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Abstract c-KIT is a component of the platelet-derived
growth factor receptor family, classified as type-III recep-
tor tyrosine kinase. c-KIT has been reported to be involved
in, small cell lung cancer, other malignant human can-
cers, and inflammatory and autoimmune diseases associated
with mast cells. Available c-KIT inhibitors suffer from
tribulations of growing resistance or cardiac toxicity. A
combined in silico pharmacophore and structure-based vir-
tual screening was performed to identify novel potential
c-KIT inhibitors. In the present study, five molecules from
the ZINC database were retrieved as new potential c-KIT
inhibitors, using Schrödinger’s Maestro 9.0 molecular mod-
eling suite. An atom-featured 3D QSAR model was built
using previously reported c-KIT inhibitors containing the
indolin-2-one scaffold. The developed 3D QSAR model
ADHRR.24was found to be significant (R2 = 0.9378, Q2 =
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0.7832) and instituted to be sufficiently robust with good
predictive accuracy, as confirmed through external valida-
tion approaches, Y-randomization and GH approach [GH
score 0.84 and Enrichment factor (E) 4.964]. The present
QSAR model was further validated for the OECD princi-
ple 3, in that the applicability domain was calculated using a
“standardization approach.”Molecular docking of theQSAR
dataset molecules and final ZINC hits were performed on
the c-KIT receptor (PDB ID: 3G0E). Docking interactions
were in agreement with the developed 3D QSAR model.
Model ADHRR.24 was explored for ligand-based virtual
screening followed by in silico ADME prediction studies.
Five molecules from the ZINC database were obtained as
potential c-KIT inhibitors with high in -silico predicted
activity and strong key binding interactions with the c-KIT
receptor.
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Introduction

Protein c-KIT is normally present on the cell surface,wherein
it combines with the stem cell factor (SCF) which is involved
in the growth of several types of blood cells. Mutation in the
c-KIT receptor is observed in certain cancer cells. Quan-
tification of c-KIT from malignant tissue can help in the
prognosis and treatment of various types of cancers [1].
Protein tyrosine kinases (PTKs) have critical implications
on regulatory signaling mechanisms that are responsible for
growth, activation, differentiation, and transformation [2].
c-KIT is also a PTK that is important for mast cell discrim-
ination, propagation, and secretion of cytokines [3]. c-KIT
is a component of the platelet-derived growth factor recep-
tor (PDGFR) family which is further categorized as type-III
receptor tyrosine kinase (RTK) [4]. A mutation in c-KIT
kinase reduces its binding to the stem cell factor. This binding
has implications on several human tumors, including gas-
trointestinal stromal tumors, myeloid leukemia, germ cell
tumors, and mastocytosis [5]. Over expression of the c-KIT
proto-oncogene has also been observed in case of small cell
lung cancer [6]. The percentages of the functional mutation
associated with a c-KIT in various cancers are gastrointesti-
nal stromal tumors (90 %), mastocytoma (70 %), sinonasal
T-cell lymphoma (16 %), and seminoma/dysgerminoma
(9 %) [7].

Imatinib mesylate (Glivec�) is the first small-molecule
RTK inhibitor that has shown significant results in the man-
agement of several cancers. It is effective at themulti-receptor
targets including c-KIT, and it has shown remarkable results
in the treatment of various tumors, such as dermatofibrosar-
coma protuberans and glioblastoma [8]. c-KIT is reported
to be involved in the inflammatory and autoimmune dis-
eases related to mast cells [9,10]. Some preclinical studies
revealed that Glivec� was efficient against mast cells in
rodent arthritis models [11]. Sunitinib malate (Sutent�) is
another anti-angiogenic multi-targeted PTK inhibitor, effec-
tive against c-KIT, PDGFR, Fms-like tyrosine kinase (sFlt1),
and VEGFR [8]. Imatinib mesylate and Sunitinib malate are
observed to lose efficacy due to drug resistance built by the
secondary mutations D816H/V, N822K, Y822K, A829P that
are located in the activation loop (A-loop) of c-KIT’s cat-
alytic site [12]. Serious cardiotoxicity has been reported for
marketed c-KIT inhibitors (Fig. S5 in supplementary mater-
ial) viz. Imatinib (Glivec�), Dasatinib (Sprycel�), Sunitinib
(Sutent�), Sorafenib (Nexavar�), andNilotibib (Tasigna�)

[13].
Sunitinib is one of the first chemical entities from indolin-

2-one scaffold as RTKI; however, several reports have
reported other c-KIT inhibitors containing the indolin-2-one
scaffold [14,15]. To the best of our knowledge, there are only
a few reports that provide an insight into the essential struc-
tural features for c-KIT inhibition [16]. In one report, a 3D
pharmacophore mapping for the c-KIT was performed using
diaryl ureas; however, molecular docking of the QSAR data
set molecules on c-KIT was not explored [5].
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Our research group is interested in the discovery of
potential novel leads (small molecules) as c-KIT inhibitors
using a combined ligand- and structure-based virtual screen-
ing approach. Pharmacophore mapping and quantitative
structure-activity relationship (QSAR) analysis are the
ligand-based molecular modeling techniques used by our
group. These techniques apply the general studies associ-
ated with the interactions of various molecules with the
same target. A correct pharmacophore model provides infor-
mation regarding hydrogen binding properties (acceptor or
donor), hydrophobic properties, and aromatic functional-
ity present in compounds in the dataset. This informa-
tion could be exploited for the characterization of struc-
turally diverse compounds acting on the same bio-molecules
[17]. Three-dimensional (3D) QSAR study covers an entire
force field around a molecule instead of only spotlight-
ing pharmacophoric information [18]. 3D QSAR takes into
account electrostatic, steric, hydrophobic interactions, and
hydrogen-bond donor/acceptor factors for the force field
calculations. These calculations give the best results when
target-recognizing ligands share a unique structural scaf-
fold [19]. Hence, pharmacophore modeling and 3D QSAR
can be useful for lead optimization and/or lead modifica-
tion by rational drug design approach. Moreover, virtual
screening using a pharmacophore has proven to be an effi-
cient strategy for lead compound identification [20]. On this
ground, to develop a pharmacophore for c-KIT activity, we
chose the 3-pyrrolo[β]cyclohexylene-2-dihydroindolinone
series recently reported by Ding et al. for c-KIT inhibi-
tion [21]. The series offers a diverse range of biological
activity against c-KIT where around 65 % of the com-
pounds were more potent than the standard used (Sunitinib).
Moreover, the potency of some compounds was 30- to
40-fold less than that of Sunitinib. This diversity moti-
vated us to perform a 3D QSAR study and pharmacophore
development.

Methodology

Methods and computational details

Pharmacophore and structure-based virtual screening using
the ZINC database was performed to identify novel poten-
tial c-KIT inhibitors. 3D-pharmacophore-based screening
was carried out using Schrödinger’s PHASE 3.1 [22,23,
26] and molecular docking studies were performed using
Schrödinger’s Glide 5.5 [24,25] as incorporated in Maestro
9.0 installed on a PC Pentium IV 3.06 GHz, Core 2 Quad PC
with Windows 7 operating systems. Domain of applicability
of the developed 3D QSAR model was determined using the
open-access online application ‘AD using Standardization
approach’ version 1.0 [27].

Dataset

Twenty-five indolin-2-one derivatives previously reported
for their c-KIT inhibition profile [21] were taken for the
QSAR studies (Table 1). In vitro IC50 (inhibition concentra-
tions) values of the molecules against c-KIT were converted
to their pIC50 values [-log (IC50)]. The pIC50 values were
incorporated as the dependent variable for QSAR model
development. The structures of the compounds along with
their IC50/pIC50 values are specified in Table 1. Out of the
25 compounds used, twenty were randomly selected as the
training set entries and the remaining five were selected as
the test set entries by using the ‘Random training set’ option
in the PHASE 3.1 module. The dataset was divided into the
training and test set on the grounds of suggestions given by
Golbraikh et al. [28].Aminimumoffive compoundswas nec-
essary to include in the test set and this selection was done
by satisfying three conditions: (1) all representative points of
the test set in the multi-dimensional descriptor space must be
close to those of in the training set, (2) vice-versa with that of
in the training set, (3) the representative points of the training
set must be distributed within the whole area occupied by the
entire dataset. The training set was used to generate a QSAR
model, and the test set was used to validate the generated
model [28].

Pharmacophore mapping and 3D QSAR development

All the compounds were sketched using Maestro 9.0 and
incorporated as a separate entry in the project table. For defin-
ing a ‘pharma set’ in PHASE, an activity threshold range was
selected in such a way that compounds are active if pIC50
value is ≥−1.1073 and inactive if ≤−1.500. This resulted
in nineteen ‘actives’ compounds and six ‘inactives’ com-
pounds. The steps carried out for pharmacophore and 3D
QSAR development are depicted in Fig. 1.

Energy minimization of the structures was performed
using Schrödinger’s LigPrep module version 2.3 selecting
the (OPLS)-2005 force field method. The ionization state
of the molecules was set to pH 7.0. The majority of the
indolin-2-one analogs used in this studywere flexible, and all
possible conformations were generated to retrieve the active
conformer able to bind to c-KIT. A 3-dimensional spatial
representation of the structures was necessary for the devel-
opment of a true pharmacophore model [29].

We chose an atom-based rather than a pharmacophore-
based 3D QSAR because an atom-based 3D QSAR model
covers the entire structural space around amolecule ,whereas
the pharmacophore-based model considers only the required
pharmacophoric group points [30] (a selection of type of
model is separately discussed in the supplementary mate-
rial). In PHASE 3.1, pharmacophoric properties such as a
hydrogen-bond donor (D), hydrogen-bond acceptor (A), aro-
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Fig. 1 Steps in 3D QSAR

matic ring (R), hydrophobic moiety (H), negatively ionized
group (N), and positively ionized group (P) were taken into
consideration. Pharmacophore hypotheses were created via
a ‘tree-based partitioning’ method after selecting 1 Å as the
terminal box size. The 1 Å sized grid box represented a
common pharmacophore covering the least required active-
set molecules. Boxes retained by the partitioning procedure
were kept, and the rest were eliminated. Common phar-
macophore hypotheses (CPHs) indicating at least five sites
(common to all 25 molecules) were allowed for the further
development.

A total of 630 hypotheses were identified (Table S1 in
supplementarymaterial). All common pharmacophoreswere
scrutinized, and a ‘scoring protocol’ was applied to select
the pharmacophore from every grid box. Scoring functions
offer a grading to the different hypotheses and assist in the
selection of proper hypotheses for 3D QSAR model build-
ing. Vector and Site alignment scores were first calculated
using default parameters in PHASE. ‘Survival inactives’
score was also calculated after obtaining a ‘survival score’
for the actives. To refine the hypotheses and minimize a
chance of penalty for matching inactives, a re-scoring was
performed. As a result of this, we got a post hoc score. Post
hoc score is the survival score calculated by the sum of the
site, volume, vector, and selectivity scores. A total of 154
hypotheses were obtained (Table S2 in supplementary mate-
rial) and only the top six hypotheses with a post hoc score

value ≥4.000 were included in the QSAR model generation
step.

A rationale behind a selection of the top six hypotheses
is provided in the supplementary material of this arti-
cle. For the QSAR model building, grid spacing size was
kept to 1.00 Å, partial least squares (PLS) factor was
kept as four by the rule of N/5 [23], where N repre-
sents the number of molecules taken in the training set. The
single best model was selected after evaluating the statis-
tical results and other validation parameters. The selected
model was used for the pharmacophore supported virtual
screening.

Validation of 3D QSAR model

Validation parameters were analyzed for hypotheses
ADDRR.2, ADDRR.4, ADHRR.23, ADHRR.24,
ADDHR.49, and ADDHR.14; of which ADHRR.24 pro-
vided the best results (Table 2). Internal validation at PLS
factor four was performed by leave-n-out predictions on the
training set. This internal validation parameter (R2) cannot
provide a reliable and correct forecasting for the molecules
outside the training set. Hence, external validation becomes
necessary. External validationwas carried out using few extra
methods. Q2 (test set) (q2 for the predicted activities) and
Pearson R (the correlation between the predicted and actual
activity for test set) were obtained. Other strict requirements
for a model acceptance, i.e., R2

0, R′2
0, k, and k′ were also

calculated. R2
0 (Predicted vs. observed activities) and R′2

0
(observed versus predicted activities) are the coefficients of
correlation that obtains by regression lines through the origin
with the intercept set to zero.Generally for amodelwith good
predictive ability, R2

0 or R′2
0 must be equal to or lower than

R2. For the slope value k(predicted versus observed activ-
ities) or k′ (observed versus predicted activities), suitable
range is 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15 [31,32].

The robustness of the developed model was further
checked by a Y-randomization test. This methodology
involves a random scrambling of dependent variable (Y) val-
ues to produce new dissimilar sets. The newly produced
models after random shuffling are expected to have a low

Table 2 Statistics for the
selected hypotheses ADHRR.24 PLS factor (no.) SD R2 F p RMSE Q2 Pearson R

1 0.396 0.6514 33.6 3.702e-005 0.2573 0.4577 0.7645

2 0.2408 0.8365 51.3 1.682e-008 0.2496 0.6156 0.7864

3 0.1418 0.9103 79.7 2.025e-011 0.1837 0.7321 0.9004

4 0.109 0.9378 107.4 4.094e-012 0.1729 0.7832 0.9116

SD Standard deviation, R2 regression coefficient, F variance, p level of significant variance, RMSE residual
mean square error, Q2 value of q2 for the predicted activities, Pearson R correlation coefficient between the
predicted and experimental activity for the test set
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significant correlation coefficient (R2
Y -randomization) compared

to the R2 of the original model and, if the reverse happens,
then the selected QSAR model cannot be considered valid
for a particular modeling method and dataset [33]. A scatter
graph of the observed versus predicted activity for the test
set molecules was drawn and analyzed.

In another method, validation was carried out by the GH
score approach [34] using an external set of molecules to
examine model ADHRR.24 and identify the c-KIT antag-
onists already included in dataset. In an external dataset,
174molecules were incorporated: 32 potent c-KIT inhibitors
from the freely available BindingDB database (http://www.
bindingdb.org) [35–37] and 142 molecules dissimilar to the
indoline-2-one core randomly taken from the NCI open
database [38] (structures of inhibitors and NCI Open mole-
cules are provided in the supplementary material). Once the
dataset of all 174 molecule was prepared (pre-processing of
the molecules is given in supplementary material), molecu-
lar matches for the ADHRR.24 model were searched using
PHASE. Based on the number of molecular hits obtained,
statistical parameters of the GH method and GH score were
calculated.

According to theOrganization forEconomicCo-operation
and Development (OECD) Principle 3, a defined ‘domain of
applicability’ must be given to a developed QSAR model
[33]. The applicability domain of any QSAR model con-
siders the space of descriptors, scope of biological activity,
and knowledge or information on which the training set of a
model has been developed. This domain can be utilized for
the screening and identification of potential new hits.

An applicability domain assessment can be made using
several reliable methods, i.e., ranges in the descriptor space,
geometrical methods, distance-based methods, probability
density distribution, and range of the response variable [27].
Recently, Melagraki and Afantitis reported the calculation
of an applicability domain by similarity node (measures
the Euclidean distances) and leverages node (measures
the Leverages) [33,39]. For the present 3D QSAR model
(ADHRR.24), we determined the AD using the open-access
online application ‘Applicability domain using standardiza-
tion approach 1.0’, developed by Roy et al. [27,40].

Combined virtual screening

In an attempt to identify newhits that could potentially inhibit
c-KIT, a screening protocol was followed using the phar-
macophore ADHRR.24. The modus operandi for virtual
screening is illustrated in Fig. 2 where 236, 475 mole-
cules were taken from the freely available ZINC database
(http://zinc.docking.org) [41] (see supplementary material).
Thesemolecules were already available in a pre-filtered form
basedonmolecularweight 150–500Da,XlogP< 5, rotatable

Fig. 2 In silico modus operandi of virtual screening

bonds< 7, topological polar surface area (TPSA)< 150, H-
bond donor < 5, H-bond acceptor < 10. The hypothesis
ADHRR.24 was put on the query to ‘search for matches’
for 236,475 molecules and 12,743 molecules were retrieved
as hits. These hits were sorted further using a fitness score.
When a fitness score was limited to≥2.3, a total of 147mole-
cules remained as the top ranked. The ADME properties for
these 147 molecules were calculated using QikProp version
3.2and those molecules falling out of the Lipinski’s ‘Rule
of Five’ druggability guidelines [42] were removed from the
study. The remaining 76molecules were subjected to a dock-
ing study using standard precision (SP) docking against the
c-KIT kinase domain [12]. Molecules with a Glide score
value ≤−7.955 were docked again this time using ‘Extra
Precision’ (XP) docking.

Docking studies

Initially, all 25 molecules from the QSAR data set, in the
“3D conformers” form were docked into c-KIT (PDB ID:
3G0E; resolution, 1.6 Å). This docking was performed to
observe the interactions of all active and inactive com-
pounds with the receptor and to examine the agreement
between the docking pattern and predicted activity of the
validated pharmacophore. Seventy-six molecules retrieved
after pharmacophore-based screenings were subjected to
receptor-based virtual screening by docking. For docking,
c-KIT was analyzed and preprocessed using Maestro’s “Pro-
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tein PreparationWizard.” A receptor grid was then generated
(methodology for receptor grid generation is provided in the
supplementary material). All ligands were processed using
the LigPrep protocol.

The generated receptor grid and 3D structures of the lig-
ands were selected in the “Ligand Docking” panel. At this
stage of the experiment, allmolecules from theQSARdataset
were selected. Furthermore, 76 molecules obtained from the
pharmacophore-based virtual screening were selected for the
SP docking mode. Ligands were docked flexibly, and the
nonplanar conformation of amide bonds was penalized. In
flexible docking, 5000 poses per ligand were allowed and
only the top 1 % was retained for energy minimization. On
the basis of an SP Glide score of ≤−7.955, only 14 out of
76 molecules were included in a XP docking study.

Results and discussion

Development and validation of 3D QSAR model

To produce a 3D QSAR model for ligand-based virtual
screening, we mapped a pharmacophore using previously
reported indolin-2-one derivatives as c-KIT inhibitors. After
completing rigorous steps toward finding a common pharma-
cophore hypothesis (CPH); six hypotheses namely
ADDRR.2, ADDRR.4, ADHRR.23, ADHRR.24, ADDHR.
49, and ADDHR.14 (Table S2 in supplementary material)
were selected to build our 3D QSAR model. These six
hypotheses were selected by top survival score (≥3.8) and

post hoc (≥4.0). At PLS factor four, 3D QSAR models
were generated. A statistical analysis of the results identi-
fied hypothesis ADHRR.24 to be the best one. ADHRR.24
was granted on the grounds of the statistical results obtained
for the internal validation against the training set and external
validation through the test set molecules.

The regression coefficient R2 (0.9378) was high for the
model; however, as suggested by Golbraikh et al. [28], this
parameter alone is not sufficient to explain the robustness of
a 3D QSAR model. Hence, additional parameters were con-
sidered. Q2 is a cross-validated correlation coefficient that
is obtained using the leave-one/N-out method and was high
(0.7832). The Q2 parameter is more reliable than the regres-
sion coefficient because it is calculated using an external
validationmethod employing the test setmolecules. Standard
deviation (SD) of the regression was low (0.109). Moreover,
the residual mean square error (RMSE) was within the limit
(0.1729), and the Pearson R correlation coefficient of the test
set for the correlation between the observed and predicted
activities was high (0.9116). All the statistical results for the
best model are listed in Table 2. The predicted activities of
the dataset molecules obtained using ADHRR.24 hypothesis
are provided in Table 1. Other statistical measurements, i.e.,
R2
0 and R′2

0 were 0.9174 and 0.9263, respectively, whereas k
and k′ were 0.96 and 0.94, respectively. All the parameters
were within an acceptable range, and a small residual differ-
ence between the observed and predicted activities proved
that we selected the best 3D QSAR model.

Angles and distances between the sites for theADHRR.24
model are shown in Fig. 3a, b. QSAR visualization of the

Fig. 3 a Angles between sites; b distances between sites D3: H-bond
donor, A1: H-bond acceptor, R11: aromatic ring, R12: aromatic Ring,
H9: Hydrophobic group; c atom-based 3D QSAR model ADHRR.24

visualization, blue cubes signify favorable sections from active mole-
cules in the data set; d red cubes signify unfavorable sections from the
inactive molecules in the dataset. (Colour figure online)
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active molecules (Fig. 3c) revealed that D3 (H-bond donor
feature) arises because of the –NH bond of 2-oxoindoline
moiety and A1 (H-bond acceptor feature) arises from >

C = O of the 2-oxoindoline moiety. H9 (hydrophobic
group) was aligned on the free −CH3 group of the 2-
methyl-4,5,6,7-tetrahydro-1H-indole moiety. The aromatic
rings R11 and R12 were visualized on the benzene ring of
2-oxoindoline and pyrrole of 2-methyl-4,5,6,7-tetrahydro-
1H-indole respectively. The collective effects of (A), (D),
(H), (R) and other features were observed by a QSAR visu-
alization panel of PHASE. The blue cubes in Fig. 3c indicate
the favorable features causative to ligand interactions and
the red cubes in Fig. 3d indicate unfavorable features mainly
present in the inactives for the c-KIT receptor. To our obser-
vation, carboxylate or N,N-diethylsulfamoyl substitutions at
the fifth position and methoxy substitution at the 4th or 7th
position of the 2-oxoindolinemoietywere responsible for the
unfavorable interactions in the active site of c-KIT.Moreover,
a fitness score value of the inactives was low (Table 1). Here,
it could be emphasized that the fitness score is a crucial para-
meter in studying the demarcation lines between the active
and inactive molecules because it is an indicative measure of
mapping pharmacophore site points towards the ligands. It
also measures how well vector characteristics [(A), (H), (N),
(D), (P), and (R)] overlay on the selected hypothesis, and
how the conformations superimpose in an overall sense. The
regression line equation (observed versus predicted activity)
obtained through the scatter graph (Fig. 4) for the com-
bined training and test set molecules was, y = 0.94x + −0.02
(R2 = 0.94).

The Y-randomization test was carried out by shuffling the
observed biological activity (pIC50) at 100 random trials for
the same number of training set molecules and similar group

Fig. 4 Scatter graph for training and test set molecules; filled spheres
training set molecules; filled diamonds test set molecules

features. The newcorrelation coefficients (R2
Y−randomization)

were in the range of 0.08 to 0.4329, and were found to
be lower than the original correlation coefficient (R2 =
0.9378). This proves that our model ADHRR.24 was not
obtained by mere chance.

Further,we assessed the forecasting ability of theADHRR.
24 hypothesis using theGuner andHenry’s ‘goodness of hits’
approach. The 174 molecules taken for this method were put
on a search query using theADHRR.24hypothesis. Thenum-
ber of hits (Ht) obtainedwas 23 (a list of active hits (Ht) along
with their PubChem ID and IUPAC name is given in Table S3
of supplementary material). Out of the 23 hits, 21 molecules
(Ha) were from the 32 c-KIT inhibitors. The two molecules
(Ht–Ha) were not from the active c-KIT inhibitors hence,
considered as ‘False positives’. Nine molecules (A–Ha) that
were active against c-KIT were identified as inactive by our
model. Hence, these nine molecules were classified as ‘False
negatives’ in our study. The GH protocol [43] involves some
calculationwhere%A is a ratio of actives [(Ha/A)× 100]was
found to be 65.63%, and%Y is a yield of inhibitors [(Ha/Ht)
× 100] was 91.30 %. The enrichment of the concentration
of active inhibitors by the model when compared to a ran-
dom screening devoid of any other hypothesis approach, i.e.,
enrichment factor (E) was found to be (4.964) (calculated
as [(Ha/Ht)/(A/D)]). The GH score obtained by formula [Ha
(3A+Ht)/4AHt]× [1−(Ht−Ha/D−A)] was 0.84. The range
of the GH score is 0 to 1, where a score closer to 1 indi-
cates a model to be near to ideality; thus based on our E
and GH score, our model was valid to be utilized for virtual
screening.

The applicability domain was determined by a ‘standardi-
zation approach’. All descriptors of the QSAR dataset
molecules, their predicted biological activities (pIC50) and
residual were included in determining the AD. The results
suggested that no compound in the training set was observed
as an X-outlier, and none of the molecules from the test set
were obtained as ‘Outside AD’ (Table S4, supplementary
material).

Docking analysis of dataset molecules

We performed an SP mode docking for all indolin-2-ones
from the QSAR dataset against the c-KIT kinase domain
(PDB ID 3G0E) using GLIDE program. We noted that
residues CYS673, GLU671, ALA621, VAL603, CYS809,
PHE858, GLY676, CYS674, LEU595, and ASP677 were
involved in the ATP recognition at the catalytic site in c-KIT.
Most of the active compounds at the energy-minimized states
showed the same binding pattern as that of the co-crystallized
inhibitor Sunitinib. From these, compound 14 showed similar
H-bonding interactions as that of Sunitinib (Fig. 5a).

In the hinge region of the ATP binding site, the 2-
oxoindoline moiety displayed two key hydrogen bonding
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Fig. 5 a Compound 14 (IC50 = 7.4 nM) showing H-bond interaction (yellow dash lines) with CYS673 & GLU671; b most inactive Compound 9
interacts only with CYS673 (shown by yellow balls with sticks). (Colour figure online)

interactions: the carbonyl faction of the 2-oxoindoline ring
formed a bondwith the amide –NHofCYS673 and the neigh-
boring –NH group donated a hydrogen bond to the carbonyl
of GLU671. An intra-molecular hydrogen bonding was also
observed between the ‘O’ atom of indolin-2-one and the NH
of4,5,6,7-tetrahydro-1H-indole. This demonstrates that if the
4,5,6,7-tetrahydro-1H-indole moiety remains in an associa-
tion with 2-oxoindoline, the rotation of bond is restricted,
helping the molecules to maintain both intra and inter H-
bond interaction. These facts are observed in the majority of
the active compounds (Table 1).

The amino group inmost of the compounds did not engage
in with the receptor. However, compounds 12, 13, 14, 19, and
22 (with cyclic structures at the tail) showed hydrophobic
interactions with LEU813, ILE817, PHE858, TYR646, and
VAL514 residues. In compound 9, a sulfamido substitution
at the 5th carbon of 2-oxoindoline demonstrated the steric
obstacles with the amino acid residues, that resulted in mole-
cules positioned away from the desired binding interaction
site (Fig. 5b). Surprisingly, compound 16, which possesses a
hydroxyl group at the tail portion, exhibited a lower docking
score (−9.77) and glide energy (−46.98) than other active
compounds (Table 1).

Virtual screening

Initially, we formulated a ligand-based design to identify
the new potential c-KIT inhibitors for cancer. We put our
ADHRR.24 hypothesis on a search query for ‘drug-like’
molecules from the ZINC database. A PHASE search found
12,743molecules asmatches for the selected pharmacophore
(ADHRR.24). The fitness score filter (≥2.3) returned 147
molecules, and the hits were further subjected to Lipinski’s
‘Rule of Five’ and ADME studies. From these, 76 mole-
cules were retrieved through a pharmacophore-based virtual

screening. An SP docking method was performed on these
76 molecules and only 14 molecules (glide score ≤−7.955)
were further included for XP docking. Finally, 5 hits were
obtained (Fig. 6).

Predicted pIC50 values of the final hits for c-KIT inhibi-
tion are given in Table 3. The hit compound ZINC46010657
(1-(3-bromophenyl)-3-(3-methyl-2-oxo-2,3-dihydrobenzo
[d]oxazol-6-yl)urea) was predicted to be the most active
(pIC50 = −0.467) against c-KIT.Moreover, the fitness value
ofmoleculeZINC05375276 (1-((5-chloro-2-hydroxyphenyl)
amino)-4,5-dimethoxyisobenzofuran-3(1H)-one) for the
ADHRR.24 hypothesis was found to be the highest (2.58)
among the final five hits. All ADME parameters for com-
pounds ZINC46010657, ZINC05375276, ZINC02855018,
ZINC13010285, and ZINC24841089 were calculated using
Qikprop and shown to be were within an acceptable range
(Table 3).

The binding interactions and alignments of the final five
hits from the developed pharmacophore are illustrated in
Fig. 7. A recent report on the wild-type and D816V mutant-
type c-KIT receptor inhibitors suggested that compounds
with a bidentate bonding with CYS673 in the hinge region
exhibit more potent inhibitory activity against the D816V-
mutated c-KIT receptor than that of one singly bonded with
CYS673. The mutant-type D816V c-KIT receptor is resis-
tant to marketed drugs viz. Imatinib and Sunitinib [44]. The
hit compound ZINC02855018 (1-(2-(difluoromethoxy)-5-
methylphenyl)-3-(2,4-dimethoxyphenyl)urea) demonstrated
a bidentate hydrogen binding profile where the amide bond
of a diphenyl urea moiety showed two hydrogen bonds
with CYS673 (purple) and, to our surprise, the fluorine (F)
atom also showed a strong hydrogen bond with an amino
group of LYS593 (green) (Fig. 7e). Hence, the possibility of
ZINC02855018 being explored for the mutant-type D816V
c-KIT receptor cannot be neglected.
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Fig. 6 Structures and PubChem IDs of final 5 ZINC hits obtained through ligand-based and structure-based virtual screening

Table 3 Results of final 5 ZINC hits by virtual screening

ZINC comp IDs 3D QSAR results XP docking results ADME results by QikProp (Schordinger 9.0, LLC, NY, USA)

Fitness
score

Predicted
activity
(pIC50)

Docking
score

EvdW (XP
docking)a

Mol. wt logPb o/w logSc MDCKd % human oral
absorptione

46010657 2.41 −0.467 −9.64 −5.25 362.182 2.19 −3.485 693.071 78.071

05375276 2.58 −0.61 −8.89 −6.46 335.74 2.86 −2.961 1520.122 76.243

02855018 2.39 −0.674 −8.74 −5.9 352.337 3.237 −4.173 3588.125 100

13010285 2.33 −0.87 −8.12 −5.55 479.553 2.194 −3.511 143.315 75.474

24841089 2.44 −0.937 −7.53 −4.82 349.4 2.235 −4.385 869.02 83.225

a Lipophilic term resulting from hydrophobic grid potential and fraction of the total protein ligand vdW energy
b Predicted octanol/water partition coefficient logp (range: −2.0 to 6.5)
c Predicted aqueous solubility (S) in mol/L (range: −6.5 to 0.5)
d Predicted apparent MDCK cell permeability in nm/s.
e Percentage of human oral absorption (25 % ≥ poor; 80 % ≤ high)

Molecule ZINC24841089 (2-((4-amino-6-methylpyrimi
din-2-yl)thio)-N-(6-fluorobenzo[d]thiazol-2-yl)acetamide)
was well aligned on the developed pharmacophore (Fig. 7j);
however, docking studies revealed that a nitrogen atom of
benzthiazole moiety and free –NH of amide functionality
form a bidentate hydrogen bonding with the backbone scaf-
fold of CYS673 (Fig. 7i). Hence, this hit molecule has a
strong potential to exhibit good in vitro activity against the
D816V mutant c-KIT receptor.

The five ZINC hits identified as potential c-KIT inhibitors
(Fig. 6) were further subjected to a PubChem structure query
search [45]. Our search indicated that our virtual hits have not

been reported as inhibitors of wild-type and/or mutant-type
c-KIT.

Conclusion

Pharmacophore identification and 3DQSARmodel develop-
ment were carried out using a series of previously reported
indolin-2-ones with well defined c-KIT inhibitory activity.
The common pharmacophore hypothesis (ADHRR.24) was
generated containing five features; two aromatic rings (R)
mainly from indolin-2-one and pyrrole, one hydrophobic (H)
group (–CH3), one acceptor (A) group (C=O), and one donor
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Fig. 7 a H-bond (yellow dash line) of ZINC46010657 with GLU671
(pink) & CYS673 (purple); b alignment of ZINC46010657 on
ADHRR.24; c H-bond (yellow dash line) of ZINC05375276 with
GLU671 (pink) & CYS673 (purple); d alignment of ZINC05375276
on ADHRR.24; e bidentate H-bond (yellow dash line) of hit
ZINC02855018 with CYS673 (purple) & single with LYS593 (green);

f alignment of ZINC02855018 on ADHRR.24; g H-bond (yellow dash
line) of ZINC13010285 with GLU671 (pink) & CYS673 (purple); h
alignment of ZINC13010285 on ADHRR.24; i bidentate H-bond (yel-
low dash lines) ofZINC24841089withCYS673 (shown by yellow balls
with sticks); j Alignment of ZINC24841089 on ADHRR.24. (Colour
figure online)
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(D) from –NH of indoline-2-one. The present 3D QSAR
model was able to provide information regarding favorable
and unfavorable structural features responsible for c-KIT
activity. The model (ADHRR.24) was found to be statis-
tically significant (R2 = 0.9378, Q2 = 0.7832). Other
recommended parameters, i.e., R2

0, R′2
0, k, and k′ were found

to be within an acceptable range. Themodel was further vali-
dated through external validation methods (Y-randomization
and ‘goodness-of-hits’ approach). The robustness of the
developedmodelwas determined by the applicability domain
(AD) calculation using a ‘standardization approach’. A
docking study was performed on the indoline-2-ones and a
strong agreement was attained between the docking results
and the developed 3D QSAR model. Ligand-based and
structure-based virtual screenings were performed using
compounds from the ZINC database identifying five hits
with high potential activity against c-KIT. The ADME prop-
erties of the hits were calculated and found to be within an
acceptable range. Ourmolecular docking study indicates that
hydrogen-bond interactions with CYS673 and GLU671, and
a bidentate hydrogen bond with the CYS673 residue are key
for c-KIT affinity.
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