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Abstract An efficient and facile green synthesis of spiro-
oxindole derivatives bearing pyrano[2,3-c]pyrazole moiety
has been achieved via aCeO2-NPs catalyzed four-component
reaction in water. The protocol offers an environmentally
benign and effective approach to highly functionalized
and biologically interesting spiro[indoline-3,4′-pyrano[2,3-
c]pyrazole] derivatives. The synthesized compounds exhibit
potent antioxidant and antibacterial activities.

Keywords Cerium oxide nanoparticles · Spirooxindoles ·
Antioxidant · Antibacterial · MCRs

Introduction

The spirooxindole framework is an important structuralmotif
found in many natural products and bioactive compounds
[1–5]. These spirooxindole-based molecules have shown to
possess varieties of important biological activities, such as
antimicrobial [6–8], anti-inflammatory [9], antimalarial [10],
antimycobacterial [11], antitubercular [12], antitumor and
anticancer [13,14], and MDM2 inhibitor activity [15–17].
In addition, they are widely used as building blocks for the
synthesis of bioactive natural products [18–20].
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Due to their prominent biological and pharmacological
activities,webecame interested in the synthesis of a variety of
spirooxindole derivatives using multicomponent reactions.
Recently, we have developed simple and facile synthetic
methods for the preparation of spirooxindole derivatives
bearing hexahydroquinolines [21], dihydroquinazolinones
[22], and 4-chromenes [23]. As a part of ongoing study
on other spirooxindole derivatives, herein we examined
four-component reactions of β-ketoesters, isatins, phenylhy-
drazines, and malononitrile to afford spirooxindole deriva-
tives bearing pyrano[2,3-c]pyrazoles. It should be noted that
a number of synthetic approaches using the three-component
reaction of β-ketoesters with 3-methyl-2-pyrazolin-5-ones
and malononitrile has been reported using InCl3 [24],
ZnS [25], [Ch-OSO3H]3W12PO40 [26], CAN/sonication
[13], NaCl/sonication [27], I2 [28], L-proline [29–35], 4-
DMAP [36], and electrolysis [37] (Scheme 1). Also, several
synthetic approaches to spirooxindole derivatives bearing
pyrano[2,3-c]pyrazoles based on four-component reactions
of β-ketoesters, isatins, phenylhydrazines, and malononitrile
have been reported using β-cyclodextrin [38], chitosan/ionic
liquid [39], piperidine [40,41], L-proline [42], and ZrO2 [43]
conditions. Still, there is a demand for more efficient and
environmentally benign synthetic approaches to spirooxin-
dole derivatives bearing pyrano[2,3-c]pyrazoles.

Green and sustainable chemical processes with reduction
or even elimination of the use and production of hazardous
materials are in high demand. Consequently, the use of non-
toxic catalysts andpollution abatement solvents has becomea
prime choice for the researchers in both academia and indus-
try. Recently, cerium oxide nanoparticles have emerged as
environmentally benign and economical heterogeneous cat-
alysts [44–49]. They have exhibited various advantages, such
as sustainability inwater, lowcorrosiveness and toxicity, high
catalytic reactivity, recoverability and reusability, and ease of
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Scheme 1 Reported
three-component synthesis of
spirooxindole derivative

handling [50,51]. Because of these advantages, CeO2-NPs,
including core-metal/shell CeO2 nanoparticles, have been
extensively used as efficient and useful catalysts in various
organic transformations [52–57]. Moreover, commercially
available CeO2-NPs are also being used in fluorescent appli-
cations [58], fuel cells [59], sunscreens [60], as antioxidants
in cell model culture [61] and as gas sensors [62]. To the
best of our knowledge, CeO2 nanoparticle-catalyzed reac-
tions of β-ketoesters with phenylhydrazines, malononitrile,
and isatins for the construction of spirooxindoles have not
been reported so far.

Herein, we describe a one-pot synthesis of biologically
interesting spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] deriv-
atives using CeO2 nanoparticle-catalyzed four-component
reaction of β-ketoesters, phenylhydrazines, malononitrile,
and isatins in water (Scheme 2). In addition, we report on
the antibacterial and antioxidant activities of the synthesized
spirooxindole derivatives.

Results and discussion

The four-component reaction of methyl acetoacetate (1a),
phenylhydrazine (2a), malononitrile (3), and isatin (4a) was
first examined in the presence of several catalysts and sol-
vents (Table 1). Initially, reaction in the absence of catalyst
in water at 90 ◦C afforded the product 5a in only 19% yield
(entry 1).Adding 30mol%of ceric ammoniumnitrate (CAN)
and CeCl3 at 90 ◦C allowed to increase the yield of 5a to 47
and 35%, respectively (entries 2 and 3). Further reactions
were attempted with CeO2-NPs in several solvents. The best
yield (93%) was obtained in the presence of 30 mol% of
CeO2-NPs in water at 90 ◦C (entry 5). Moreover, in polar

Scheme 2 CeO2 nanoparticle-catalyzed four-component reactions for
the synthesis of 5

solvents, such as ethanol and acetonitrile, 5a was produced
in a 65 and 81% yield, respectively (entries 6 and 7) and in
a non-polar solvent toluene, 5a was obtained only in trace
amounts (entry 8). The decrease or increase in loading of
the catalyst (CeO2-NPs) did not improve the yield of 5a
(entries 9, 10, and 11). Using 20mol%of Lewis acids such as
FeCl3, In(OTf)3 and Cu(OTf)2 also gave the desired product
in diminished yields (entries 12, 13, and 14). The identity
of 5a was confirmed by analysis of its spectroscopic data
in comparison to reported values [25]. The 1H NMR of 5a
shows a methyl peak (δ = 1.54 ppm, singlet) and an amide
proton (δ = 10.74 ppm, singlet). The 13C NMR exhibits a
characteristic quaternary carbon peak at 47.7 ppm and an
amide carbon peak at 177.4 ppm.

Under the optimized reaction condition, the generality
of this multicomponent reaction was further explored by
employing various β-ketoesters 1a–1d, phenylhydrazines
2a–2e, and isatins 4a–4k (Table 2). Reactions of methyl
3-oxobutanoate (1a) with 2a, 3, and isatin 4b or 4c bear-
ing electron-donating groups provided products 5b and 5c
in an 84 and 86% yield, respectively, whereas those with
isatin 4d, 4e, or 4f bearing electron-withdrawing groups
afforded the desired products 5d–5f, in a 91, 90, and an 87%
yield, respectively. Reactions of methyl and acetyl substi-
tuted isatins 4g and 4h provided products 5g–5h in an 80 and
89% yield, respectively. With other β-ketoesters of methyl
3-oxohexanoate (1b) or methyl 4-methyl-3-oxopentanoate
(1c), the desired products 5i–5q were produced in 86–94%
yields. Next, treatment of methyl 3-oxo-3-phenylpropanoate
(1d)with phenylhydrazine (2a),malononitrile (3), and isatins
4a, 4g, or 4h afforded the desired products 5r–5t in 75–84%
yields.

In addition, further reactions of substituted phenylhy-
drazines 2b–2e bearing electron-donating or -withdrawing
substituents on various positions of benzene ring were
successful. For example, treatment of 1a with 4-methyl
phenylhydrazine (2b), 3, and 4a provided the desired prod-
uct 5u in an 84% yield, whereas that of 1c with 2-ethyl
phenylhydrazine (2c), 3, and 4h afforded the product 5v in
a 79% yield. Moreover, treatment of 1c or 1a with 4-chloro
phenylhydrazine (2d) or 2-chloro phenylhydrazine (2e), 3,
and 4a gave products 5w and 5x in 73 and 74% yields.
However, when malononitrile was replaced by cyanoesters
like methyl cyanoacetate or ethyl cyanoacetate, no desired
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Table 1 Optimizationof reaction conditions for the synthesis of5aa

Entry Catalyst Solvent Temp. (◦C) Time (h) Yield (%)b

1 – Water 90 24 19

2 CAN (30 mol%) Water 90 12 47

3 CeCl3 (30 mol%) Water 90 12 35

4 CeO2 (30 mol%) Water rt 12 77

5 CeO2 (30 mol%) Water 90 5 93

6 CeO2 (30 mol%) Ethanol 90 7 65

7 CeO2 (30 mol%) Acetonitrile 90 7 81

8 CeO2 (30 mol%) Toluene 90 7 Trace

9 CeO2 (20 mol%) Water 90 5 88

10 CeO2 (40 mol%) Water 90 5 90

11 CeO2 (5 mol%) Water 90 24 72

12 FeCl3 (20 mol%) Water 90 5 67

13 In(OTf)3 (20 mol%) Water 90 7 54

14 Cu(OTf)2 (20 mol%) Water 90 7 43

a Reaction conditions: methyl acetoacetate (1a, 1 mmol), isatin (2a, 1 mmol), phenylhydrazine (3a, 1 mmol), and malononitrile (4, 1 mmol).
b Isolated yield after column chromatography

products were obtained, instead intractable mixtures were
produced. Our procedure provides a rapid synthetic route
to a variety of highly functionalized spiro[indoline-3,4′-
pyrano[2,3-c]pyrazole] derivatives in good yield. Moreover,
most of the synthesized compounds of 5f, 5i, 5k–5q, and
5t–5w are novel and reported for the first time.

The formation of 5a can be explained by the mechanism
as shown in Scheme 3 [40,41]. In the presence of CeO2-NPs,
the intermediate 7 is first formed by condensation of methyl
acetoacetate (1a) with phenylhydrazine (2a). The Knoeve-
nagel condensation of 3a, derived from 3 and 4a, provides the
intermediate 8, which is reacted with 7a to furnish 9 through
Michael reaction. Tautomerism of 9 followed by intramole-
cular cyclization gives intermediate 10, which undergoes
further isomerization to furnish the final product 5a.

In vitro antioxidant activity

Furthermore, the synthesized spirooxindoles were screened
for their antioxidant activity by using ferric reducing/
antioxidant tests [63]. The FRAP assay measures the ability
of a compound to reduce the ferric 2,4,6-tripyridyl-s-triazine
complex to the colored ferrous complex with development
of intense blue color at the maximumwavelength of 593 nm.
FRAP values were obtained by comparing the absorbance

change in test reactionmixtureswith those containing ferrous
ions of known concentration. The results of the antioxidant
test are expressed as Trolox equivalent antioxidant capacity
(TEAC) values as shown in Fig. 1. A higher value of TEAC
suggests a higher antioxidant capacity. The majority of the
tested compounds in the series revealed moderate interac-
tions with the FRAP reagent. Compounds 5f, 5h, 5k, and 5t
exhibited superior activity as compared to other synthesized
compounds.

The antioxidant activity of organic compounds seems
to be related to the presence of hydroxyl groups, double
bond conjugation, and resonance effects [64]. The synthe-
sized compounds containing both electron-withdrawing and
-donating groups showed moderate activity. Compounds
containing electron-withdrawing or -donating group on ortho
or para positions to the spirooxindolic NH or acetyl group
on spirooxindolic nitrogen atom showed higher activity than
other compounds. In FRAP tests, the antioxidant activities
of the compounds are well correlated with their EC50 (half
maximal effective concentration) values, as shown in Fig. 2.

Antibacterial activity

The antibacterial activity of the synthesized spirooxin-
doles was tested against two gram-negative Escherichia coli
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Table 2 Additional reactions for the synthesis of a variety of spirooxindole derivatives bearing pyrano[2,3 c]pyrazoles

(KCTC-1924) and Pseudomonas aeruginosa (KCTC-2004)
and two gram-positive Staphylococcus aureus (KCTC-1916)
and Bacillus cereus (KCTC-1012) bacteria, respectively, by
using a modified Kirby-Bauer disk diffusion method [65].
The inhibition zone against the growth of the verified bacteria

for the compounds is reported inTable 3.Aliquots of bacterial
suspension (100µL) were spread on DifcoTM nutrient broth
containing the test microorganism with an optical density
of 0.7 at 595 nm. From the results, synthesized compounds
showed antibacterial activity toward the investigated bacte-
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Scheme 3 Proposed mechanism
for the formation of 5a
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Fig. 1 Antioxidant activity of the synthesized spirooxindoles
expressed in TEAC values
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Fig. 2 EC50 (µg/mL) of the synthesized spirooxindoles.Abbreviation:
T Trolox, EC effective concentration

Table 3 Antimicrobial activity of synthesized spirooxindoles against
several standard strains

Compound Diameter of growth inhibition zone (mm)

Gram-negative Gram-positive

E. coli P. aeruginosa S. aureus B. cereus

5f 10 11 – –

5k 12 11 – –

5m 22 21 15 16

5n 9 11 – –

5q 10 11 11 10

5s 12 12 11 10

5t 21 20 15 16

5v 18 17 14 15

Ciprofloxacin 20 19 18 18

rial strains. In particular, compounds 5m and 5t exhibited
excellent activity toward the gram-negative bacteria com-
pared to standard ciprofloxacin. Compounds 5m, 5t, and 5v
displayed moderate levels of antimicrobial activity toward
the gram- positive bacteria. Compounds containing electron-
withdrawing group on spirooxindolic NH or its para position
showed higher activity than other compounds.
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Conclusions

A green and efficient protocol for the construction of
spirooxindole derivatives bearing pyrano[2,3-c]pyrazole]
by a multicomponent coupling of β-ketoesters, phenylhy-
drazines, malononitrile, and isatins was developed. This
method offers several advantages such as mild reaction con-
ditions, ease of handling, high yields, and the use of an
effective green catalyst. The synthesized spirooxindole deriv-
atives show potent antioxidant and antibacterial activities.

Experimental

All experiments were conducted under a nitrogen
atmosphere. Merck precoated silica gel plates (Art. 5554)
with a fluorescent indicator were used for analytical TLC.
Flash column chromatography was performed using sil-
ica gel 9385 (Merck). The melting points were determined
using micro-cover glasses on a Fisher-Johns apparatus and
were uncorrected. The 1H NMR spectra were recorded on
a Varian-VNS (300 MHz), DPX (300 MHz), and VNS
(600 MHz) spectrometer in DMSO-d6 setting the solvent
chemical shift at 2.50 ppm. The 13C NMR spectra were
recorded on a Varian-VNS (75 MHz), DPX (75 MHz),
and VNS (150 MHz) spectrometer in DMSO-d6 setting
the solvent chemical shift at 39.5 ppm. Chemical shifts (δ)
are expressed in units of ppm and J values are given in
Hz. Multiplicities are abbreviated as follows: s = singlet,
d = doublet, t = triplet, q = quartet, br s = broad
singlet, dd = doublet of doublets, tt = triplet of triplet,
and m = multiplet. The IR spectra were recorded on
PerkinElmer FT-IR spectrometer Spectrum TwoTM. High-
resolution mass spectrometry (HRMS) was obtained with a
JEOL JMS-700 spectrometer (EI) at theKoreaBasic Science
Institute.

General procedure for the synthesis of spirooxindole
derivatives (5a–5x)

A mixture of β-ketoester 1 (1 mmol), phenylhydrazine 2
(1 mmol), malononitrile 3 (1 mmol), isatin 4 (1 mmol),
and CeO2-NPs (30 mol%) in water (5 mL) was stirred
at 90 ◦C for the time mentioned, until the completion of
reaction as indicated by TLC. After completion of the reac-
tion, the reaction mixture was cooled to room temperature.
The precipitated product was then filtered and dissolved in
EtOAc. The solutionwas then dried overMgSO4 and filtered.
After evaporating solvent, the residuewas recrystallized from
EtOAc to provide pure product.

6′-Amino-3′-methyl-2-oxo-1′-phenyl-1′H-spiro[indoline-
3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5a)

Compound 5a (342 mg, 93%) was obtained as a white solid:
mp 237–239 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 10.74
(1H, s), 7.78 (2H, d, J = 7.8 Hz), 7.56–7.49 (4H, m), 7.37–
7.26 (2H, m), 7.17 (1H, d, J = 7.2 Hz), 7.02 (1H, t, J =
7.5 Hz), 6.95 (1H, d, J = 7.5 Hz), 1.54 (3H, s); 13CNMR(75
MHz, DMSO-d6) δ 177.4, 161.0, 144.9, 143.8, 141.6, 137.2,
132.1, 129.4, 129.2, 126.5, 124.8, 122.7, 120.1, 117.8, 109.8,
96.3, 56.2, 47.7, 11.6; IR (ATR) 3451, 3254, 3080, 2247,
1891, 1739, 1562, 1428, 1348, 1236, 1099, 988, 931 cm−1;
HRMSm/z (M+) calcd for C21H15N5O2: 369.1226. Found:
369.1229.

6′-Amino-3′,5-dimethyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5b)

Compound 5b (320 mg, 84%) was obtained as a white solid:
mp 288–289 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 10.63
(1H, s), 7.79 (2H, d, J = 8.1 Hz), 7.52 (4H, t, J = 8.1 Hz),
7.35 (1H, t, J = 7.5 Hz), 7.08 (1H, d, J = 7.5 Hz), 7.0
(1H, s), 6.83 (1H, d, J = 7.8 Hz), 2.23 (3H, s), 1.56 (3H, s);
13CNMR (75MHz, DMSO-d6) δ 177.4, 161.0, 144.9, 144.0,
139.1, 137.3, 132.3, 131.6, 129.5, 129.4, 126.5, 125.3, 120.1,
118.0, 109.6, 96.5, 56.3, 47.8, 20.6, 11.7; IR (ATR) 3420,
3254, 3089, 2246, 1875, 1732, 1673, 1554, 1427, 1347, 1237,
1158, 989 cm−1; HRMS m/z (M+) calcd for C22H17N5O2:
383.1382. Found: 383.1384.

6′-Amino-5-methoxy-3′-methyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5c)

Compound 5c (342 mg, 86%) was obtained as a white solid:
mp 213–215 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 10.54
(1H, s), 7.79 (2H, d, J = 8.1 Hz), 7.54–7.49 (4H, m), 7.34
(1H, t, J = 7.8 Hz), 6.8 (3H, d, J = 8.1 Hz), 3.68 (3H,
s), 1.56 (3H, s); 13C NMR (75 MHz, DMSO-d6) δ 177.5,
161.0, 155.7, 145.0, 144.0, 137.3, 134.8, 133.4, 129.5, 126.5,
120.1, 118.0, 114.4, 111.3, 110.4, 96.4, 56.3, 55.5, 48.3,
11.7; IR (ATR) 3318, 3184, 3062, 2203, 1696, 1486, 1392,
1293, 1199, 1029, 962 cm−1; HRMS m/z (M+) calcd for
C22H17N5O3: 399.1331. Found: 399.1328.

6′-Amino-4-bromo-3′-methyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5d)

Compound 5d (405 mg, 91%) was obtained as a white solid:
mp 268–270 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 11.02
(1H, s), 7.78 (2H, d, J = 9.0 Hz), 7.65 (2H, s), 7.51 (2H,
t, J = 7.8 Hz), 7.35 (1H, t, J = 7.2 Hz), 7.25 (1H, t, J =
7.8 Hz), 7.18 (1H, d, J = 7.8 Hz), 6.98 (1H, d, J = 7.8 Hz),
1.60 (3H, s); 13CNMR(150MHz,DMSO-d6) δ 176.7, 161.7,
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145.5, 143.7, 143.6, 137.2, 131.3, 129.5, 128.6, 126.7, 126.1,
120.1, 119.5, 117.7, 109.5, 94.1, 53.9, 49.4, 11.7 cm−1; IR
(ATR) 3320, 3193, 2198, 1723, 1655, 1583, 1527, 1447,
1394, 1221, 1127, 1037 cm−1; HRMS m/z (M+) calcd for
C21H14BrN5O2: 447.0331. Found: 447.0328.

6′-Amino-5-chloro-3′-methyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5e)

Compound 5e (362 mg, 90%) was obtained as a white solid:
mp 229–231 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 10.89
(1H, s), 7.79 (2H, d, J = 7.2 Hz), 7.63 (2H, s), 7.53–7.49
(2H, m), 7.35–7.32 (3H, m), 6.97 (1H, d, J = 7.5 Hz),
1.59 (3H, s); 13C NMR (75 MHz, DMSO-d6) δ 177.3,
161.1, 145.0, 143.8, 140.4, 137.2, 134.3, 129.4, 129.2, 126.7,
126.6, 125.2, 120.3, 117.9, 111.3, 95.7, 55.6, 48.0, 11.7; IR
(ATR) 3305, 3181, 3015, 2194, 1842, 1725, 1646, 1451,
1382, 1216, 1123, 1068 cm−1; HRMS m/z (M+) calcd for
C21H14ClN5O2: 403.0836. Found: 403.0835.

6′-Amino-7-chloro-3′-methyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5f)

Compound 5f (350 mg, 87%) was obtained as a white solid:
mp 235–237 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 11.19
(1H, s), 7.78 (2H, d, J = 7.5 Hz), 7.63 (2H, s), 7.52 (2H,
t, J = 7.5 Hz), 7.35 (2H, t, J = 7.5 Hz), 7.18 (1H, d,
J = 7.2 Hz), 7.06 (1H, t, J = 7.8 Hz), 1.57 (3H, s); 13C
NMR (75 MHz, DMSO-d6) δ 177.5, 161.0, 144.9, 143.7,
139.3, 137.1, 133.9, 129.4, 129.2, 126.6, 123.9, 123.6, 120.2,
117.7, 114.1, 95.8, 55.7, 48.6, 11.7; IR (ATR) 3439, 3253,
3093, 2248, 1969, 1737, 1600, 1430, 1352, 1236, 1160,
992 cm−1; HRMS m/z (M+) calcd for C21H14ClN5O2:
403.0836. Found: 403.0837.

6′-Amino-1,3′-dimethyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5g)

Compound 5g (306 mg, 80%) was obtained as a white solid:
mp 212–214 ◦C; 1HNMR (600MHz,DMSO-d6) δ 7.78 (2H,
d, J = 8.4 Hz), 7.60 (2H, s), 7.51 (2H, t, J = 8.4 Hz), 7.39
(1H, t, J = 7.2 Hz), 7.35 (1H, t, J = 7.2 Hz), 7.23 (1H,
d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 7.11 (1H, t,
J = 7.2 Hz), 3.24 (3H, s), 1.45 (3H, s); 13C NMR (150
MHz, DMSO-d6) δ 175.8, 161.2, 144.9, 143.8, 143.0, 137.2,
131.4, 129.5, 126.6, 124.6, 123.4, 120.2, 117.8, 108.9, 96.2,
55.8, 47.4, 26.5, 11.7; IR (ATR) 3445, 3236, 3095, 2229,
1780, 1541, 1419, 1331, 1214, 952 cm−1; HRMSm/z (M+)
calcd for C22H17N5O2: 383.1382. Found: 383.1381.

1-Acetyl-6′-amino-3′-methyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5h)

Compound 5h (364 mg, 89%) was obtained as a white solid:
mp 224–226 ◦C; 1HNMR (300MHz,DMSO-d6) δ 8.20 (1H,
d, J = 8.1 Hz), 7.8 (4H, d, J = 8.1 Hz), 7.55–7.43 (3H, m),
7.39–7.29 (3H, m), 2.64 (3H, s), 1.51 (3H, s); 13C NMR
(75 MHz, DMSO-d6) δ 177.2, 170.6, 161.2, 144.9, 144.0,
139.3, 137.1, 130.4, 129.7, 129.5, 126.8, 126.2, 125.1, 120.4,
117.6, 115.8, 95.9, 56.0, 48.5, 26.3, 11.9; IR (ATR) 3379,
3319, 3192, 2924, 2202, 1723, 1651, 1517, 1393, 1257, 1162,
1031, 908 cm−1; HRMS m/z (M+) calcd for C23H17N5O3:
411.1331. Found: 411.1335.

1-Acetyl-6′-amino-2-oxo-1′-phenyl-3′-propyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5i)

Compound 5i (394 mg, 90%) was obtained as a white solid:
mp 224–226 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 8.20
(1H, d, J = 8.1 Hz), 7.83–7.81 (4H, m), 7.56–7.44 (3H, m),
7.41–7.29 (3H, m), 2.64 (3H, s), 1.80 (2H, t, J = 7.5 Hz),
1.21–1.02 (2H, m), 0.58 (3H, t, J = 7.5 Hz); 13C NMR (75
MHz, DMSO-d6) δ 177.6, 170.4, 161.0, 147.8, 144.8, 139.1,
137.1, 130.8, 129.7, 129.4, 126.8, 126.2, 125.2, 120.4, 117.6,
115.8, 95.5, 56.2, 48.6, 28.5, 26.2, 20.8, 13.6; IR (ATR)
3313, 3198, 2947, 2204, 1757, 1648, 1458, 1394, 1262, 1153,
1071, 907 cm−1; HRMS m/z (M+) calcd for C25H21N5O3:
439.1644. Found: 439.1641.

6′-Amino-3′-isopropyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5j)

Compound 5j (372 mg, 94%) was obtained as a white solid:
mp 217–219 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 10.75
(1H, s), 7.80 (2H, d, J = 7.8 Hz), 7.53–7.51 (4H, m), 7.35
(1H, t, J = 6.6 Hz), 7.27 (1H, t, J = 7.2 Hz), 7.19 (1H,
d, J = 7.2 Hz), 7.02 (1H, t, J = 7.2 Hz), 6.94 (1H, d,
J = 7.8 Hz), 2.10-2.05 (1H, m), 1.01 (3H, d, J = 6.6 Hz),
0.69 (3H, d, J = 6.6 Hz); 13C NMR (150 MHz, DMSO-
d6) δ 178.0, 160.7, 153.1, 144.7, 141.5, 137.3, 132.8, 129.4,
129.3, 126.5, 125.0, 122.6, 120.2, 117.9, 109.9, 95.0, 56.7,
47.8, 26.4, 21.4, 21.0; IR (ATR) 3412, 3254, 3091, 2248,
1891, 1675, 1619, 1425, 1345, 1437, 1160, 1096, 989 cm−1;
HRMSm/z (M+) calcd for C23H19N5O2: 397.1539. Found:
397.1540.

6′-Amino-3′-isopropyl-5-methoxy-2-oxo-1′-phenyl-1′H-
spiro[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile
(5k)

Compound 5k (388 mg, 91%) was obtained as a white solid:
mp 221–223 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 10.57
(1H, s), 7.81 (2H, d, J = 8.1 Hz), 7.54–7.52 (4H, m), 7.34
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(1H, t, J = 7.2 Hz), 6.85 (3H, s), 3.67 (3H, s), 2.16–2.07
(1H, m), 1.01 (3H, d, J = 6.9), 0.74 (3H, d, J = 6.6); 13C
NMR (75 MHz, DMSO-d6) δ 177.9, 160.7, 155.7, 153.2,
144.7, 137.4, 134.7, 134.1, 129.4, 126.5, 120.2, 118.0, 114.5,
111.4, 110.4, 95.1, 56.8, 55.6, 48.4, 26.4, 21.5, 21.1; IR
(ATR) 3313, 3188, 2964, 2193, 1839, 1704, 1645, 1475,
1390, 1199, 1030, 760 cm−1; HRMS m/z (M+) calcd for
C24H21N5O3: 427.1644. Found: 427.1642.

6′-Amino-5-bromo-3′-isopropyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5l)

Compound 5l (436 mg, 92%) was obtained as a white solid:
mp 200–202 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 10.90
(1H, s), 7.80 (2H, d, J = 7.5 Hz), 7.57–7.45 (6H, m), 7.36
(1H, t, J = 7.5 Hz), 6.90 (1H, d, J = 8.1 Hz), 2.13–2.06
(1H,m), 1.02 (3H, d, J = 6.9 Hz), 0.74 (3H, d, J = 6.9 Hz);
13CNMR (75MHz, DMSO-d6) δ 177.6, 160.8, 152.9, 144.8,
140.7, 137.3, 135.4, 132.1, 129.4, 128.0, 126.6, 120.4, 117.8,
114.3, 111.9, 94.4, 56.0, 48.0, 26.5, 21.4, 21.1; IR (ATR)
3313, 3289, 2972, 2193, 1707, 1640, 1452, 1393, 1215,
1085 cm−1; HRMS m/z (M+) calcd for C23H18BrN5O2:
475.0644. Found: 475.0641.

6′-Amino-5-chloro-3′-isopropyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5m)

Compound 5m (396 mg, 92%) was obtained as a white
solid: mp 203–205 ◦C; 1H NMR (300 MHz, DMSO-d6) δ

10.90 (1H, s), 7.80 (2H, d, J = 8.1 Hz), 7.58–7.50 (4H,
m), 7.38–7.32 (3H, m), 6.96 (1H, d, J = 8.1 Hz), 2.14–
2.05 (1H, m), 1.02 (3H, d, J = 6.9 Hz), 0.74 (3H, d,
J = 6.6 Hz); 13CNMR (75MHz,DMSO-d6) δ 177.8, 160.8,
152.9, 144.8, 140.3, 137.3, 135.1, 129.4, 129.3, 126.7, 126.6,
125.3, 120.5, 117.9, 111.4, 94.4, 55.9, 48.1, 26.5, 21.5, 21.1;
IR (ATR) 3345, 3225, 3016, 2248, 1751, 1680, 1561, 1423,
1351, 1220, 1095, 920 cm−1; HRMS m/z (M+) calcd for
C23H18ClN5O2: 431.1149. Found: 431.1153.

6′-Amino-5-fluoro-3′-isopropyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5n)

Compound 5n (385 mg, 93%) was obtained as a white solid:
mp 226–228 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 10.79
(1H, s), 7.80 (2H, d, J = 7.8 Hz), 7.57–7.49 (4H, m), 7.35
(1H, t, J = 7.2 Hz), 7.22–7.19 (1H, m), 7.14–7.07 (1H,
m), 6.96–6.91 (1H, m), 2.14–2.07 (1H, m), 1.02 (3H, d,
J = 6.9 Hz), 0.74 (3H, d, J = 6.9 Hz); 13C NMR (75MHz,
DMSO-d6) δ 178.0, 160.8, 158.7 (d, J = 237.9 Hz), 153.0,
144.7, 137.5 (d, J = 46.1 Hz), 134.7 (d, J = 15.5 Hz),
129.4, 126.6, 120.3, 117.8, 115.7 (d, J = 46.1 Hz), 112.8
(d, J = 48.5 Hz), 110.9, 94.5, 56.2, 48.4, 26.4, 21.5,
21.0; IR (ATR) 3318, 3191, 2972, 2192, 1762, 1645, 1471,

1391, 1179, 1082, 757 cm−1; HRMS m/z (M+) calcd for
C23H18FN5O2: 415.1445. Found: 415.1443.

6′-Amino-3′-isopropyl-1-methyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5o)

Compound 5o (353 mg, 86%) was obtained as a white solid:
mp 221–223 ◦C; 1HNMR (600MHz,DMSO-d6) δ 7.80 (2H,
d, J = 7.8 Hz), 7.56 (2H, s), 7.52 (2H, t, J = 7.8 Hz),
7.40–7.34 (2H, m), 7.26 (1H, d, J = 7.8 Hz), 7.16 (1H,
d, J = 8.4 Hz), 7.11 (1H, t, J = 7.8 Hz), 3.33 (3H, s),
1.92–1.87 (1H, m), 0.91 (3H, d, J = 7.2 Hz), 0.69 (3H,
d, J = 6.6 Hz); 13C NMR (150 MHz, DMSO-d6) δ 176.2,
160.8, 152.9, 144.7, 142.9, 137.3, 132.0, 129.4, 124.7, 123.3,
120.4, 120.2, 117.7, 108.9, 108.8, 94.8, 56.2, 47.5, 26.4, 26.4,
21.4, 20.7; IR (ATR) 3306, 3181, 2965, 2201, 1703, 1654,
1457, 1397, 1083, 937 cm−1; HRMS m/z (M+) calcd for
C24H21N5O2: 411.1695. Found: 411.1697.

1-Acetyl-6′-amino-3′-isopropyl-2-oxo-1′-phenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5p)

Compound 5p (394 mg, 90%) was obtained as a white solid:
mp 221–223 ◦C; 1HNMR (300MHz,DMSO-d6) δ 7.80 (2H,
d, J = 7.8 Hz), 7.56 (2H, s), 7.52 (2H, t, J = 7.8 Hz),
7.40–7.34 (2H, m), 7.26 (1H, d, J = 7.8 Hz), 7.16 (1H,
d, J = 8.4 Hz), 7.11 (1H, t, J = 7.8 Hz), 3.33 (3H, s),
1.92–1.87 (1H, m), 0.91 (3H, d, J = 7.2 Hz), 0.69 (3H,
d, J = 6.6 Hz); 13C NMR (150 MHz, DMSO-d6) δ 177.7,
170.3, 160.7, 152.9, 144.7, 139.0, 137.2, 131.1, 129.7, 129.4,
126.7, 126.1, 125.2, 120.5, 117.4, 115.8, 94.5, 56.5, 48.6,
26.5, 26.1, 21.5, 20.7; IR (ATR) 3422, 3254, 3093, 2247,
1875, 1675, 1610, 1425, 1343, 1243, 1160, 1099, 989 cm−1;
HRMSm/z (M+) calcd for C25H21N5O3: 439.1644. Found:
439.1641.

6′-Amino-3′-isopropyl-2-oxo-1,1′-diphenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5q)

Compound 5q (435 mg, 92%) was obtained as a white solid:
mp 238–240 ◦C; 1HNMR (300MHz,DMSO-d6) δ 7.82 (2H,
d, J = 7.5 Hz), 7.66–7.62 (4H,m), 7.55–7.53 (3H,m), 7.40–
7.31 (5H, m), 7.18–7.14 (1H, m), 6.8 (1H, d, J = 7.8 Hz),
2.19-2.12 (1H, m), 1.02 (3H, d, J = 6.6 Hz), 0.78 (3H,
d, J = 6.6 Hz); 13C NMR (150 MHz, DMSO-d6) δ 175.8,
160.6, 153.0, 144.8, 142.5, 137.3, 134.0, 131.8, 130.0, 129.5,
129.3, 128.5, 126.6, 126.3, 125.2, 124.0, 120.3, 117.6, 109.2,
94.5, 56.6, 47.7, 26.6, 21.6, 20.7; IR (ATR) 3456, 3278,
3160, 2962, 2191, 1704, 1651, 1595, 1489, 1384, 1211,
1084, 933 cm−1; HRMS m/z (M+) calcd for C29H23N5O2:
473.1852. Found: 473.1850.
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6′-Amino-2-oxo-1′,3′-diphenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5r)

Compound 5r (357 mg, 83%) was obtained as a white solid:
mp 208–210 ◦C1;H NMR (600 MHz, DMSO-d6) δ 10.60
(1H, s), 7.90 (2H, d, J = 7.8 Hz), 7.59–7.54 (4H, m), 7.42
(1H, t, J = 7.2 Hz), 7.23–7.19 (3H, m), 7.13 (2H, t, J =
7.2 Hz), 6.97–6.92 (3H, m), 6.79 (1H, d, J = 7.8 Hz); 13C
NMR (75 MHz, DMSO-d6) δ 177.6, 160.3, 147.4, 145.7,
141.7, 137.1, 133.5, 132.0, 129.5, 129.2, 128.3, 127.9, 127.3,
124.8, 122.5, 121.0, 120.8, 117.6, 109.8, 95.6, 57.5, 48.1;
IR (ATR) 3408, 3254, 3095, 2246, 1891, 1816, 1730, 1671,
1549, 1422, 1345, 1158, 1099, 989 cm−1; HRMSm/z (M+)
calcd for C26H17N5O2: 431.1382 . Found: 431.1379.

6′-Amino-1-methyl-2-oxo-1′,3′-diphenyl-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5s)

Compound 5s (333 mg, 75%) was obtained as a white solid:
mp 198–200 ◦C; 1HNMR (600MHz,DMSO-d6) δ 7.89 (2H,
d, J = 7.8 Hz), 7.61 (2H, s), 7.57 (2H, t, J = 7.8 Hz), 7.43–
7.41 (1H, m), 7.28 (1H, t, J = 7.8 Hz), 7.23 (2H, t, J =
7.8 Hz), 7.14 (2H, t, J = 7.8 Hz), 7.02 (1H, t, J = 7.8 Hz),
6.93 (1H, d, J = 7.8 Hz), 6.80 (2H, d, J = 7.2 Hz), 2.98
(3H, s); 13C NMR (150 MHz, DMSO-d6) δ 175.9, 160.5,
147.4, 145.4, 142.8, 137.1, 132.6, 131.8, 129.5, 129.3, 128.3,
127.9, 127.3, 127.2, 124.4, 123.2, 120.9, 117.6, 108.7, 95.8,
56.7, 47.7, 26.2; IR (ATR) 3364, 3185, 3068, 2199, 1863,
1660, 1515, 1382, 1249, 1079 cm−1; HRMSm/z (M+) calcd
for C27H19N5O2: 445.1539. Found: 445.1542.

1-Acetyl-6′-amino-2-oxo-1′,3′-diphenyl-1′H-spiro[indoline-
3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5t)

Compound 5t (397 mg, 84%) was obtained as a white solid:
mp 204–206 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 7.97–
7.90 (3H, m), 7.81 (2H, s), 7.58 (2H, t, J = 7.8 Hz),
7.46–7.34 (3H, m), 7.27-7.21 (2H, m), 7.11 (2H, t, J =
7.8 Hz), 6.79 (2H, d, J = 7.5 Hz), 2.39 (3H, s); 13CNMR(75
MHz, DMSO-d6) δ 177.4, 169.9, 160.6, 147.5, 145.3, 139.0,
137.0, 131.8, 131.5, 129.5, 128.6, 128.0, 127.4, 127.3, 126.0,
125.0, 121.0, 117.4, 115.6, 96.0, 56.7, 48.8, 25.7; IR (ATR)
3317, 3197, 2925, 2200, 1717, 1645, 1454, 1385, 1682, 1153,
1027, 913 cm−1; HRMS m/z (M+) calcd for C28H19N5O3:
473.1488. Found: 473.1487.

6′-Amino-3′-methyl-2-oxo-1′-(p-tolyl)-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5u)

Compound 5u (321 mg, 84%) was obtained as a white solid:
mp 242–244 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 10.72
(1H, s), 7.65 (2H, d, J = 8.4 Hz), 7.54 (2H, s), 7.31–7.26
(3H, m), 7.16 (1H, d, J = 7.2 Hz), 7.02 (1H, t, J = 7.2 Hz),

6.94 (1H, d, J = 7.8 Hz), 2.35 (3H, s), 1.53 (3H, s); 13C
NMR (150 MHz, DMSO-d6) δ 177.5, 161.0, 144.7, 143.6,
141.6, 136.0, 134.9, 132.2, 129.9, 129.7, 129.2, 124.8, 122.6,
120.2, 120.1, 118.0, 109.8, 96.1, 56.2, 47.8, 20.5, 11.6; IR
(ATR) 3443, 3326, 3155, 2189, 1707, 1471, 1394, 1328,
1224, 1068, 1044, 933, 751, 615 cm−1; HRMS m/z (M+)
calcd for C22H17N5O2: 383.1382. Found: 383.1385.

1-Acetyl-6′-amino-1′-(2-ethylphenyl)-3′-isopropyl-2-oxo-
1′H-spiro[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-
carbonitrile (5v)

Compound 5v (368 mg, 79%) was obtained as a white solid:
mp 211–213 ◦C; 1HNMR (600MHz,DMSO-d6) δ 8.18 (1H,
d, J = 8.4 Hz), 7.59 (2H, s), 7.50–7.44 (4H, m), 7.41–7.38
(1H, m), 7.36–7.34 (2H, m), 2.63 (3H, s), 2.45–2.41 (2H,
m), 1.97–1.92 (1H, m), 1.04 (3H, t, J = 7.2 Hz), 0.91 (3H,
d, J = 6.6 Hz), 0.65 (3H, d, J = 6.6 Hz); 13C NMR (150
MHz, DMSO-d6) δ 177.8, 170.4, 160.8, 152.4, 145.5, 141.3,
139.0, 134.8, 131.3, 129.8, 129.6, 127.6, 126.8, 126.2, 124.9,
117.5, 115.8, 92.7, 56.6, 48.8, 26.5, 26.1, 23.9, 21.6, 20.8,
14.4; IR (ATR) 3395, 3322, 2965, 2204, 1766, 1648, 1526,
1393, 1331, 1268, 1155, 1090, 1040 cm−1;HRMSm/z (M+)
calcd for C27H25N5O3: 467.1957. Found: 467.1954.

1-Acetyl-6′-amino-1′-(4-chlorophenyl)-3′-isopropyl-2-oxo-
1′H-spiro[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-
carbonitrile (5w)

Compound 5w (357mg, 83%) was obtained as a white solid:
mp 250–252 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 10.75
(1H, s), 7.84 (2H, d, J = 8.7 Hz), 7.58–7.54 (4H, m), 7.27
(1H, t, J = 7.5 Hz), 7.19 (1H, d, J = 7.2 Hz), 7.01 (1H, t,
J = 7.5 Hz), 6.90 (1H, d, J = 7.8 Hz), 2.11–2.02 (1H, s),
0.99 (3H, d, J = 6.9 Hz), 0.68 (3H, d, J = 6.9 Hz); 13C
NMR (150 MHz, DMSO-d6) δ 177.8, 160.6, 153.5, 144.7,
141.4, 136.2, 132.6, 130.6, 129.3, 125.0, 122.6, 121.6, 117.7,
109.9, 95.3, 56.7, 47.8, 26.3, 21.3, 20.9; IR (ATR) 3460,
3334, 3186, 2190, 1852, 1709, 1644, 1508, 1391, 1329,
1221, 1092, 1044, 931 cm−1; HRMS m/z (M+) calcd for
C23H18ClN5O2: 431.1149. Found: 431.1146.

6′-Amino-1′-(2-chlorophenyl)-3′-methyl-2-oxo-1′H-spiro
[indoline-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (5x)

Compound 5x (298 mg, 74%) was obtained as a white
solid: mp 250–252 ◦C; 1H NMR (600 MHz, DMSO-d6) δ

10.72 (1H, s), 7.72 (1H, d, J = 7.8 Hz), 7.64 (1H, d,
J = 6.6 Hz), 7.59–7.53 (2H, m), 7.40 (2H, s), 7.29 (1H,
t, J = 7.8 Hz), 7.11 (1H, d, J = 7.2 Hz), 7.04 (1H, t,
J = 7.2 Hz), 6.94 (1H, d, J = 7.2 Hz), 1.53 (3H, s);
13C NMR (150 MHz, DMSO-d6) δ 177.4, 161.0, 146.1,
144.2, 141.6, 133.9, 132.2, 131.3, 130.8, 130.4, 129.9, 129.3,
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128.3, 124.7, 122.6, 118.0, 109.8, 95.0, 56.2, 48.0, 11.7; IR
(ATR) 3315, 3160, 2922, 2198, 1711, 1531, 1473, 1381,
1128, 1042, 932, 750, 623 cm−1; HRMS m/z (M+) calcd
for C21H14ClN5O2: 403.0836. Found: 403.0833.

Ferric reducing antioxidant power (FRAP) assay

The FRAP assay was carried out according to the procedure
described by Benzie and Strain [63]. FRAP reagent was pre-
pared freshly by adding 10 vol. of 300mM acetate buffer, pH
3.6 (3.1 g sodium acetate and 16 mL glacial acetic acid) and
1 vol. of 10 mM 2,4,6-tripyridyl-s-triazine (TPTZ) prepared
in 40 mM HCl and 1 vol. of 20 mM FeCl3. For each assay, 3
mL of FRAP reagent was mixed with 0.1 mL diluted synthe-
sized compound. The mixture was shaken and incubated at
37 ◦C for 30 mins. Absorbance of the reaction mixture was
measured at 593 nm. The standard calibration curve was car-
ried out using Trolox and values expressed in terms of TEAC
(µM). For calculating EC50 values, aliquots of the different
concentrations of the synthesized compounds were prepared
and incubated as described above.

Antibacterial activity

The antibacterial activities of synthesized compounds were
determined using a modified Kirby-Bauer disk diffusion
method [65]. Briefly, the test bacteria were grown in 10
mL of fresh DifcoTM nutrient broth for 24 h. Optical den-
sity of test bacteria was measured using an Optizer 3220
(Double beam) UV–Vis spectrophotometer and found to
be 0.7 at 595 nm. Aliquots of above bacterial suspension
(100µL) were then spread on DifcoTM nutrient broth agar,
which corresponded to the broth in which they were main-
tained. Two gram-negative bacteriaEscherichia coli (KCTC-
1924) and Pseudomonas aeruginosa (KCTC-2004) and two
gram-positive bacteria Staphylococcus aureus (KCTC-1916)
and Bacillus cereus (KCTC-1012) were obtained from the
Korean Collection for Type Cultures (KCTC). The bacteria
were incubated at 37 ◦C for 20–36 h, and then the diameters
of the inhibition zonesweremeasured inmillimeters. Twomg
of each test compound was dissolved in DMSO and further
diluted to 100µg/mL. Standard disks of ciprofloxacin served
as positive controls and filter disks impregnated with DMSO
as negative controls. Further, the depth of the agar in the
plate is a factor to be considered in the disk diffusionmethod.
Blank paper disks of diameter of 8.0 mm were impregnated
with 10µL of above diluted sample solutions. When a filter
disk impregnated with a tested chemical is placed on agar,
the chemical diffuses from the disk into the agar. The solu-
bility of the chemical and its molecular size determine the
size of the area of infiltration. When an organism is placed
on the agar, it will not grow in the area around the disk, if the

chemical is active. This area of no growth around the disk is
referred to as the zone of inhibition.
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