is calculated using different
angular scattering functions. The Mor04v descriptor shows
the three-dimensional arrangement of the atoms influenc-
ing the size and shape of a molecule [20]. The MATS2e
descriptor can be calculated using the Moran algorithm by
summing up the products of atomic electronegativity of the
terminal atoms in molecular structural graph. This descriptor
encodes information of adjacency and distance of atoms and
also describes how electronegativity is distributed along the
topological structure of molecules [21]. To ensure that the
selected descriptors encode different aspects of inhibitors,
the correlation between the selected descriptors is shown in

Table 3. According to this table, there are no significant cor-
relations between these descriptors except for the RDF030p
and RDF055m descriptors (correlation = 0.582).

The five selected descriptors by the GA-ANN algorithm
were used as inputs for developing the final MARS model
to predict the pIC50 values of the fifty-three quinazoline-
based EGFR inhibitors. Each descriptor in the MARSmodel
has one or two basis functions. The coefficients, importance,
and P values of these basis functions are given in Table 4.
Each basis function in theMARSmodel is a regression equa-
tion with specific coefficients. One can easily calculate the
relationship between the selected molecular descriptors and
the inhibitory concentration of the quinazoline inhibitors
using these basis functions. The importance of basis func-
tions can be evaluated using the GCV parameter as shown
in Table 4. The ranking order of the GCV values for the
selected descriptors is RDF030p > MATS2e > Mor04v
> RDF055m > G2s > G2s-RDF055m. The five selected
descriptors, together with G2s-RDF055m interactions, have
the highest effects on pIC50 values. As Table 4 shows, all
descriptors are statistically significant with P values less
than 0.05. The performance of the GA-ANN/MARS strat-
egy was evaluated by plotting the predicted pIC50 versus
experimental pIC50 for calibration and prediction sets as
illustrated in Fig. 4. The predicted values of pIC50 by the
GA-ANN/MARS strategy are listed in Table 1. This table,
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Table 2 Results of ten runs and the descriptors selected in each run using GA-ANN strategy

Runa Train subsetb Test subset R2
Cal RMSECal Pred. subset R2

P RMSEP Selected
descriptorsc

1 S1 + S2 + S3 S4 0.823 0.420 S5 0.748 0.503 RDF030p, G2s,
MATS2e,
RDF055m, R2e

2 S1 + S2 + S4 S5 0.780 0.447 S3 0.718 0.611 RDF030p,
Mor04v, X2sol,
MATS2e,
RDF055m

3 S1 + S2 + S5 S3 0.749 0.453 S4 0.716 0.584 RDF030p, H3p,
ICR, G2s,
MATS2e,
RDF055m

4 S1 + S3 + S4 S5 0.817 0.417 S2 0.721 0.575 RDF030p,G2s,
Mor04v,
MATS2e,
RDF055m

5 S1 + S3 + S5 S2 0.764 0.453 S4 0.743 0.523 RDF030p, De,
G2s, Mor04v,
MSD, MATS2e

6 S1 + S4 + S5 S3 0.839 0.402 S2 0.776 0.481 RDF030p, G2s,
Mor04v,
MATS2e,
RDF055m

7 S2 + S3 + S4 S1 0.778 0.448 S5 0.737 0.523 RDF030p, G2s,
MATS2e,
More04v, S2K

8 S2 + S3 + S5 S4 0.752 0.487 S1 0.703 0.617 G2s, E2v,
Mor04v, P2m,
MATS2e,
RDF055m

9 S2 + S4 + S5 S1 0.824 0.416 S3 0.754 0.486 RDF030p,
Mor04v,
MATS2e,
RDF055m, FDI

10 S3 + S4 + S5 S2 0.804 0.438 S1 0.735 0.541 RDF030p, G2s,
Mor04v,
MATS2e,
LDip, R4u

Mean 0.793 0.438 0.735 0.544

a Ten runs were performed using different subsets S1–S5 from Table 1
b Calibration set contains train and test sets
c The repetition frequencies of RDF030p, G2s, Mor04v, MATS2e, and RDF055m descriptors in ten runs are 9, 8, 8, 7, and 7, respectively

Table 3 Correlation matrix of
descriptors

Descriptors RDF030p G2s Mor04v MATS2e RDF055m

RDF030p 1 0.145 0.163 −0.074 0.582

G2s 1 0.279 0.210 0.083

Mor04v 1 −0.238 0.262

MATS2e 1 −0.388

RDF055m 1
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Table 4 Coefficients of basis functions for each descriptor in MARS model

Parameters RDF030pb G2s Mor04v MATS2e RDF055m G2s-RDF055m

Right-side Eq.a 0.43 [X1-8.42] 3.33 [X2-0.47] 1.81 [X3-1.04] −3.20 [X4-0.29] 0.31 [X5-5.08] –

Left-side Eq.a 0.25 [8.42-X1] 4.35 [0.47-X2] 1.47 [1.04-X3] −2.59 [0.29-X4] – 4.91 [0.38-X2]
0.22 [4.06-X5]

Basis functions 2 2 2 2 1 1

P valueb <0.01 <0.01 <0.01 <0.01 0.017 0.026

GCVc 8.43 3.52 4.24 4.74 3.91 2.63

a Descriptors of RDF030p, G2s, Mor04v, MATS2e, and RDF055m were shown as X1, X2, X3, X4, and X5, respectively
b Statistical significance test was performed using ANOVA
c The importance of descriptors as generalized cross-validation values

Fig. 4 GA-ANN/MARS plot
of calculated versus
experimental pIC50 values for
the calibration and prediction
sets

Table 5 Statistical results of QSAR models

Model Calibration Prediction LOO C.V. LSO C.V. Y-Scramblinga r2m F

R2 RMSE R2
p RMSE Q2 RMSE R2 RMSE R2 RMSE

GA-ANN/MARS 0.917 0.266 0.881 0.332 0.923 0.253 0.828 0.436 0.275 3.629 0.772 73.6

GA-PLS/MARSb 0.809 0.497 0.705 0.628 0.724 0.520 0.542 1.306 0.315 2.482 0.625 46.1

a LSO was repeated 200 cycles with random 20 % subset selection
b Selected descriptors: RDF030p, H3v, G2s, MATS2e, RDF060m, and IDDE

together with Fig. 4, shows that the predicted pIC50 is in
agreement with the experimental pIC50.

The statistical performance and validation of the QSAR
models were judged by means of (a) the external predic-
tion set; (b) internal validation by LOO cross-validation;
(c) complementary cross-validation by LSO procedure; (d)
examining if the following conditions are satisfied: (1)
R2
p > 0.6, (2) Q2

LOO > 0.5, (3) r2m > 0.5, (4) r20 (i.e.,

imply regression through the origin) is close to R2
p such that

[(R2
p − r20 )/R

2
p] < 0.1; and (e) Y-scrambling [22,23]. The

results of these assessment procedures are given in Table 5
for the GA-ANN/MARS strategy. It should be noted that
the external prediction set was not used in any step of the
model development. The RMSE (=0.332) and R2 (=0.881)
values for the prediction set indicate that 88.1 % of the vari-
ance in the inhibitory concentration of the quinazolines can
be explained by the QSAR model. The internal validation
was conducted by the LOO technique to ensure the relia-
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Fig. 5 Applicability domain plot for the calibration and prediction sets

bility of the QSAR model. According to Table 5, it can be
noticed that the Q2

LOO (=0.923) and RMSELOO (=0.253) val-
ues are comparable. In the case of LSO, 80 % of the data
were used to develop the QSAR model and the remain-
ing 20 % of the data were used to evaluate the generated
model. This repetitive process was performed 500 times with
random subsets selected. The overall mean for this process
(R2

LSO = 0.828 and RMSELSO = 0.436) indicates that
the constructed model is stable and valid. Other statistical
parameters ([(R2

p − r20 )/R
2
p] = 0.017 and r2m = 0.772)

have acceptable values for the QSAR models. These results
suggest that both interpolations and extrapolations of the
inhibitory concentrations in the QSAR model are reason-
ably adequate. Y-scrambling was performed by the analysis
of 200 cases of repetitive randomization of the response data
(pIC50). The low R2

S (=0.275) (scrambled results) and high
RMSES (=3.629) indicate that the QSAR model is not due
to chance correlation. For the sake of comparison, a GA-
PLS/MARS technique [24] was also used to develop the
QSARmodel. The statistical results of the GA-ANN/MARS
strategy are better than those of the GA-PLS/MARS tech-
nique, especially the results of R2

p and Q2
LOO (Table 5). It is

clear that the RMSE of the prediction set has been reduced by
about 50 % using a GA-ANN/MARS strategy. Furthermore,

the statistical parameters of R2
p, F , [(R2

p − r20 )/R
2
p], and r2m

have also been improved using this strategy.
In this work, we use a leverage approach for the applica-

bility domain definition [25]. The applicability domain is
a defined squared area that depends on the descriptor values
and the dataset. AWilliams plot of standardized residuals vs.
leverage values (h) was used for an immediate and simple
graphical detection of the response outliers. The applicability
domain is a measure to validate the reliability of the GA-
ANN/MARS strategy for future predictions. The prediction
is valid if h < h∗ (critical value: h∗ = 3 p/n, where p is
the number of descriptors in the model plus one and n is the
number of inhibitors in the calibration set). The five selected
descriptors in this work were used to calculate the lever-
age values. In the Williams graph (Fig. 5), the standardized
residuals are plotted against the leverage value (h). Here, no
compound has been identified as an outlier in prediction set
and just two compounds in the calibration set (compounds
3 and 16) have h values higher than h∗(=0.47). Such com-
pounds are somewhat structurally different from the other
inhibitors (with substituted amide group at the 4-position of
phenyl group in R3 branch as shown in Table 1). Therefore,
they are considered as good leverage points since the infor-
mation that these two compounds encode makes the QSAR
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Table 6 Chemical structures of
newly designed EGFR-T790M
inhibitors based on QSAR
models

No. R1 R2 R3 pIC50 hi

1 8.85 0.32

2 9.02 0.17

3 8.73 0.27

4 8.48 0.11

5 8.93 0.08

6 9.42 0.41

7 9.21 0.17

8 8.78 0.18

model more precise. Other inhibitors in the calibration and
prediction sets fall within the applicability domain.

Finally, several new inhibitors were proposed to show the
practical application of the developed models. The pIC50

values of the new design inhibitors were predicted using the
established QSAR models. Compounds 14, 20, 26, and 38,
with the highest inhibitory concentrations, were considered
as reference chemicals to design new inhibitors. The R1, R3,
and R2 branches in the dataset were modified to propose
new inhibitors. The predicted pIC50 values of eight promis-
ing new inhibitors, together with their structures, are shown
in Table 6. The leverage values (hi) of the proposed inhibitors
are lower than the critical value (h∗), which shows that the
predicted pIC50 values are acceptable. These results reveal
that the proposed QSAR strategy is good enough to be con-
sidered as an alternativeway for evaluating newpotent EGFR
inhibitors.

Conclusions

In the present study, a non-linear descriptor selection strat-
egy was employed to generate QSAR models to predict
the inhibitory concentration of fifty-three newly synthesized
quinazoline-based EGFR-T790M inhibitors. Conventional
descriptor selection methods are relatively inaccurate and
they only propose one solution without considering non-
linearity. Therefore, a GA-ANN strategy was implemented
as the non-linear descriptor selection techniquewith different
subset combinations. A MARS strategy was used to define
sub-region equations for each descriptor. Various methods
were also used to validate the QSARmodels including inter-
nal and external cross-validationmethods. The ranking of the
five molecular descriptors obtained from GA-ANN/MARS

strategy is RDF030p > MATS2e > Mor04v > RDF055m
>G2s>G2s-RDF055m. Furthermore, a molecular docking
analysis revealed important receptor–ligand interactions for
the most active inhibitor. Finally, the molecular information
obtained from docking and QSAR analysis was employed
to propose new inhibitors. The results of this study provide
a guideline about the structural features of EGFR-T790M
inhibitors, which can be used to design novel inhibitors and
predict the inhibitory activity of non-examined chemicals.
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