
Mol Divers (2015) 19:991–1002
DOI 10.1007/s11030-015-9632-0

FULL-LENGTH PAPER

Screening of potential targets in Plasmodium falciparum using
stage-specific metabolic network analysis

Neel Dholakia1 · Pinakin Dhandhukia1 · Nilanjan Roy1

Received: 9 April 2015 / Accepted: 12 August 2015 / Published online: 25 August 2015
© Springer International Publishing Switzerland 2015

Abstract The Apicomplexa parasite Plasmodium is a
major cause of death in developing countries which are less
equipped to bring new medicines to the market. Currently
available drugs used for treatment of malaria are lim-
ited either by inadequate efficacy, toxicity and/or increased
resistance. Availability of the genome sequence, microar-
ray data and metabolic profile of Plasmodium parasite
offers an opportunity for the identification of stage-specific
genes important to the organism’s lifecycle. In this study,
microarray data were analysed for differential expression
and overlapped onto metabolic pathways to identify dif-
ferentially regulated pathways essential for transition to
successive erythrocytic stages. The results obtained indicate
that S-adenosylmethionine decarboxylase/ornithine decar-
boxylase, a bifunctional enzyme required for polyamine
synthesis, is important for the Plasmodium cell growth in the
absence of exogenous polyamines. S-adenosylmethionine
decarboxylase/ornithine decarboxylase is a valuable target
for designing therapeutically useful inhibitors. One such
inhibitor, α-difluoromethyl ornithine, is currently in use
for the treatment of African sleeping sickness caused by
Trypanosoma brucei. Structural studies of ornithine decar-
boxylase along with known inhibitors and their analogues
were carried out to screen drug databases for more effective
and less toxic compounds.
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Introduction

Malaria, a life threatening disease, is caused byfive species of
the genus Plasmodium: P. falciparum, P. malariae, P. ovale,
P. knowlesi and P. vivax, of which P. falciparum and P. vivax
are most dangerous [1]. According to the December 2013
WHOMalaria report, about 207million new cases ofmalaria
were reported in 2012 with estimated 627,000 deaths. Since
2000, the global malaria death rate has fallen by 42 % com-
pared to 49 % in the African region. In the Southeast Asia
region, about 1.2 billion people are exposed to malaria, most
of which are from India. It is estimated that 2–3 million
new cases arise each year. According to the National Vec-
tor Borne Disease Control Program (NVBDCP), the annual
parasite incidence (API) was >5 in Rajasthan, Gujarat, Goa,
Karnataka, Southern Madhya Pradesh, Chhattisgarh and
Orissa [2].

Malaria is transferred from one patient to another by the
female mosquito of the genus Anopheles. There are 460
species of the Anopheles mosquito identified out of which
only 30–40 can transmit the parasite of the genus Plas-
modium. Parasites are transferred via different species of
Anopheles in different geographical location, A. gambiae
being the most common in Africa and A. culicifacies in
India [3].

Parasites are transferred from human to mosquito to
human again through blood of plasmodium-infected person
by female anopheles mosquitoes. In a human host, the para-
site undergoes asexual multiplication where it first replicates
in the liver and subsequently in erythrocytes. Gametocytes
are released which can either destroyed by the host immune
system or they may transferred into the midgut of the female
Anopheles mosquito when it feeds on infected humans. In
mosquitoes, midgut sexual replication takes place to form
mature sporozoites which then travel into the salivary glands
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and are reinjected into a human host on next feeding. The
parasite life cycle largely resides within the human liver and
blood cells evading direct access to immune surveillance and
remains invisible. However, spleen recycles circulating red
blood cells (RBCs); therefore, as a protective mechanism, P.
falciparum induces specific adhesive proteins on the surface
of infected RBCs. These adhesive proteins allow infected
RBCs to stick on the walls of blood vessels which prevents
their passage through the spleen and prolong the circula-
tory half-life of infected RBCs [4]. Multiple gene expression
analyses have been carried out in the past that allowed under-
standing the changes in the transcriptome of P. falciparum
over its developmental cycle. Gene expression data had been
obtained from supplementarymaterials provided by Le Roch
et al. [5] and Foth et al. [6], which portray genome-scale tran-
scriptome analysis of P. falciparum including nine stages
during development.

We analysed it in vitro gene expression data followed
by an flux balance analysis. Flux balance analysis (FBA) is
widely used to the study the genome-scalemetabolic network
reconstruction based on mass conservation. By calculating
a flow of metabolite through the metabolic network, FBA
predicts the growth rate of the organism as whole or rate of
utilization of any specificmetabolite. FBA requires the infor-
mation about the stoichiometry of the reaction pathway [7].
Network-based analyses of P. falciparum metabolism have
been studied by Yeh et al. [8], Fatumo et al. [9], and Huth-
macher et al. [10]. They found drug targets based on choke
point reaction studies and in silico knockout studies. How-
ever, Yeh et al. [8] and Fatumo et al. [9] did not consider the
life cycle stages in their studies. Inclusion of life cycle stages
is important as the availability of nutrients in the different
environment is different. This was included in the study car-
ried out by Huthmacher et al. [10].

To date, there is no vaccine available against the parasite
because of the fact that the parasite can evade host immune
system [11]. This is further complicated due to the fact that
the parasite acquires resistance against existing drugs, alter-
ing the sequence of the drug target without compromising
function [12]. Development of multi-drug resistance in par-
asites is a problem and their spread could be disastrous [13].
Therefore, designing drugs that can affect multiple targets
simultaneously would be effective as modifyingmultiple tar-
gets without lethally will be difficult for the parasite.

In silico drug designing and computer-aided drug design-
ing (CADD) are knowledge-based approaches. The goal
of our study is to explore the erythrocytic stage-specific
metabolism of P. falciparum for the identification of cru-
cial targets involved in the parasite development process
before it acquires the ability to evade the immune sys-
tem. We perused through the available omics resources of
stage-specific expression, biomass equations and their flux
distribution with respect to gene expression for target iden-

tification. Protein similar to predicted protein target from P.
falciparum was also found to be present in humans. There-
fore, candidate molecules were docked on both proteins, and
the ratio of docking score was used to screen for new lead
compounds that bind more selectively to P. falciparum.

Materials and methods

Gene expression analysis

Gene expression data were obtained from the supplementary
materials provided by Le Roch et al. [5]. This genome-scale
transcriptome analysis of P. falciparum includes nine stages
of parasite gene expression during development.Quantitative
time course profiling ofP. falciparum transcripts and proteins
throughout the 48-h intraerythrocytic development cycle was
collected from Gene Expression Omnibus (GEO) Accession
No. GSE 24416 [14].

The data were normalized and transformed using the R
Bioconductor Statistical package limma [15]. Differential
expression was carried out in CLC Main Workbench and
ANOVA was calculated [16]. Genes were filtered out on the
basis of p value <0.05 and fold change difference >1. The
significantly expressed genes were plotted on the P. falci-
parum pathway using the Omics viewer [17].

Flux balance analysis

The first step in FBA was a reconstruction of the metabolic
network to determine the stoichiometry of the reactions
achieved by using available well-curated metabolic mod-
els and enzyme databases. A careful literature search was
performed to identify all metabolic reactions, compartmen-
talization of enzymes, transport reactions for additional
metabolites and secretions [7,18].

The next step was to convert the reconstruction into a
mathematical model in the form of a numerical matrix (S) of
the stoichiometric coefficient of each reactionwheremetabo-
lite (m) and reaction (n) are presented in row and column,
respectively. Moreover, a negative or positive sign associated
with the coefficient depicts metabolites either consumed or
produced in the reaction, respectively. If ametabolite does not
participate in any reaction, zero represented it. For a matrix
S, all material balances are as per following equation:

dX

dT
= S.v, (1)

where v = vector representing flux through the system and
X representing m dimensional vector of metabolite amounts
per cell. Flux through each reaction at the steady state is
represented by following equation,
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S.v = 0 (2)

Further constraints

α < ν < β

where α is lower bound and β is upper bounds on v.
This balance and bound define the allowable flux distrib-

ution of the system.
The third step in an FBA was to define a biological objec-

tive, i.e., the problem being studied, for example, growth
or ATP production. Mathematically, the objective is repre-
sented by an objective function that specifies the contribution
of each reaction to the objective. The mathematical rep-
resentation (S) and the objective were solved using linear
programming [7].

Pathway Tools version 17.5 was used for FBA. A free
academic license was received from SRI International and
Biocyc.org [17].

Metabolic reconstruction was derived from the Biocyc
database [19] and annotated with databases like the Malaria
Parasite Metabolic Pathway (MPMP) [20], KEGG [21] and
PlasmoDB [22]. Metabolic pathway information was firstly
curated with KEGG to link enzyme and gene identifiers
which revealed an understanding of the metabolic network
of P. falciparum and finally curated the data with Biocyc.
The resulting information was used to carry out an FBA in
pathway tools [17].

Pharmacophore generation

A pharmacophore profile was developed using the freely
available web server Pharmagist [23]. Pharmagist can gen-
erate a pharmacophore from a set of structures of drug-like
molecules that are known to bind to the receptor, without the
actual target receptor structure [23]. The pharmacophore was
submitted to ZINCPharmer [24], and filteringwas performed
based on molecular weight ≤500 and number of rotatable
bonds ≤10 with maximum hits per conformation and mole-
cule to be one. Compounds that matched these criteria were
again filtered using Lipinski’s rule of 5 in Knime [25].

Compounds collected from different databases along with
the known inhibitors were docked (rigid docking) on target
protein from both P. falciparum andHomo sapiens. The ratio
of docking score between the two organisms was calculated,
and the lowest ratio of the known inhibitors was used as a
threshold to filter the compounds.

From the compound list, substrate, product or any interme-
diate metabolite were removed. The remaining compounds
were docked (flexible docking) keeping 5 conformations
for each ligand in CLC drug discovery workbench, and
a ratio of pfaODC over hODC docking score was calcu-
lated. Compounds having a docking score ratio greater than

known inhibitors, with known experimental IC50 values,
were selected for binding analysis.

ADMET prediction was carried out using the online
tool admetSAR (http://www.admetexp.org), an ADMET
structure–activity relationship database with data collected
and curated from the literature [26].

Results and discussion

Gene expression analysis

Variations in the probe intensity value between arrays of the
dataset were compared using Boxplot [27]. Figure 1a and b
represent the Boxplot of raw and normalized data, respec-
tively, and Fig. 2 represents Boxplot of time course data
GSE24416 analysed using GEO2R in GEO [14]. By default,
these graphs are constructed after log2 transformation. Upper
and lower quartiles are represented by either end of the box,
whereas themedian is represented by a line in the centre of the
box. Values greater than 1.5 times of interquartile range from
first and third quartiles, at edges of the box, were termed as
outliers. Horizontal lines represent largest and smallest val-
ues of an outlier on the either side of the box where outliers
are represented by circles. Boxplot shows that the each array
had different probe intensity; hence, data normalization was
performed.

By applying one-way analysis of variance (ANOVA) to
the time course data, we found that out of 5100 genes, 3021
genes were differentially expressed having a p value < 0.05
and Fold Change (difference) >1. These data were plotted
as volcano plot (Fig. 3) with significance of differentially
expressed gene versus fold change on the Y and X axis,
respectively. The X -axis consists of the log of fold change
difference and on the Y axis a negative log of the p value
is plotted (base 10). Plotting points in this way clusters tran-
scripts in two regions of interest: those that are found towards
the top that are far left or right, these represent values of large
fold change and also high statistically significant (towards the
top).

Flux balance analysis and reaction knockout studies

FBA under development mode in pathway tools [17] strat-
ified metabolites in two categories. First, metabolites with
a high flux in biomass and present in the nutrient section
suggest that a transporter may be present for those metabo-
lites and they were excluded from the analysis. Second,
metabolites with a high flux and no corresponding presence
in the nutrient section suggest that they are synthesized by
the parasite. The second category includes metabolites such
as thiamine diphosphate, glutathione, purine pyrimidines,
and putrescine belonging to groups such as nucleoside and
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Fig. 1 Box plots a raw
microarray data of P. falciparum
3D7 b after transformation and
normalization

nucleotide biosynthesis, electron carrier biosynthesis, and
polyamines biosynthesis, respectively, with putrescine show-
ing ten times high flux values compared to others.

Enzymes involved in the synthesis of the metabolites
listed in the second category were selected as possible tar-
gets from our flux balance analysis. Thiamine diphosphate is
synthesized from thiamine phosphate by activity of thiamine
diphosphokinase enzyme; however, this enzyme was not dif-
ferentially expressed and hence excluded.Moreover, electron
carriers, such as thioredoxin reductase and glutathione reduc-
tase, which are essential for survival against oxidative stress,
were also excluded because of the amino acids of these tar-
gets contribute to drug binding are situated on a flexible side

chain [28] makes it difficult to design drug with high speci-
ficity.

The next target group was purine and pyrimidine synthe-
sis. Due to the inability of purine synthesis by Plasmodium,
purines were acquired through transporters, whereas pyrim-
idines are synthesized de novo and salvage has not been
observed. Current antimalarials, such as pyrimethamine and
sulfadoxine are targeted against pyrimidine synthesis and
folate metabolism which disrupts the constant supply of
tetrahydrofolate cofactors required for one carbon transfer
reactions and DNA replication [29]. Moreover, inhibitors
like 1-hydroxy-2-dodecyl-4(1H ) quinolone (HDQ) used to
inhibit mitochondrial enzyme dihydroorotate dehydrogenase
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Fig. 2 Box plot of time course data from GEO (Accession no. 24416)

Fig. 3 Volcano plot showing statistically significant genes p value
<0.05 with a fold change (difference) >1

are required for de novopyrimidine synthesis inP. falciparum
[30].

Polyamines, such as putrescine, spermidine, and sper-
mine, are compounds that contain two or more amino
groups. At alkaline pH, they interact electrostatically with
anionic macromolecules, stabilizing DNA, RNA and nucle-
oside triphosphates, proteins and phospholipids. Interactions
with polyamines can alter DNA conformation, replication
and transcription regulation, membrane integrity, ion chan-
nel regulation and protection against oxidative stress. The
transporter for polyamines is yet to be identified in the Plas-
modium genome [31].

Putrescine, a polyamine required for cell growth, is a
substrate for spermidine synthesis. S-adenosyl-l-methionine
decarboxylase–ornithine decarboxylase (AdometDC/ODC)
is a bifunctional enzyme catalysing both l-ornithine to
putrescine and S-adenosyl-l-methionine to S-adenosyl-l-
methioninamine. This enzyme also catalyzes the reaction
for conversion of arginine to agmatine, another source of
putrescine, which is why this reaction in not a choke point
reaction.

Moreover, for a stage-specific target, the target should fol-
low a sigmoidal curve, i.e., it should be up-regulated in one
stage and down-regulated in the successive stage. Inhibit-
ing such target may lead to stage arrest. A similar pattern is
observed for pfaODC (Fig. 4a, b) in the profile graph and
heatmap of pfaODC from strain Dd2 and 3D7, respectively.
Hence, we hypothesized that polyamines need to be syn-
thesized by the parasite in the phase transition from ring to
trophozoite stage and not in the schizont stagewhich strongly
correlateswith in vitro studieswhere inhibition ofODC in the
malaria parasite by difluoromethyl ornithine (DFMO) causes
schizont arrest [32–34].

It was observed that removing the reaction
ARGDECARBOX-RXN causes the blockage of agma-
tine. The reaction catalysing conversion of l-ornithine to
putrescine did not carry any flux; therefore, its knockout
studies could not be carried out (data not shown). Pro-
tozoan infections, such as chagas disease (Trypanosoma
cruzi), African sleeping sickness (caused by subspecies Try-
panosoma brucei), leishmaniasis (Leishmania species) and
Malaria (Plasmodium species), are highly dependent on
polyamine for growth [35].

Structural comparison of ornithine decarboxylase

To find the unique insertions in a sequence of pfaODC, the
amino acid sequence of pfaODC was compared with the
sequence of L. donovani,M.musculus,H. sapiens and T. bru-
cei using multiple pair-wise alignment. There are two unique
insertion areas that become apparent in pfaODC sequence.
One was between residues 1047–1058 and 1139–1296, and
another at the hinge region between residues 573–837. The
largest insertion of 158 residues and the hinge region were
removed for a satisfactory outcome. Pair-wise alignment
showed the highest identity of pfaODC amino acid sequence
with T. brucei enzyme with a score of 30.49 and with H.
sapiens with a score of 29.2683. Figure 5a and b show the
rooted and unrooted phylogenetic tree, respectively, of the
alignment. From the tree, it is observed that there is a close
evolutionary relationship betweenT. brucei andP. falciparum
ODC, and the enzyme is distantly related to human and
mouse.

The homology-modelled structure of pfaODC was cre-
ated by Birkholtz et al. [30] using T. brucei crystal structure
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Fig. 4 Profile graph of pfaODC
strain Dd2 from quantitative
time course data (a), Heat map
representing expression pattern
of pfaODC strain 3D7 (shaded)
(b)

Fig. 5 Phylogeny of ornithine decarboxylase from various sources (a
and b). c Structure of pfaODC (PDB ID: 1M9V) modelled on T. brucei
ODC as template with PLP-DMO as ligand d structure of hODC (PDB
ID: 2OO0) with APA as ligand

(PDB ID: 1M9V). To target the unique sequence of pfaODC,
38 malaria-specific amino acid residues were modelled ab
initio and rest of the amino acids were discarded. Based on
proven functional residue present in the active site pocket
of human and Trypanosoma crystal structure, active site
residues present in the query sequence were identified.

The corresponding residues as per crystal structure of Try-
panosoma ODC (PDB ID: 1M9V) include Lys69, Arg154,
His197, Gly235-237, Glu274, Arg277, Tyr389, Asp332,
Cys360 and Asp361 [32].

Figure 5c shows the structure of pfaODC (modelled
using 1M9V as template) bound with PLP-DMO (Pyridoxal
phosphate-Difluoromethylornithine) as ligand, and Fig. 5d
shows the crystal structure of hODC (PDB ID: 2OO0) with
APA as bound ligand. In the mammalian system, ODC
is tightly regulated via transcription, translation and post-
translation mechanism. It has a shortest half-life of 10–20
min, which is further reduce to <5 min upon complex for-
mation with an antizyme- ornithine decarboxylase antizyme
(ODC-AZ). ODC-AZ is a polyamine regulated inducible
enzyme-inhibitor that binds to ODC monomers and targets
it for 26S proteasome-mediated degradation [36]. Moreover,
the level of polyamines itself is regulated by interconversion
of individual pools and by transport system allowing import
and export of polyamines and their intermediates [37].

Pharmacophore analysis

Apharmacophore is a spatial arrangement of features that are
important for a molecule to interact with a target receptor. A
pharmacophore was designed based on known inhibitor ana-
logues of ornithine decarboxylase (DFMO, difluoromethyl
putrescine, ornithine, APA, 1,4-diaminobutanone,
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3-aminooxy-2-fluoropropanamine and 2-fluoromethyl
ornithine). Out of 7 compounds submitted for pharma-
cophore design, only 4 molecules (DFMO, ornithine, APA
and 3-aminooxy-2-fluoropropanamine) were aligned result-
ing in 1 output pharmacophore with a score of 24.80.
Figure 6 shows the pharmacophore obtained from the Phar-
magist web server and the features shared by the aligned
molecules.

Docking studies

A total of 53,621 compounds were obtained from the ZINC
database [38] using the pharmacophore generated in the
ZINCPharmer search with a cut-off adjusted to molec-
ular weight and number of rotatable bonds. The results
were downloaded in SDF format for further analysis. These
were again filtered based on the Lipinski’s rule of 5 using
Knime which resulted in 52,687 compounds that were fur-
ther processed.

Further, the PubChem database [39] was searched for
analogues of ornithine, putrescine, DFMO, DFMP, APA
and 1,4-diaminobutanone. A total of 158 analogues were
obtained from the PubChem database, which satisfy Lipin-
ski’s rule of 5.

These compounds, along with the known inhibitors, were
docked (rigid docking) on pfaODC and hODC (PDB ID:
1M9V and 2OO0, respectively) on the inhibitor binding site
with a grid radius of 10 Å. Knowledge of the preferred ori-
entation was used to anticipate the binding affinity using the
scoring function.

ODC is present in human as well as P. falciparum. hODC
is short lived and recycled rapidly by ODC-AZ. Therefore,
the ODC expression is always turned on in humans. IC50

value against P. falciparum would be higher if a compound
with a higher affinity toward hODC is used for inhibiting the
pfaODC in vivo.An increase in IC50 value could be attributed
to non-target binding as well as the inhibited hODC enzyme
will quickly replenish. Therefore, a pfaODC inhibitor must
have a higher affinity toward pfaODC than hODC. This
was determined by taking the ratio of a docking score of
a compound on pfaODC and hODC. Lowest ratio of known
inhibitor was used as cut-off for screening of potential can-
didates.

The lowest ratio of 0.83 was observed for the known
inhibitor CGP52622A. Based on this cut-off value, out of
52,687 compounds from the ZINC database, only 2 com-
pounds were selected. Moreover, out of 158 compounds
initially screened fromPubChem based on a pharmacophore,
a total of 147 compounds had a docking ratio greater than
that of known inhibitor.

The substrate, product, any intermediate metabolite and
duplicate entries were removed, and 47 compounds were
obtained including 10 known inhibitors. IC50 values for four

Fig. 6 Comparative docking score of top compounds on pfaODC and
hODC

Fig. 7 Ratio of docking score between pfaODC and hODC

of these compounds were reported against pfa and human
[40], and the IC50 value of only one compound was reported
against Leishmania amazonensis [41]. These 47 compounds
were docked (flexible docking) keeping the top five confor-
mations for each ligand in CLC drug discovery workbench
[16], and a docking score ratio of pfa over human was calcu-
lated. Compounds with a ratio greater than those of known
inhibitors were selected. Also, the octanol-water partition
coefficient was considered, and compounds with a value≥ 0
were removed.As a result, 43 compoundswere obtained hav-
ing a docking ratio > 0.83 (ratio of CGP52622A) and XLog
p values< 0. Figures 6 and 7 depict the docking scores of the
top 15 molecules in pfaODC and hODC and their docking
score ratio, respectively. Table 1 consists of the docking score
and ratio of known inhibitors along with their IC50 values.
Table 2 presents the docking scores and ratios for potential
inhibitors.

Binding analysis

Amino acids involved in binding with known inhibitors
were identified and compared with the binding of potential
inhibitors (Fig. 8a, b). Table 3 shows amino acids impor-
tant for binding with known and potential inhibitors. From
this Table, it can be seen that potential inhibitors also bind
with the same amino acids where the known inhibitors bind,
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Table 1 Docking score and ratio (pfa/human) calculated for known inhibitors

Molecule ID of known inhibitor Structure Docking score IC50 (μM)

pfaODC hODC Ratio pfa Human

65020 −38.06 −21.66 1.69 1.0 ± 0.3 12.8 ± 3.6

CGP54169A −41.28 −24.91 1.47 2.0 ± 0.3 40.9 ± 16.3

126497 −41.45 −30.56 1.36

3009 −48.88 −36.74 1.34 1250 ± 420 ND

∗151733 −38.48 −30.77 1.26

∗ Inhibitor known in L. amazonensis with IC50 value 144 μM

Table 2 Docking score and ratio calculated for probable inhibitors

Molecule ID Structure Docking score

probable inhibitors pfa Human Ratio

3744427 −36.47 −28.84 1.27

74005116 −44.64 −35.58 1.26

19078818 −39.61 −31.80 1.25

21552842 −39.17 −31.62 1.24

123



Mol Divers (2015) 19:991–1002 999

Table 2 continued

Molecule ID Structure Docking score

probable inhibitors pfa Human Ratio

15148285 −35.55 −28.84 1.24

19069630 −46.98 −38.50 1.23

57263314 −37.35 −30.59 1.23

53956163 −36.96 −30.12 1.23

44815140 −44.78 −37.13 1.21

147066 −40.80 −33.78 1.21

except for Asp361 A OD1 (interaction with APA only).
However, potential inhibitors could have additional interac-
tions with Asp736 B OD2, Gly362 A N and Tyr540 B OH
which suggests a stronger target affinity than that of known
inhibitors.

ADMET prediction

ADME/T is an abbreviation for absorption, distribution,
metabolism, excretion and toxicity in pharmacokinetic stud-
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Fig. 8 Binding analysis of
known inhibitors (a) and
probable inhibitors (b) on
pfaODC

Table 3 Amino acids involved in binding of known and probable
inhibitors

Sr. no. Known
inhibitors

Probable
inhibitors

Chain Atom

1 Asp361 Asp361 A OD2

2 Asp361 A OD1

3 Cys360 Cys360 A O

4 Gly362 A N

5 Arg691 Arg691 B NH2

6 Arg691 Arg691 B NE

7 Phe735 Phe735 B O

8 Glu737 Glu737 B OE1

9 Asp736 B OD2

10 Ser575 Ser575 B OG

11 His572 His572 B NE2

12 Tyr800 Tyr800 B OH

13 Tyr540 B OH

ies. These criteria impact drug exposure to tissue and the drug
profile of a potential therapeutic agent. Predicted ADMET
properties of known and potential enzyme inhibitors are dis-
played in Table 4. In metabolism, it is predicted whether the
compound is a substrate or inhibitor of Cytochrome P450, a
membrane-associated protein located in the inner mitochon-
drial membrane or in the endoplasmic reticulum of the cells,
which metabolize thousands of endogenous and exogenous
chemicals. Carcinogenicity for the rat was extracted from the
carcinogenic potency database (CPDB) [42]. According to
TD50 values, a compound can be classified into 3 classes:
Danger, Warning and Not Required. Carcinogenic Com-
pounds with TD50 ≤10 and >10 mg/kg body weight/day

were assigned as Danger andWarning, respectively, and non-
carcinogenic were assigned Not Required. Oral toxicity was
classified into four categories based on US EPA criteria: Cat-
egory I, II, III and IV contain compounds with LD50 values
50mg/kg, 50 mg/kg to 500mg/kg, 500mg/kg to 5000mg/kg
and >5000 mg/kg, respectively. Rat acute toxicity indicates
toxicity in rats caused by oral exposure to chemicals. Fish
acute toxicity suggests the lethal dose to kill 50 % of fish in
the study.

From Table 4, it can be observed that molecule 19078818
is a CYP2D6 substrate, a member of Cytochrome P450
oxidase system involved in the metabolism of xenobiotics,
mainly found in liver. This compound could be rapidly elim-
inated from the body and increasing its dosage could lead to
oral toxicity as it lies in oral toxicity class 2.

Conclusion

To obtain a deep insight into the functioning of the parasite
in RBC, analysis of expression data combined with a flux
balance analysis was used in this study. Our analysis indi-
cates that the Ornithine Decarboxylase enzyme is crucial for
the transition from one stage to the other and identified as
a putative target. This target was analysed using an in silico
knockout study. The ideal target must be absent or redundant
in the host to prevent undesired alteration in normal func-
tioning of the host system. ODC is, however, present in both
host and parasite. Therefore, a comparative docking study
was utilized to screen compounds against targets present in
both organisms to select compounds that will bind efficiently
with the parasite target and not with a human counterpart.
The result of this study will help in selecting compounds
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Table 4 ADME/T prediction of top 10 probable inhibitors

Name XlogP Molecular
weight

Metabolism:
CYP450 substrate/
inhibitor

Carcinogenicity Oral toxicity Rat acute toxicity
LD50 (mol/k)

Fish acute toxic-
ity pLC50 (mg/L)

CGP54169A NS NR 2.21 2.12

65020 −1.3 90.12 NS NR Class 3 2.30 2.34

126497 −1.2 108.11 NS NR Class 3 2.65 1.86

3009 −2.9 182.17 NS NR Class 3 2.17 2.56

3744427 −2.23 92.10 NS NR Class 3 2.25 2.36

74005116 −1.7 147.17 NS NR Class 3 2.15 2.24

151733 −1.87 102.13 NS NR Class 3 1.93 2.98

19078818 −1.7 103.16 2D6 substrate NR Class 2 2.34 3.07

21552842 −2.5 118.18 NS NR Class 2 2.31 2.95

15148285 −0.2 88.15 NS NR Class 2 2.62 2.79

19069630 −3.6 148.16 NS NR Class 3 1.85 2.33

57263314 −2.2 116.12 NS NR Class 3 1.94 2.65

53956163 −1.8 102.14 NS NR Class 3 2.21 2.62

44815140 −1.8 245.50 NS NR Class 3 2.48 2.14

147066 −0.9 106.14 NS NR Class 2 2.92 2.69

against the parasite target to minimize the time and cost of
synthesizing and screening a large number of compounds in
vitro.
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