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Abstract 1,2,3-Triazol tyrosines were synthesized from
tyrosine alkynes that were in turn prepared via Sonogashira
cross-coupling reaction. The tyrosine alkyneswere subjected
to click-chemistry reaction conditions leading to the corre-
sponding 3-(1,2,3-triazolyl)-tyrosines in yields ranging from
moderate to good.

Keywords Tyrosine · Alkyne · Click chemistry · Triazole ·
Peptide bond

Introduction

The amino acid tyrosine, a nonessential amino acid with a
polar side chain, is one of the most useful amino acids due
to the chemical reactivity of its side-chain phenolic moiety
[1]. Reactions such as alkylation and acylation of tyrosine
under basic conditions can be carried out in the presence
of oxygen. In acidic conditions, an ene-like reaction occurs
at a carbon atom on the aromatic ring. Many examples
of tyrosine-mediated protein modifications using oxidative
reactions [2–4], Mannich-type reactions [5–7], diazonium
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coupling reactions [8–11], and tyrosine click reactions have
been described in previously published reports [12–14].

Just to name a few examples to highlight the impor-
tance of this amino acid, tyrosine is a building block for
several interesting molecules with biological activity, such
as monocyclic peptides, including K-13, a noncompetitive
inhibitor of angiotensin I-converting enzyme (ACE) [15] and
a weak inhibitor of aminopeptidase B, tumor necrosis factor-
α antagonist [16] (Fig. 1), cross-linked tyrosine oligomers
[17], glycosylated portions of mannopeptimycin-E [18], and
isopeptides [19].

In this sense, there is a great demand formethods that allow
the synthesis of a variety of functionalized tyrosine deriva-
tives. However, to the best of our knowledge, methods for the
synthesis of the 3-(1,2,3-triazolyl)-tyrosine derivatives have
not yet been reported.

Herein, we report an efficient and general access method
for the synthesis of 3-(1,2,3-triazolyl)-tyrosine derivatives
with a wide range of substituents through click chemistry.

Results and discussion

For our preliminary studies, we used commercially available
3-iodotyrosine without prior protection (1 or 2) directly for
cross-coupling with terminal alkynes, but the desired prod-
uct was not observed. Suspecting this was caused due to an
incompatibility with the presence of the carboxylic acid, N -
tert-butyloxycarbonyl-3-iodotyrosine 2was methylated with
dimethyl sulfate in the presence of potassium carbonate in
acetone to afford the iodotyrosine 3 ester in 82 % yield
(Scheme 1) [20].

With 3 at hand, we sought the best conditions for the
Sonogashira-type cross-coupling reaction. For a standard
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Fig. 1 Structures of
Anticachexin C1 and
Teicoplanin-type aglycone

Scheme 1 Protection of 3-iodotyrosine

reaction, we used phenylacetylene in a 3:1 ratio for the 3-
iodotyrosine. The results are summarized in Table 1.

Different sources of palladiumwere tested.Whenwe used
Pd(PPh3)4 (Table 1, entry 1), which is commonly employed
in the Sonogashira reaction, the desired product was obtained
in 75 % yield. When using Pd(PPh3)2Cl2 (Table 1, entry 2),
which has previously been described for similar compounds
[21], the reaction afforded desired product in 58 % yield.
Based on the results from entries 3 and 7, we observed that a
possible exchange was occurring between the Pd ligands and
the amino group on tyrosine as evidenced by mass spectrom-
etry. However, it was not possible to isolate these species
to confirm this observation. When we used Pd2(dba)3 and
Pd(PEPPSI)-iPr (Table 1, entries 5 and 6), the desired prod-
uct was not observed. When inorganic bases were employed,
product formation occurred in high yields, with fewer impu-
rities compared to using organic bases. The use of TMEDA
as a base (Table 1, entry 12) produced the product in only
8 % yield.

After evaluating different solvents (Table 1, entries 13–
17), it became clear that the best solvent for the reaction
is THF. We established 24h as the maximum time for all
reactions, after which time the reactions were adequately
worked-up and purified to isolate the desired product.

When the amount of copper co-catalyst was changed to
10 mol% (Table 1, entry 18), the product was obtained in
76 % yield with total consumption of the starting material,
whereas in the absence of copper salt (Table 1, entry 19), the
desired product was obtained only in 35 % yield.

The reaction was found to be dependent on the presence
of both palladium catalyst and base (Table 1, entries 20 and
21), as starting material 3 was always recovered; however,

without the addition of base, only the homo-coupling product
between alkynes 4awas observed.As an alternative source of
heat energy, microwave irradiation was used (Table 1, entry
22). The reaction consisted of the addition of all reagents
to a vial and irradiation at 100 ◦C for 1h affording product
in 32 % yield. The optimized conditions showed that the
combination of 3-iodotyrosine (0.1 mmol) 3awith an excess
of phenylacetylene (0.3 mmol), Pd(dppf)Cl2 · CH2Cl2 (10
mmol%), CuI (0.1mmol), and THF (2.0mL) at 60 ◦Cunder a
nitrogen atmosphere, provided the tyrosine acetylene product
5a in 91 % yield (Table 1, entry 8) after 6h of reaction.
With the best reaction conditions established, we varied the
alkynes, which are listed in Table 2.

Aromatic rings linked directly to the alkyne sp carbon led
to their products with yields ranging from moderate to good,
58–91 % (Table 2, entries 1–4). Product 5e, containing a
biphenyl group, was obtained in lower yield, 46 % (Table 2,
entry 5), whereas the heterocyclic product 5f was obtained
in 75 % yield (Table 2, entry 6). For both cyclic compounds
(Table 2, entries 7 and 12), 80 % yields were achieved. An
aliphatic chain binding at the triple bond led to products in
similar yields (Table 2, entries 8 and 9) and product 5j was
achieved in 75 % yield (Table 2, entry 10). When used a
secondary alcohol attached at the acetylene, the product was
obtained in 68 % yield (Table 2, entry 11).

Starting from example 5j (Table 2, entry 10), and stim-
ulated with the possibility of obtaining triazole rings, we
therefore investigated the best conditions for the cycloaddi-
tion reaction between 3-(ethynyltrimethylsilyl)-tyrosine 5j
and phenyl azide 6a.

To obtain 1,4-disubstituted-1,2,3-triazole, it was neces-
sary to add a source of fluoride in situ to deprotect the
alkyne and allow the subsequent cycloaddition reaction.
TBAF (tetra-n-butylammonium fluoride) [22] was used for
this purpose; however, before its addition, all reactions were
analyzed by TLC and GC-MS, which showed no evidence of
the formation of a trisubstituted triazole product confirming
the presence of the trimethylsilyl group [23].

As can be seen in Table 3, after screening the reaction
with different copper sources, it was determined that a stoi-
chiometric amount of CuI (I) (Table 3, entry 1) was the best
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Table 1 Coupling conditions between phenylacetylene and 3-iodotyrosine

Entry Catalyst Base Solvent Yield (%)a

1 Pd(PPh3)4 TEA THF 75

2 Pd(PPh3)2Cl2 TEA THF 58

3 Pd(OAc)2 TEA THF −
4 Pd(dppf)Cl2 · CH2Cl2 TEA THF 87

5 Pd2(dba)3 TEA THF −
6 Pd(PEPPSI)-iPr TEA THF −
7 PdCl2 TEA THF −
8 Pd(dppf)Cl2 · CH2Cl2 Na2CO3 THF 91

9 Pd(dppf)Cl2 · CH2Cl2 K2CO3 THF 89

10 Pd(dppf)Cl2 · CH2Cl2 Cs2CO3 THF 88

11 Pd(dppf)Cl2 · CH2Cl2 DIPEA THF 54

12 Pd(dppf)Cl2 · CH2Cl2 TMEDA THF 8

13 Pd(dppf)Cl2 · CH2Cl2 Na2CO3 DMSO 12

14 Pd(dppf)Cl2 · CH2Cl2 Na2CO3 DCM 27

15 Pd(dppf)Cl2 · CH2Cl2 Na2CO3 DMF 7

16 Pd(dppf)Cl2 · CH2Cl2 Na2CO3 Toluene 9

17 Pd(dppf)Cl2 · CH2Cl2 Na2CO3 MeOH 24

18b Pd(dppf)Cl2 · CH2Cl2 Na2CO3 THF 76

19c Pd(dppf)Cl2 · CH2Cl2 Na2CO3 THF 35

20 – Na2CO3 THF −
21 Pd(dppf)Cl2 · CH2Cl2 – THF −
22d Pd(dppf)Cl2 · CH2Cl2 Na2CO3 THF 32

Conditions: 3 (0.1 mmol), 4a (0.3 mmol), catalyst (10 mol%), base (0.1 mmol), CuI (0.1 mmol), solvent (2 mL), 60 ◦C
a Isolated yields
b CuI (10 mol%)
c Without copper addition
d Reaction under microwave irradiation, 100 ◦C, 1 h

option. When we changed the additive to sodium ascorbate
(NaAsc) in organic bases, the best performancewas achieved
with TEA at 50 ◦C.

Solvents such as water, toluene, DCM, and ACN led to
yields lower than 72 %, which was the yield obtained with
THF. In an attempt to form the product through a thermal
reaction without the use of additives or copper salts, the
reaction was irradiated with microwaves at 120 ◦C for 1h
(Table 3, entries 22 and 23), but the starting material was
fully recovered and, in the case of entry 23, only the desi-
lylated product was obtained as a result of the reaction with
the TBAF.

Different examples of triazole rings were obtained, as
described in Table 4. Aromatic azides, such as phenyl azide,
led to the triazole product in 72 % isolated yield (Table 4,

entry 1), azides containing chlorine atoms (Table 4, entries
2 and 3) provided the desired products with moderate yields
(55 and 51%, respectively), indicating that the chlorine atom
in the aromatic ring of the azide, bound at the meta or para
position, did not lead to a significant difference in perfor-
mance between species. In addition, as shown in entry 6, the
iodine atom attached at the para position of the aromatic ring
gave the product with a similar efficiency to their chlorine-
containing analogs.

The reaction was sensitive to the presence of electron-
withdrawing groups in the case of aromatic azides. The
desired product was obtained in 38 % yield when the nitro
group was in themeta position, and 20 % yield with the nitro
group in the para position to the triazole ring (Table 4, entries
4 and 5).
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Table 2 Examples of
Sonogashira cross-coupling
reactions

Entry Alkyne Product Yield (%) a

1 91

2 58

3 82

4 67

5 46

6 75

7 80

8 77
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Table 2 continued

9 78

10 75

11 68

12 80

Entry Alkyne Product Yield (%) a

a Yields refer to isolated products

When alkyl azides were employed, such as benzyl azide,
and a fluorine-containing analog bound at the para position,
respective yields of 65 and 68 % were observed (Table 4,
entries 7 and 8). When azides with electron-donating groups
were used (Table 4, entries 9, 10, and 11), we did not
obtain good yields (36, 38, and 56 %, respectively). When
two equivalents of 3-(ethynyltrimethylsilyl)-tyrosine 5j and
octane diazide 6m were used, we obtained the bis-triazole
7m in 42 % isolated yield (Table 4, entry 12).

Encouraged by the results of the synthesis of the dipep-
tide 10 [24], removal of the Boc group in compound 3 with
TFA in DCM gave 8 in 68 % yield. At the same time,
selective deprotection of the carboxylic acid was achieved
through saponification with LiOH, leading to compound 9
in 63 % yield, allowing the coupling of compounds 8 and
9 using DIC and HOBt in DCM over 15 h. After purifica-
tion, dipeptide 10 was isolated in 57 % yield. When iodine
was bound to the dipeptide fragment, the cross-coupling
reaction proceeded with the alkynyltrimethylsilyl species
4j in a single step to give dipeptide 11 in 89 % yield
(Scheme 2).

Dipeptide 11 was reacted with octane diazide 6m in an
attempt to formcyclicbis-triazolic compound12 (Scheme3);
however, even though we used the optimized reaction con-
ditions (Table 3), no desired product was observed. Other
conditions were tested, such as Cu(OAc)2 10 mol%, sodium

ascorbate 50 mol% in THF or DCM at 0.02 M under reflux;
however, the desired product was not observed as assessed
by NMR spectroscopy.

Summary

In summary, we have demonstrated that the Sonogashira
cross-coupling of 3-iodotyrosine with different alkynes
can be carried out using appropriate conditions. Subse-
quently, the obtained 3-(ethynyltrimethylsilyl)-tyrosine was
submitted to click-chemistry reaction conditions, leading to
the desired 3-(1,2,3-triazolyl)-tyrosines in moderate-to-good
yields. The dipeptide obtained through a peptide linkage
between two tyrosine fragments was submitted to the cross-
coupling reactionwith two equivalents of ethynyltrimethylsi-
lane leading to the product in good yield. Attempts to prepare
a triazole cyclic peptide were not successful.

Experimental section

All of the startingmaterials were commercial grade and were
used without further purification. 1H NMR 13C NMR and
spectra were recorded on a Bruker DPX 300 at 300 MHz
and 75 MHz, respectively, using CDCl3. Chemical shifts are
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Table 3 Survey for the reaction conditions for 1,2,3-triazole ring formation

Entry [Cu] (equiv) Base or additive Solvent Yield (%)a

1 CuI (1) Na asc THF 67

2 CuSO4(1) Na asc THF 5

3 Cu(OTf)2(1) Na asc THF 17

4 Cu(OAc)2(1) Na asc THF 42

5 CuCl (1) Na asc THF 65

6 CuSO4 · 5H2O (1) Na asc THF Trace

7 Cu/Zn (1) Na asc THF Trace

8 CuI (0,1) Na asc THF 34

9 CuSO4(0,1) Na asc THF –

10 Cu(OTf)2(0,1) Na asc THF 29

11 Cu(OAc)2(0,1) Na asc THF 25

12 CuCl (0,1) Na asc THF 30

13 CuSO4 · 5H2O (0,1) Na asc THF –

14 CuI (1) – THF 37

15 CuI (1) TEA THF 72

16 CuI (1) PMDETA THF 23

17 CuI (1) TMEDA THF 5

18 CuI (1) TEA H2O 24

19 CuI (1) TEA Toluene 28

20 CuI (1) TEA ACN 17

21 CuI (1) TEA DCM 26

22b – – Toluene –

23c – – Toluene –

Conditions: 5j (0.1 mmol), 6a (0.12 mmol), [Cu] (0.1 mmol), base (0.1 mmol), solvent (3 mL), TBAF (1.2 equiv), 50 ◦C
a Isolated yields
b Reaction under microwave irradiation, 120 ◦C, 1 h, without addition of TBAF
c Reaction under microwave irradiation, 120 ◦C, 1 h, 1.2 equiv of TBAF

reported inppm, referenced to the solvent signal of CDCl3 or
tetramethylsilane (TMS) as the internal reference. Data are
reported as follows: chemical shift (δ), multiplicity, coupling
constant (J ) in Hertz, and integrated intensity. Abbrevia-
tions to denote the multiplicity of a particular signal are
as follows: s (singlet), d (doublet), t (triplet), q (quartet),
quint (quintet), sex (sextet), and m (multiplet). Column chro-
matography was performed using silica gel (230–400 mesh).
Thin-LayerChromatography (TLC)was performedusing sil-
ica gel UV254, 0.20 mm thickness. Specific rotations were
recorded using chloroform as solvent in different concen-
trations how is showed in each compound on a polarimeter
Anton Paar MCP 200. IR spectra were recorded using an
Agilent Cary 630 FTIRSpectrometer. High-ResolutionMass
Spectrawere obtained using a high-resolutionESI-TOFmass
spectrometer Shimadzu LCMS-IT-TOF.

General procedure for tyrosine Sonogashira cross-
coupling reaction (5a–l)

N -Boc-3-iodo-L-tyrosine methyl ester 3 (43.5 mg, 0.1
mmol), Pd(dppf)Cl2 ·CH2Cl2 (8.1 mg, 0.01 mmol), and CuI
(19mg, 0.1 mmol) were added to a dried flask under nitrogen
atmosphere. Freshly distilled THF (2 mL) was added via a
syringe, then Na2CO3 (10.5 mg, 0.1 mmol) was added and
the resulting solutionwas stirred for 10min. Alkyne 4a-l (0.3
mmol) was added slowly. The resulting solution was stirred
at 60 ◦C. The reaction time was determined monitoring by
TLC (6h). The mixture was poured into 10 mL saturated
NH4Cl, and then extracted with ethyl acetate (3 × 15 mL).
The organic layer was combined, driedwithMgSO4, filtered,
and the solvent was evaporated under reduced pressure. The
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Table 4 Synthesis of tyrosine
triazole rings

1 72

2 55

3 51

4 38

5 20

6 52

Entry Azide Product Yield (%)a

7 65

8 68
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Table 4 continued

9 36

10 38

11 56

12 42

Entry Azide Product Yield (%)a

a Yields refer to isolated products

resulting residue was purified by silica gel chromatography
eluting with ethyl acetate/hexane.

N-Boc-3-((phenyl)ethynyl)-tyrosine methyl ester (5a)

The product was obtained as a brown oil. Yield 37.2 mg
(91 %). [α]20D (c = 0.52, CHCl3): +59.1◦. IR (film) cm−1:
3372, 2977, 1707, 1596, 1495, 1369, 1253, 1164, 1030, 780,
739, 683. 1H NMR (300 MHz, CDCl3) δ 7.56 (dd, J = 7.0,
2.2 Hz, 2H), 7.38 – 7.31 (m, 3H), 7.28 (s, 1H), 7.11 – 7.05
(m, 1H), 6.84 (d, J = 8.5 Hz, 1H), 5.05 (d, J = 6.9 Hz, 1H),
4.63 – 4.48 (m, 1H), 3.90 (s, 3H), 3.74 (s, 3H), 3.04 (ddt, J =
19.5, 13.9, 5.9 Hz, 2H), 1.45 (s, 9H). 13C NMR (75 MHz,
CDCl3) δ 172.27, 159.08, 155.06, 134.33, 131.62, 130.48,
128.24, 123.52, 112.60, 110.95, 93.51, 85.58, 79.97, 55.92,
54.55, 52.21, 37.30, 28.30. HRMS calcd. for [C24H27NO5+
Na]+: 432.1640. Found: 432.1643.

N-Boc-3-((4-pentylphenyl)ethynyl)-tyrosine methyl ester
(5b)

The product was obtained as a brown oil. Yield 27.7 mg
(58 %). [α]20D (c = 0.39,CHCl3) : +56.3◦. IR (film) cm-
1: 3372, 2933, 1715, 1495, 1369, 1253, 1160, 1022, 817,
739. 1H NMR (300 MHz, CDCl3) δ 7.49 – 7.33 (m, 2H),

7.12 – 6.92 (m, 3H), 6.70 (dd, J = 24.4, 8.4 Hz, 2H),
4.93 (d, J = 6.8 Hz, 1H), 4.50 – 4.41 (m, 1H), 3.79 (d,
J = 10.9 Hz, 3H), 3.64 (s, 3H), 3.03 – 2.84 (m, 2H), 2.52
(t, J = 7.6 Hz, 2H), 1.61 – 1.46 (m, 2H), 1.35 (s, 9H),
1.25 (m, 4H), 0.81 (t, J = 6.8 Hz, 3H). 13C NMR (75
MHz, CDCl3) δ 172.27, 159.01, 157.25, 143.27, 140.22,
134.27, 131.52, 130.24, 128.35, 128.01, 120.62, 112.84,
110.93, 110.86, 93.76, 84.84, 79.99, 56.33, 55.93, 52.23,
52.20, 35.85, 31.41, 30.88, 28.29, 22.49, 13.98.HRMScalcd.
for [C29H37NO5 + Na]+: 502.2462. Found: 502.2466.
N-Boc-3-((3-phenol)ethynyl)-tyrosine methyl ester (5c)

The product was obtained as a brown oil. Yield 34.8 mg
(82 %). [α]20D (c = 0.33,CHCl3 : +47.6◦. IR (film) cm-
1: 3346, 2981, 1689, 1581, 1503, 1443, 1369, 1261, 1156,
1026, 873, 788, 739, 691. 1H NMR (300 MHz, CDCl3) δ

7.30 – 7.21 (m, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.12 – 7.04
(m, 3H), 6.89 – 6.77 (m, 3H), 5.10 (d, J = 8.2 Hz, 1H),
4.60 – 4.51 (m, 1H), 3.87 (s, 3H), 3.73 (s, 3H), 3.02 (qd,
J = 13.8, 6.0 Hz, 2H), 1.45 (s, 9H). 13C NMR (75 MHz,
CDCl3) δ 172.38, 159.08, 156.02, 155.31, 134.28, 130.47,
129.43, 127.96, 124.47, 123.80, 118.40, 115.86, 112.59,
111.02, 93.48, 85.28, 80.34, 55.92, 54.56, 52.32, 37.29,
28.29. HRMS calcd. for [C24H27NO6 + Na]+: 448.1629.
Found: 448.1631.
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Scheme 2 Synthesis of the
peptide 10, followed by the C-C
coupling reaction. Reagents and
conditions: a TFA, DCM, rt, 12
h, 68 %; b LiOH, 1,4-dioxane,
0 ◦C, 5 h, 63 %; c HOBt, DIC,
TEA, DCM, rt, 15 h, 57 %; d
Pd(PPh3)Cl2, CuI, TEA, THF,
10 h, 89 %

Scheme 3 Unsuccessful
macrocyclization with
1,8-diazidooctane

N-Boc-3-((2,4-difluorophenyl)ethynyl)-tyrosine methyl
ester (5d)

The product was obtained as a yellow oil. Yield 29.8 mg
(67 %). [α]20D (c= 0.12, CHCl3): + 49.6◦. IR (film) cm-1:
3372, 2981, 1711, 1607, 1510, 1443, 1369, 1257, 1164, 1026,
974, 855, 821, 784. 1H NMR (300 MHz, CDCl3) δ 7.52 (td,
J = 8.6, 8.2, 6.5Hz, 1H), 7.28 (d, J = 2.8Hz, 1H), 7.10 (dd,
J = 8.5, 2.4 Hz, 1H), 6.93 – 6.82 (m, 3H), 5.03 (d, J = 7.7
Hz, 1H), 4.56 (s, 1H), 3.90 (s, 3H), 3.74 (s, 3H), 3.03 (qd,
J = 13.4, 5.6 Hz, 2H), 1.44 (s, 9H). 13C NMR (75 MHz,
CDCl3) δ 172.21, 159.13, 155.01, 134.35, 134.16, 130.93,
128.13, 112.07, 111.61, 111.27, 110.99, 108.66, 104.51,
104.18, 103.85, 90.43, 85.63, 80.00, 55.96, 54.51, 52.21,
37.30, 28.26. HRMS calcd. for [C24H25F2NO5 + Na]+:
468.1090. Found: 468.1092.

N-Boc-3-(4-ethynyl-1,1’ biphenyl)-tyrosine methyl ester
(5e)

The product was obtained as a brown oil. Yield 22.3 mg
(46 %). [α]20D (c = 0.11,CHCl3) : +48.4◦. IR (film) cm-
1: 3361, 2977, 1715, 1503, 1443, 1369, 1283, 1253, 1167,
1026, 847, 769, 702. 1H NMR (300 MHz, CDCl3) δ 7.53
(dd, J = 7.2, 2.7 Hz, 6H), 7.40 – 7.32 (m, 2H), 7.30 – 7.24
(m, 1H), 7.20 (d, J = 2.3 Hz, 1H), 6.99 (dd, J = 8.5, 2.3
Hz, 1H), 6.75 (d, J = 8.5 Hz, 1H), 4.93 (d, J = 8.1 Hz,
1H), 4.47 (d, J = 7.2 Hz, 1H), 3.82 (s, 3H), 3.65 (s, 3H),

2.95 (qd, J = 13.9, 6.0 Hz, 2H), 1.36 (s, 9H). 13C NMR (75
MHz, CDCl3) δ 172.28, 159.09, 140.84, 140.40, 134.34,
132.05, 130.50, 128.83, 128.09, 127.58, 126.99, 126.92,
122.45, 112.65, 110.96, 93.46, 86.28, 80.01, 55.96, 54.55,
52.24, 37.36, 28.31. HRMS calcd. for [C30H31NO5 +Na]+:
508.2001. Found: 508.2003.

N-Boc-3-(3-ethynylpyridine)-tyrosine methyl ester (5f)

The product was obtained as a brown oil. Yield 30.7 mg
(75 %). [α]20D (c= 0.27, CHCl3) : +49.3◦. IR (film) cm-1:
3372, 2951, 1711, 1499, 1369, 1272, 1246, 1164, 1026, 739,
702. 1H NMR (300 MHz, CDCl3) δ 8.78 (s, 1H), 8.54 (d,
J = 4.8 Hz, 1H), 7.83 (dt, J = 7.9, 1.9 Hz, 1H), 7.34
–7.25 (m, 2H), 7.11 (dd, J = 8.5, 2.3 Hz, 1H), 6.86 (d,
J = 8.5 Hz, 1H), 5.06 (d, J = 7.9 Hz, 1H), 4.55 (d, J = 7.4
Hz, 1H), 3.91 (s, 3H), 3.74 (s, 3H), 3.16 – 2.92 (m, 2H),
1.44 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 172.21, 159.18,
152.24, 148.39, 138.38, 134.36, 131.09, 128.19, 122.94,
120.72, 111.81, 110.93, 89.95, 88.94, 80.00, 55.91, 54.51,
52.23, 37.32, 28.28. HRMS calcd. for [C23H26N2O5 +H]+:
411.1800. Found: 411.1804.

N-Boc-3-(1-ethynylcyclohex-1-ene)-tyrosine methyl
ester (5g)

The product was obtained as a brown oil. Yield 33mg (80%).
[α]20D (c=0.34,CHCl3) : +37.8◦. IR (film) cm-1: 3342, 2977,
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1711, 1506, 1521, 1369, 1257, 1167, 1030, 840, 739, 706.
1H NMR (300 MHz, CDCl3) δ 7.15 (s, 1H), 7.09 – 6.96 (m,
1H), 6.78 (d, J = 8.5 Hz, 1H), 6.22 (tt, J = 4.0, 1.8 Hz, 1H),
4.99 (d, J = 8.2 Hz, 1H), 4.56 – 4.47 (m, 1H), 3.85 (s, 3H),
3.71 (s, 3H), 2.98 (dq, J = 20.0, 8.7, 4.7Hz, 2H), 2.29 – 2.21
(m, 2H), 2.18 – 2.10 (m, 2H), 1.71 – 1.56 (m, 4H), 1.43 (s,
9H). 13C NMR (75 MHz, CDCl3) δ 172.27, 158.80, 155.04,
135.02, 134.16, 129.85, 127.89, 120.84, 113.07, 110.81,
95.47, 82.73, 79.92, 55.87, 54.50, 52.16, 37.28, 29.25, 28.27,
25.75, 22.35, 21.53. HRMS calcd. for [C24H31NO5 +Na]+:
436.1640. Found: 436.1646.

N-Boc-3-(but-3-yn-1-ylbenzene)-tyrosine methyl ester
(5h)

The product was obtained as a brown oil. Yield 33.6 mg
(77 %). [α]20D (c = 0.28,CHCl3) : +73.6◦. IR (film) cm-1:
2977, 1707, 1503, 1369, 1283, 1253, 1160, 1026, 810, 739,
709. 1H NMR (300 MHz, CDCl3) δ 7.40 – 7.21 (m, 5H),
7.16 – 6.94 (m, 2H), 6.80 (d, J = 8.5 Hz, 1H), 5.00 (d,
J = 8.5 Hz, 1H), 4.58 – 4.49 (m, 1H), 3.86 (s, 3H), 3.72
(s, 3H), 3.00 (dt, J = 19.9, 7.8 Hz, 4H), 2.77 (t, J = 7.3 Hz,
2H), 1.45 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 172.28,
158.99, 155.06, 140.76, 134.46, 129.73, 128.53, 128.45,
128.34, 127.90, 126.25, 113.07, 110.77, 93.81, 79.94, 55.85,
54.51, 52.17, 37.30, 35.25, 28.29, 21.99. HRMS calcd. for
[C26H31NO5 + Na]+: 460.1621. Found: 460.1625.

N-Boc-3-(hex-1-yne)-tyrosine methyl ester (5i)

The product was obtained as a brown oil. Yield 33.3 mg
(78 %). [α]20D (c = 0.40,CHCl3) : +47.5◦. IR (film) cm-
1: 3372, 2974, 1704, 1503, 1447, 1369, 1272, 1246, 1160,
1026, 821, 762. 1H NMR (300 MHz, CDCl3) δ 7.14 (s, 1H),
6.99 (dd, J = 8.5, 2.2 Hz, 1H), 6.77 (d, J = 8.5 Hz, 1H),
4.98 (d, J = 8.0 Hz, 1H), 4.52 (d, J = 7.3 Hz, 1H), 3.85 (s,
3H), 3.71 (s, 3H), 2.98 (qd, J = 13.7, 6.0 Hz, 2H), 2.52 –
2.41 (m, 2H), 1.62 (dd, J = 14.6, 7.1 Hz, 2H), 1.59 – 1.44
(m, 4H), 1.43 (s, 9H), 0.95 (t, J = 7.3 Hz, 3H). 13C NMR
(75MHz, CDCl3) δ 172.26, 158.92, 155.01, 134.46, 130.24,
129.51, 127.84, 113.31, 110.84, 110.74, 94.71, 79.88, 55.85,
54.49, 52.22, 52.13, 37.25, 30.89, 28.26, 21.97, 19.41, 13.61.
HRMS calcd. for [C22H31NO5 + Na]+: 412.1960. Found:
412.1963.

N-Boc-3-(ethynyltrimethylsilyl)-tyrosine methyl ester
(5j)

The product was obtained as a yellow oil. Yield 30.3 mg
(75 %). [α]20D (c = 0.07,CHCl3) : +51.4◦. IR (film) cm-1:
3394, 2974, 2151, 1711, 1506, 1249, 1160, 1026, 847, 825,
762. 1H NMR (300 MHz, CDCl3) δ 7.21 (s, 1H), 7.04 (dd,
J = 8.4, 2.5 Hz, 1H), 6.82 (dd, J = 15.8, 8.5 Hz, 1H), 4.98

(d, J = 8.0 Hz, 1H), 4.52 (d, J = 7.4 Hz, 1H), 3.87 (s, 3H),
3.73 (s, 3H), 3.00 (qd, J = 13.3, 5.6 Hz, 2H), 1.44 (s, 10H),
0.27 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 172.16, 159.38,
154.96, 134.97, 130.59, 127.84, 126.26, 110.85, 101.01,
55.87, 54.42, 52.13, 29.05, 28.24, 0.00.

HRMS calcd. for [C21H31NO5Si + Na]+: 428.1734.
Found: 428.1735.

N-Boc-3-(but-3-yn-2-ol)-tyrosine methyl ester (5k)

The product was obtained as a brown oil. Yield 25.6 mg
(68 %). [α]20D (c = 0.38,CHCl3) : +62.3◦. IR (film) cm-
1: 3376, 2936, 1715, 1499, 1443, 1369, 1272, 1246, 1167,
1026, 739. 1H NMR (300 MHz, CDCl3) δ 7.16 (s, 1H), 7.05
(dd, J = 8.5, 2.3 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 5.05
– 4.97 (m, 1H), 4.84 – 4.73 (m, 1H), 4.52 (d, J = 8.3 Hz,
1H), 3.85 (d, J = 1.7 Hz, 3H), 3.72 (d, J = 1.6 Hz, 3H), 2.98
(qd, J = 14.6, 14.1, 5.6 Hz, 2H), 1.43 (s, 9H). 13C NMR (75
MHz, CDCl3) δ 172.24, 159.03, 155.03, 134.47, 130.53,
128.04, 111.88, 110.83, 95.36, 79.98, 58.86, 55.84, 54.48,
52.20, 37.26, 28.27, 24.33. HRMS calcd. for [C20H27NO6+
Na]+: 400.1599. Found: 400.1601.

N-Boc-3-(1-ethynylcyclohexanol)-tyrosine methyl ester (5l)

The product was obtained as a yellow oil. Yield 34.5 mg
(80 %). [α]20D (c = 0.17,CHCl3) : +57.3◦. IR (film) cm-
1: 3439, 2936, 1704, 1503, 1443, 1369, 1257, 1164, 1063,
1026, 966, 739. 1H NMR (300 MHz, CDCl3) δ 7.15 (s,
1H), 7.03 (dd, J = 8.5, 2.3 Hz, 1H), 6.79 (d, J = 8.5
Hz, 1H), 5.02 (d, J = 8.3 Hz, 1H), 4.52 (d, J = 7.0 Hz,
1H), 3.84 (d, J = 1.6 Hz, 3H), 3.72 (d, J = 1.6 Hz, 3H),
3.00 (tt, J = 17.1, 8.3 Hz, 2H), 2.54 (s, 1H), 2.06 – 2.00
(m, 2H), 1.75 – 1.54 (m, 8H), 1.43 (s, 9H). 13C NMR (75
MHz, CDCl3) δ 172.24, 159.11, 155.02, 134.23, 130.25,
127.94, 112.32, 110.92, 97.20, 80.46, 79.94, 69.17, 60.36,
55.86, 54.50, 52.17, 40.11, 37.23, 29.02, 28.27, 25.29, 23.41.
HRMS calcd. for [C24H33NO6 + Na]+: 454.1865. Found:
454.1869.

Dipeptide (11)

The product was obtained as a yellow oil. Yield 60.3 mg
(89 %). [α]20D (c = 0.10,CHCl3) : +22.2◦. IR (film) cm-1:
3301, 2959, 2154, 1748, 1719, 1666, 1503, 1443, 1268, 1253,
1175, 11,38, 1030, 847, 765. 1H NMR (300 MHz, CDCl3) δ

7.53 (qd, J = 7.6, 4.9, 3.2 Hz, 2H), 7.30 – 7.23 (m, 3H),
7.13 – 7.09 (m, 1H), 6.92 (dd, J = 8.5, 2.3 Hz, 1H), 6.75 (d,
J = 8.7 Hz, 1H), 4.93 (s, 1H), 4.75 (q, J = 6.4 Hz, 1H), 4.26
(d, J = 7.4 Hz, 1H), 3.86 (s, 6H), 3.70 (s, 3H), 3.06 – 2.86
(m, 4H), 1.43 (s, 9H), 0.26 (s, 18H). 13C NMR (75 MHz,
CDCl3) δ 171.24, 170.64, 159.42, 159.36, 135.16, 134.78,
134.66, 130.77, 130.62, 128.25, 127.42, 112.38, 111.00,
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110.80, 100.97, 98.64, 60.30, 55.85, 55.79, 53.26, 52.23,
36.87, 28.19, 0.00.HRMScalcd. for [C36H50N2O7Si2+H]+:
679.3350. Found: 679.3355.

General procedure for the azide-alkyne cycloaddition
reactions (7a-l)

To a two-necked 25 mL round-bottomed flask under a
nitrogen atmosphere containing CuI (19 mg, 0.1 mmol),
THF (3 mL), organic azide (6a-m) (0.12 mmol), N -Boc-3-
(trimethylsilylethynyl)-tyrosine methyl ester (40.5 mg, 0.1
mmol), TEA (14 μL, 0.1 mmol) was added TBAF (12
μL, 0.12 mmol, 1.0 M in THF), and the reaction mixture
was stirred at 50 ◦C. The reaction time was determined
monitoring by TLC. Then the reaction mixture was diluted
with ethyl acetate and washed with aqueous NH4Cl, the
organic phase was collected, dried with MgSO4, filtered,
and the solvent was removed under vacuum. The product
was purified by flash chromatography and eluted with ethyl
acetate/hexane.

N-Boc-3-(1-phenyl-1H-1,2,3-triazol-4-yl)-tyrosine
methyl ester (7a)

The product was obtained as a yellow oil. Yield 81.3 mg
(72 %). [α]20D (c = 0.19,CHCl3) : +64.7◦. IR (film) cm-1:
3372, 2977, 1745, 1707, 1603, 1506, 1443, 1369, 1253, 1164,
1026, 814, 762, 739, 695. 1H NMR (300 MHz, CDCl3) δ

8.36 (s, 1H), 8.11 (s, 1H), 7.71 (d, J = 7.9 Hz, 2H), 7.40
(dt, J = 30.2, 7.5 Hz, 3H), 7.03 (dd, J = 8.4, 2.3 Hz,
1H), 6.85 (d, J = 8.5 Hz, 1H), 5.00 (d, J = 8.2 Hz,
1H), 4.52 (d, J = 7.3 Hz, 1H), 3.86 (s, 3H), 3.69 (s,
3H), 3.06 (q, J = 10.5, 7.4 Hz, 2H), 1.33 (s, 9H). 13C
NMR (75 MHz, CDCl3) δ 172.36, 155.15, 154.90, 143.53,
137.26, 129.83, 129.65, 128.56, 128.49, 121.01, 120.55,
119.09, 111.08, 79.84, 55.53, 54.67, 52.29, 37.54, 28.27.
HRMS calcd. for [C24H29N4O5 + H]+: 453.2005. Found:
453.2009.

N-Boc-3-(1-(3-chlorophenyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7b)

The product was obtained as a yellow oil. Yield 66.4 mg
(55 %). [α]20D (c = 0.37,CHCl3) : +60.3◦. IR (film) cm-1:
3372, 2977, 1745, 1711, 1503, 1443, 1369, 1283, 1249, 1160,
1026, 762, 695. 1H NMR (300 MHz, CDCl3) δ 8.35 (s, 1H),
8.09 (s, 1H), 7.67 – 7.58 (m, 1H), 7.44 – 7.27 (m, 2H), 7.04
(dd, J = 8.4, 2.3 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 5.05 –
4.95 (m, 1H), 4.52 (d, J = 7.7 Hz, 1H), 3.87 (s, 3H), 3.69 (s,
3H), 3.06 (dt, J = 14.8, 7.0 Hz, 2H), 1.33 (s, 9H). 13C NMR
(75MHz, CDCl3) δ 172.35, 155.13, 154.93, 143.79, 138.09,
135.45, 130.76, 130.04, 128.58, 128.49, 120.77, 120.63,
118.76, 118.47, 111.09, 79.87, 55.56, 54.68, 52.30, 37.54,

28.28. HRMS calcd. for [C24H27ClN4O5 + H]+: 487.1625.
Found: 487.1629.

N-Boc-3-(1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7c)

The product was obtained as a yellow oil. Yield 61.5 mg
(51 %). [α]20D (c = 0.11,CHCl3) : +60.9◦. IR (film) cm-1:
3353, 2977, 1741, 1693, 1503, 1451, 1361, 1249, 1175, 1026,
836, 806 732. 1H NMR (300 MHz, CDCl3) δ 8.33 (s, 1H),
8.09 (s, 1H), 7.67 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz,
2H), 7.04 (dd, J = 8.4, 2.3 Hz, 1H), 6.85 (d, J = 8.5 Hz,
1H), 4.99 (d, J = 8.3 Hz, 1H), 4.51 (d, J = 7.9 Hz, 1H), 3.87
(s, 3H), 3.69 (s, 3H), 3.07 (dt, J = 14.5, 7.0 Hz, 2H), 1.33 (s,
9H). 13C NMR (75 MHz, CDCl3) δ 172.34, 155.12, 154.90,
143.76, 135.73, 134.17, 129.99, 129.81, 128.58, 121.63,
120.78, 118.84, 111.08, 79.86, 55.54, 54.67, 52.29, 37.54,
28.27. HRMS calcd. for [C24H27ClN4O5 + H]+: 487.1625.
Found: 487.1630.

N-Boc-3-(1-(3-nitrophenyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7d)

The product was obtained as a yellow oil. Yield 46.9 mg
(38 %). [α]20D (c = 0.02,CHCl3) : +14.1◦. IR (film) cm-
1: 3372, 2977, 1745, 1711, 1540, 1506, 1443, 1354, 1257,
1167, 1033, 806, 743. 1H NMR (300 MHz, CDCl3) δ 8.57
(s, 1H), 8.46 (s, 1H), 8.25 – 8.06 (m, 3H), 7.67 (t, J = 8.2
Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 4.99 (d, J = 8.2 Hz,
1H), 4.53 (d, J = 7.4 Hz, 1H), 3.91 (s, 3H), 3.70 (s, 3H),
3.07 (td, J = 12.0, 10.2, 5.7 Hz, 2H), 1.34 (s, 9H). 13C NMR
(75MHz, CDCl3) δ 172.32, 154.99, 148.94, 144.26, 137.94,
130.86, 130.32, 128.65, 125.90, 122.85, 120.57, 118.41,
115.06, 111.11, 79.90, 55.62, 54.66, 52.32, 37.54, 28.28.
HRMS calcd. for [C24H27N5O7 + H]+: 498.1875. Found:
498.1878.

N-Boc-3-(1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7e)

The product was obtained as a yellow oil. Yield 24.7 mg
(20 %). [α]20D (c = 0.08,CHCl3) : +37.0◦. IR (film) cm-
1: 3346, 2974, 1741, 1689, 1521, 1506, 1346, 1253, 1175,
1026, 858, 754. 1H NMR (300 MHz, CDCl3) δ 8.47 (s, 1H),
8.34 (d, J = 9.1 Hz, 2H), 8.10 (s, 1H), 7.97 (d, J = 9.1
Hz, 2H), 7.08 (dd, J = 8.5, 2.3 Hz, 1H), 6.88 (d, J = 8.4
Hz, 1H), 4.98 (d, J = 8.1 Hz, 1H), 4.52 (s, 1H), 3.91 (s,
3H), 3.70 (s, 3H), 3.09 (dt, J = 15.8, 7.3 Hz, 2H), 1.34 (s,
9H). 13C NMR (75 MHz, CDCl3) δ 172.30, 155.01, 147.02,
144.41, 141.40, 130.41, 128.71, 125.46, 120.44, 120.32,
118.32, 111.13, 79.92, 55.62, 54.65, 52.32, 37.58, 28.28.
HRMS calcd. for [C24H27N5O7 + H]+: 498.1875. Found:
498.1877.
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N-Boc-3-(1-(4-iodophenyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7f)

The product was obtained as a yellow oil. Yield 74.5 mg
(52 %). [α]20D (c = 0.10,CHCl3) : +58.0◦. IR (film) cm-1:
3346, 2974, 1741, 1689, 1495, 1443, 1361, 1249, 1171, 1026,
806. 1H NMR (300 MHz, CDCl3) δ 8.44 (s, 1H), 8.19 (s,
1H), 7.88 (d, J = 8.7Hz, 2H), 7.59 (d, J = 8.7Hz, 2H), 7.14
(dd, J = 8.4, 2.3 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 5.06
(d, J = 8.3 Hz, 1H), 4.62 (d, J = 7.4 Hz, 1H), 3.97 (s, 3H),
3.79 (s, 3H), 3.15 (s, 1H), 1.43 (s, 9H). 13C NMR (75 MHz,
CDCl3) δ 172.34, 154.92, 143.83, 138.77, 136.91, 130.03,
128.63, 122.04, 120.60, 111.09, 93.19, 55.57, 52.32, 37.57,
28.97, 28.94, 28.29. HRMS calcd. for [C24H27IN4O5+H]+:
579.1050. Found: 579.1053.

N-Boc-3-(1-benzyl-1H-1,2,3-triazol-4-yl)-tyrosine
methyl ester (7g)

The product was obtained as a yellow oil. Yield 75.8 mg
(65 %). [α]20D (c = 0.06,CHCl3) : +51.5◦. IR (film) cm-
1: 3353, 2929, 1745, 1711, 1506, 1458, 1369, 1253, 1167,
1030, 817, 728. 1H NMR (300 MHz, CDCl3) δ 8.05 (s, 1H),
7.89 (s, 1H), 7.33 – 7.16 (m, 5H), 7.00 (dd, J = 8.4, 2.3
Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 5.50 (s, 2H), 4.95 (d,
J = 8.2 Hz, 1H), 4.50 (d, J = 7.8 Hz, 1H), 3.78 (s, 3H),
3.68 (s, 3H), 3.02 (t, J = 7.4Hz, 2H), 1.33 (s, 9H). 13CNMR
(75MHz, CDCl3) δ 172.39, 154.75, 143.31, 135.08, 129.66,
129.01, 128.53, 127.75, 123.12, 111.00, 55.42, 54.02, 52.30,
29.67, 28.95, 28.27. HRMS calcd. for [C25H30N4O5 +H]+:
467.2160. Found: 467.2165.

N-Boc-3-(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7h)

The productwas obtained as a yellowoil. Yield 83mg (68%).
[α]20D (c = 0.06,CHCl3) : +60.0◦. IR (film) cm-1: 3372,
2977, 1748, 1715, 1510, 1443, 1369, 1253, 1227, 1167, 1074,
1052, 1030, 821, 776. 1HNMR (300MHz, CDCl3) δ 8.05 (s,
1H), 7.87 (s, 1H), 7.21 (dd, J = 8.6, 5.4Hz, 2H), 6.99 (t, J =
8.5 Hz, 3H), 6.81 (d, J = 8.4 Hz, 1H), 5.48 (s, 2H), 4.94 (d,
J = 8.2Hz, 1H), 4.50 (s, 1H), 3.79 (s, 3H), 3.68 (s, 3H), 3.05
(dt, J = 14.9, 7.3 Hz, 2H), 1.33 (s, 9H). 13C NMR (75MHz,
CDCl3) δ 172.37, 154.74, 143.47, 130.99, 129.68, 129.57,
128.49, 122.91, 116.14, 115.85, 110.99, 55.43, 53.23, 52.29,
37.54, 28.98, 28.27. HRMScalcd. for [C25H29FN4O5+H]+:
485.2076. Found: 485.2079.

N-Boc-3-(1-(4-aminophenyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7i)

The productwas obtained as a yellowoil. Yield 43mg (36%).
[α]20D (c = 0.13,CHCl3) : +46.9◦. IR (film) cm-1: 3372,

2936, 1745, 1711, 1506, 1443, 1369, 1253, 1164, 1074, 1052,
1026, 817, 739, 706. 1H NMR (300 MHz, CDCl3) δ 8.24
(s, 1H), 8.10 (s, 1H), 7.46 (d, J = 8.8 Hz, 2H), 7.03 (dd,
J = 8.5, 2.3 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 6.70 (d,
J = 8.8 Hz, 2H), 4.98 (d, J = 8.2 Hz, 1H), 4.52 (s, 1H),
3.87 (s, 3H), 3.70 (s, 3H), 3.06 (d, J = 5.7 Hz, 2H), 1.34 (s,
9H). 13C NMR (75 MHz, CDCl3) δ 172.40, 154.84, 146.95,
143.11, 129.62, 128.93, 128.52, 122.35, 121.28, 115.26,
111.07, 55.52, 54.57, 52.31, 37.55, 28.28. HRMS calcd. for
[C24H29N5O5 + H]+: 468.2110. Found: 468.2112.

N-Boc-3-(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7j)

The productwas obtained as a yellowoil. Yield 45mg (38%).
[α]20D (c = 0.12,CHCl3) : +27.8◦. IR (film) cm-1: 3372,
2977, 1748, 1715, 1521, 1443, 1369, 1257, 1171, 1041, 840.
1H NMR (300 MHz, CDCl3) δ 8.10 (s, 1H), 7.66 – 7.56
(m, 2H), 7.07 – 6.89 (m, 3H), 6.85 (d, J = 8.3 Hz, 1H),
4.98 (d, J = 8.1 Hz, 1H), 4.52 (s, 1H), 3.87 (s, 3H), 3.79
(s, 3H), 3.69 (s, 3H), 3.07 (p, J = 6.6, 5.9 Hz, 2H), 1.34
(s, 9H). 13C NMR (75 MHz, CDCl3) δ 172.37, 159.69,
154.86, 143.34, 130.77, 129.73, 128.55, 122.23, 121.26,
119.24, 114.72, 111.07, 60.34, 55.62, 55.52, 54.67, 52.30,
37.56, 28.28, 23.54. HRMS calcd. for [C25H30N4O6 +H]+:
483.2120. Found: 483.2120.

N-Boc-3-(1-(4-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)-
tyrosine methyl ester (7k)

The product was obtained as a brown oil. Yield 67mg (56%).
[α]20D (c = 0.22,CHCl3) : +52.4◦. IR (film) cm-1: 3372,
2936, 2195, 1745, 1711, 1503, 1443, 1369, 1249, 1160, 1060,
1026, 739, 706. 1H NMR (300 MHz, CDCl3) δ 8.27 (s, 1H),
8.08 (d, J = 2.3 Hz, 1H), 7.47 (d, J = 8.9 Hz, 2H), 7.03
(dd, J = 8.4, 2.3 Hz, 1H), 6.87 (dd, J = 14.3, 8.5 Hz,
3H), 5.09 (d, J = 8.5 Hz, 1H), 4.53 (d, J = 7.8 Hz, 1H),
3.84 (s, 3H), 3.70 (s, 3H), 3.06 (td, J = 15.2, 14.5, 6.2 Hz,
2H), 1.34 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 172.59,
157.22, 154.93, 143.20, 129.91, 129.82, 128.45, 122.30,
121.50, 116.35, 111.14, 60.45, 55.51, 52.44, 37.70, 28.28.
HRMS calcd. for [C24H28N4O6 + H]+: 469.1960. Found:
469.1963.

N-Boc-3-(1,1′-(octane-1,8-diyl)bis(1H-1,2,3-triazol-4,
1-diyl)bis-tyrosine methyl ester (7l)

The product was obtained as a yellow oil. Yield 36.2 mg
(42 %). [α]20D (c = 0.19,CHCl3) : +1.1◦. IR (film) cm-1:
3361, 2977, 1741, 1704, 1614, 1525, 1506, 1443, 1369, 1253,
1167, 1030, 832, 739. 1H NMR (300 MHz, CDCl3) δ 7.92
(s, 2H), 7.00 (dd, J = 8.4, 2.3 Hz, 2H), 6.83 (d, J = 8.4 Hz,
2H), 4.95 (d, J = 8.0 Hz, 2H), 4.50 (s, 2H), 4.30 (t, J = 7.2

123



Mol Divers (2016) 20:469–481 481

Hz, 4H), 3.84 (s, 6H), 3.68 (s, 6H), 3.09 – 2.91 (m, 4H), 1.86
(t, J = 6.9 Hz, 4H), 1.30 (m, 17H). 13C NMR (75 MHz,
CDCl3) δ 172.39, 154.72, 142.82, 129.46, 128.47, 122.93,
119.55, 111.01, 55.46, 54.66, 52.27, 50.11, 37.53, 30.27,
28.74, 28.26, 26.34. HRMS calcd. for [C44H62N8O10+H]+:
863.4564. Found: 863.4566.
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