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Abstract Carbanions of phenylacetonitriles, benzyl sul-
fones, and dialkyl benzylphosphonates add nitroarenes at the
ortho-position to the nitro group to form σH-adducts that,
upon treatment with trialkylchlorosilane and additional base
(t-BuOK or DBU), transform into 3-aryl-2,1-benzisoxazoles
in moderate-to-good yields.

Keywords Carbanions · Heterocycles · Nucleophilic
substitution · Aromatic substitution · Nucleophilic addition ·
Elimination · Cyanides · Nitroarenes

Introduction

2,1-Benzisoxazoles (anthranils) are important compounds,
particularly as starting materials for the synthesis of 2-
aminoarylketones [1–4]. A number of heterocyclic systems,
such as quinolines, acridines, or quinazolines, can be synthe-
sized either from the latter or, in some cases, directly from
1,2-benzisoxazoles [1–10] (Scheme 1). Of particular inter-
est is the transformation of 3-aryl-2,1-benzisoxazoles into
2-aminobenzophenones, key intermediates in the synthesis of
1,4-benzodiazepines potent psychoactive drugs [11]. Patent
literature discloses also a number of anthranils as key inter-
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mediates in the synthesis of various drugs, such as mycobac-
terial agents [12], farnesyl transferase inhibitors [13,14],
protein kinase inhibitors [15], and anticancer agents [16].

Numerousmethods for the synthesis of 2,1-benzisoxazoles
have been developed starting from ortho-substituted benzene
derivatives containing substituents suitable for cyclization
to form a fused isoxazole ring (Scheme 2). The most fre-
quently used are compounds containing such pairs of groups
as carbonyl and azido (a) [17–20], nitro and carbonyl
(b) [21–24], and alkyl and nitro (c) [25–27]. Dehydration
of ortho-nitrobenzyl derivatives substituted with electron-
withdrawing groups at their methylene unit (d) provides
anthranils [28–31]. Another approach (e), introduced by
Davis and Pizzini in 1960 [32], consists of a condensation
of nitroarenes and arylacetonitriles, in which the new carbon
atom of the isoxazole ring originates from the methylene
group of the latter reagent [1,8,10,32,33].

The latter method, although limited to the synthesis of
2-aryl-substituted 2,1-benzisoxazoles, seems to be the most
versatile one giving access to the variously substituted 3-
aryl-2,1-benzisoxazoles [32]. The whole reaction consists
of several reversible steps, and its mechanism is shown in
Scheme 3.

According to this mechanism, the reaction proceeds via
the formation of σH-adduct 4 of the arylacetonitrile anion
2 to the nitroarene 1. The σH-adduct transforms into the
nitroso intermediate 6, which by an intramolecular addition–
elimination resulting in the departure of a cyanide anion,
forms the isoxazole ring. Protic reaction conditions are cru-
cial for the whole process since the transformation of the
σH-adduct to the nitroso compound requires a protonation
of an oxygen atom of the σH-adduct prior to the elimination
of the hydroxide ion. The use of protic solvents limits practi-
cally the scope of nucleophile precursors to arylacetonitriles
although formally some other benzyl derivatives bearing at
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Scheme 1 Examples of useful transformations of 2,1-benzisoxazoles

N

N

N

N

N

N

E G

N

+

a

b

c

d

e

Scheme 2 Common methods for the synthesis of 2,1-benzisoxazoles

theα-position carbanion-stabilizing groups being also poten-
tial leaving groups could be used in this reaction. To such
class of compounds belong benzyl sulfides, sulfones and sul-
foxides, arylnitromethanes, and dialkyl benzylphosphonates.
Another drawback originates from the reversibility of the first
reaction step (formation of the σH-adduct). The nucleophile
must add at position ortho to the nitro group to complete
the cyclization. It is not a problem if the nitroarene bears
at the para position a group not prone to substitution. How-
ever, when the para position contains a hydrogen, a relatively
bulky nucleophile forms a thermodynamically more stable
σH-adduct at this position, which after analogous reaction
sequence, leads tomethylenequinone-oxime derivatives after
elimination of water [32,34]. On the other hand, there are no
literature data for the reaction of para-fluoronitrobenzene
with arylacetonitriles carbanions proceeding via intermedi-
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Scheme 3 Formation of anthranils from nitroarenes and phenylacetoni-
triles in protic media

ate σH-adducts at ortho-position. Probably, if these reactions
were attempted, the fluorine atomwould be easily substituted
leading to 4-nitro-diphenylacetonitrile. For the less elec-
trophilic 4-nitroanisole, only the substitution of the methoxy
group was observed [32]. In the literature, there are some
examples of nitroarenes with an unoccupied para position,
which successfully were used in the Davis reaction; however,
they should be regarded rather as exceptions [33,35], but not
as a rule [34]. On the other hand, to the best of our knowl-
edge, there are no examples of ortho-substituted nitroarenes
bearing hydrogen atom at the para position, which were used
in this reaction.

Results and discussion

During our studies on the nucleophilic substitution of hydro-
gen in nitroarenes, we observed that in aprotic solvents,
the σH-adducts, upon treatment with Lewis acids or silylat-
ing agents, transformed into nitroso compounds that further
underwent cyclization to afford heterocycles [36–39]. We
have found that reactions of nitroarenes with arylacetoni-
triles or benzyl sulfones performed inDMF in the presence of
DBUas a base andMgCl2 as aLewis acid led to the formation
of 3-aryl-2,1-benzisoxazole derivatives in moderate-to-good
yields [40]. Such “one–pot” approach somewhat broadens
the scope of the reaction on the unsubstituted nitrobenzene
and some meta-substituted nitrobenzenes. The problem of
nucleophilic substitution of hydrogen in nitroarenes has been

123



Mol Divers (2015) 19:807–816 809

Table 1 Optimization of the
reaction conditions NO2

Cl

N
O

Cl
CN

N

CN
Cl

+

1 2 3c

+

8

t-BuOK/THF
R3SiCl/base

-60 °C RT

Entry Silylating agent Added base Time (h) Product yield (%)a

Amount/eq Amount/eq 3 8

1 Me3SiCl 5 – – 24 – –

2 Me3SiCl 2.5 NEt3 5 24 – 7

3 Me3SiCl 5 NEt3 5 24 – 41

4 Me3SiCl 5 NEt3 10 24 – 50

5 Me3SiCl 4 NEt3 5 24 Trace 48

6 Me3SiCl 1 DBU 5 48 Trace –

7 Me3SiCl 2 DBU 5 1 23 –

8 Me3SiCl 3 DBU 5 1 55 –

9 Me3SiCl 4 DBU 5 1 78 –

10 Me3SiCl 5 DBU 5 1 80 Trace

11 Me3SiCl 3 t-BuOK 1.1 2 Trace Trace

12 Me3SiCl 3 t-BuOK 2 2 8 –

13 Me3SiCl 3 t-BuOK 4 2 77 –

14 Me3SiCl 4 t- BuOK 5 2 91 –

15 t-BuMe2SiCl 5 NEt3 5 120 – 83

16 t-BuMe2SiCl 1 DBU 5 24 17 –

17 t-BuMe2SiCl 3 DBU 5 1 66 –

18 t-BuMe2SiCl 2 t-BuOK 1.1 48 29 30

19 t-BuMe2SiCl 3 t-BuOK 1.1 48 – 81

20 t-BuMe2SiCl 3 t-BuOK 2 24 66 –

21 t-BuMe2SiCl 5 t-BuOK 1.1 24 – 85

22 t-BuMe2SiCl 5 t-BuOK 2 24 – 50

23 t-BuMe2SiCl 5 t-BuOK 2.5 24 – 74

24 t-BuMe2SiCl 5 t-BuOK 5 24 – Trace

a Determined by GC

thoroughly studied by Ma̧kosza [41–45], who found that
(1) at low temperature, carbanions add very efficiently to
nitroarenes furnishingσH-adducts almost quantitatively [46–
53], and (2) that in relatively low polar solvents, such as
THF, the formation of σH-adducts occurs predominantly at
the ortho position to the nitro group. This effect was partic-
ularly pronounced in the vicarious nucleophilic substitution
(VNS) of hydrogen in nitroarenes by carbanions contain-
ing a leaving group attached to a nucleophilic center [54].
We have found that under the right conditions, quenching
of the σH-adducts at the ortho-position to the nitro group
with a silylating agent followed by adding a base, in the
so-called “step-by-step” procedure, results in the formation
of acridines [55] and 3-aminoquinolines [56]. Anthranils
were detected as by-products in some experiments during

the optimization of the reaction of 4-chloronitrobenzenewith
phenylacetonitrile leading to acridines [55].

These observations prompted us to investigate the trans-
formations ofσH adducts of benzylic carbanions to nitroarenes
to find conditions directing the reaction toward the formation
of anthranils. Under the standard conditions, a solution mix-
ture of 4-chloronitrobenzene (1 eq) and phenylacetonitrile
(1 eq) in dry THF was treated at −60 ◦C with a solution of
t-BuOK (1.1 eq) in THF, stirred for 5min, then treated with
a silylating agent (SA), followed by stirring for 5min, and
finally treated with an additional base (B). Then, the reaction
mixture was allowed to warm-up to room temperature and
stirred until completion (GC or TLC monitoring). Amounts
and types of silylating agent and base are specified in
Table 1.
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At the beginning, it was found that the reaction requires an
additional base to proceed. This means that the σH-adduct,
quenched only with a silylating agent, does not react to form
anthranil 3 or acridine 8 (entry 1). Then we found that tri-
ethylamine was ineffective as a base in reactions leading to
anthranil. Regardless of the amount of Et3N and its ratio to
the silylating agent (SA), no anthranil 3 was observed, and
reactions led to acridine (entries 2–5, 15). DBU gave better
results provided its amount exceeded (entries 8, 9, 17) or was
equal (entry 10) to the molar amount of the silylating agent,
and the best yields were obtained when 3–5 eq. of silylating
agent and 5 eq. of DBU were used. A similar tendency was
observed when using t-BuOK as a base as it gave the best
yield of anthranil 3when 4 eq ofMe3SiCl and 5 eq of t-BuOK
were employed (entry 14). Again, increasing the ratio of SA
to t-BuOK reduced the amount of anthranil 3 This effect was
particularly pronounced when t-BuMe2SiCl was used as a
silylating agent (entries 18–19 and 21–24).

Previously, we used pivaloyl chloride as a reagent for the
transformation of σH-adducts to quinolines [56] and mag-
nesium chloride for the transformation of σH-adducts to
anthranils [40]. The attempted use of these reagents instead of
the silylating agents in the current studies was unsuccessful.
Also no anthranil formation was observed when tetramethyl-
guanidine was used as a base.

N NT T

N

12 13

Scheme 5 Formation of dihydroxylamine derivative 13

Analysis of the results presented in Table 1 led us to pro-
pose another mechanistic pathway leading to acridines and
anthranils (Scheme 4).

According to the proposed mechanism, the formation of
the intermediate nitroso compound 6 from the σH-adduct 4
is abandoned. More plausible seems the bis-silylation of the
σH-adduct 4 to form the so-called “bis-silylated dihydroxy-
lamine” 9. Compounds of this type were synthesized by the
double deprotonation/silylation of some nitroalkenes [57–
60]. Themost fitting example is the formation of bis-silylated
phenyldihydroxylamine 13 from 1-nitrocyclohexa-1,3-diene
(12) (Scheme 5) [58].

Formation of anthranils at a higher base/silylating agent
ratio could be rationalized as follows. The bis-silylated
σH-adduct 9, after 1,4-elimination of silanol anion, gives
silylated oxime derivative 10. Intramolecular electrocycliza-
tion of the oxime ether 10 leads, after silanol elimination,
to acridine 8. However, under action of the additional base,

Scheme 4 Proposed mechanism
for the formation of anthranil
and acridine in reactions of
σH-adduct 4 with
trimethylchlorosilane
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Table 2 Synthesis of
3-arylanthranils NO2

Y

R1 R2
R1

O
N

R2

+

3

1. t-BuOK/THF
2. Me3SiCl
3. t-BuOK

-60 °C RT

Entry R1 R2 Y t (h) Product Yield (%)a

1 H H CN 2 3a 35

2 H 4-MeO CN 2 3b 44

3 4-Cl H CN 2 3c 90

4 4-Cl 4-Cl CN 2 3d 34

5 4-Cl 4-MeO CN 2 3e 66

6 4-F H CN 2 3f 49

7 4-F 4-Cl CN 2 3g 49

8 4-F 4-F CN 2 3h 35

9 4-CF3 H CN 2 3i 39

10 2-Cl H CN 2 3j 22

11 4-MeO 4-Cl SPh 5 3k 48

12 4-Cl H SO2Tol 2 3c 46

13 4-Cl H PO(OMe)2 2 3c 22

14 4-MeO H PO(OMe)b2 5 3l 35

15 4-Me2N H PO(OMe)b2 5 3m 15

16 2,4-(MeO)2 H PO(OMe)b2 5 3n 52

a Isolated
b Reaction in DMF-THF (4:1) mixture

particularly t-BuOK desilylation of the oxime derivative 10
occurs leading to the nitroso (or oxime) anion 7which under-
goes intramolecular vinylic substitution of the cyano group.
This process is facilitated by the presence of an oxygen nucle-
ophile, i.e., in excess of t-BuOK, or trialkylsilanol anion
generated by DBU or, in much lesser extent, by Et3N.

After choosing the most suitable reaction conditions
(Table 1, Entry 14), a series of reactions were performed
(Table 2).We focusedon reactions of suchpairs of nitroarene–
nucleophile (carbanion), which were not suitable to furnish
anthranils under classic conditions proposed by Davis and
Pizzini [32,34,61]. Unsubstituted nitrobenzene entered the
reaction with phenylacetonitrile leading to the formation
of 3-phenylbenzisoxazole (3a) in moderate yields (entries
1,2). 4-Chloronitrobenzene reacted similarly as under Davis
and Pizzini conditions (entries 3–5). To our delight, 4-
fluoronitrobenzene successfully participates in the reaction
to form expected 5-fluoroanthranils in satisfactory yields
(entries 6–8). The observed reaction of 4-fluoronitrobenzene
indicates that, at equally activated positions, substitution at
the carbon bearing a hydrogen atom is faster than at a carbon
bearing any other substituent, including readily replaceable
fluorine atom [42,43,45].

As we expected, under the above conditions, the reaction
was not limited to arylacetonitriles as nucleophile precursors.
Interestingly, 4-nitroanisole furnished anthranils 3k and 3l
when anions of benzyl sulphide (entry 11) or benzylphos-
phonate (entry 14) were used.

In the case of benzylphosphonate carbanion, the use
of a DMF–THF mixture was beneficial, particularly when
nitroarenes being weak electrophiles, such as 4-nitroanisole
(entry 11), 4-nitro-N,N-dimethylaniline (entry 15), and 2,4-
dimethoxynitrobenzene (entry 16) were used. These exam-
ples show how robust our new procedure is for the synthesis
of anthranils, particularly since these nitroarenes are inac-
tive in reactions with nucleophiles. In the literature, we
found only one example of the VNS reaction of 4-nitro-N,N-
dimethylaniline with chloromethyl phenyl sulfone (13%
yield) [62] and one example of the Wohl–Aue reaction of
2,4-dimethoxy-1-nitrobenzene leading to the formation of a
phenazine derivative in 3% yield [63].

The reaction of 2-chloronitrobenzene with phenylace-
tonitrile (entry 10) deserves an additional comment. This
reaction leads to the expected anthranil 3j in moder-
ate yield, and its formation is accompanied by prod-
ucts arising from an oxidation of σH-adduct formed at
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para or ortho position to the nitro group, most probably
3-chloro-4-(or -2-)-nitrodiphenylacetonitrile.

Conclusions

We have found that reactions of carbanions with nitroarenes
in aprotic conditions using a strong base and silylating agent,
3-arylbenzisoxazoles are formed in good yields. The reaction
is general with respect to both nitroarenes and C–H acids
activated by groups of nucleofugal character. This reaction
does not require a transition metal catalyst and thus can be
attractive for use in the pharmaceutical industry.

Experimental section

All reactions were run under argon atmosphere. Melt-
ing points are uncorrected. 1H and 13C NMR spectra
were recorded on a Bruker (500MHz) (500MHz for 1H
and 125MHz for 13C spectra), a Varian-NMR-vnmrs600
(600MHz for 1H spectra) and a Varian Mercury 400
(400MHz for 1H and 100MHz for 13C spectra) instruments.
Chemical shifts δ are expressed in ppm referred to TMS
(internal standard), and coupling constants in Hertz (s= sin-
glet, d= doublet, t= triplet,m=multiplet, etc).Mass spectra
(EI, 70 eV, andHR-MS)were obtained on aWatersAutoSpec
Premier spectrometer. GC analyses were performed on a
Hewlett Packard HP6890 GC system with HP5 column and
FID (carrier gas—helium). Silica gel Merck 60 (230–400
mesh) was used for flash column chromatography.

General procedure for optimization of reaction
conditions (Table 1)

To a stirred solution of 4-nitrochlorobenzene (157mg,
1mmol), phenylacetonitrile (117mg, 1mmol) and diphenyl-
sulfone (60mg, 0.27mmol, GC internal standard) in THF
(5 mL) cooled to −60 ◦C, a solution of t-BuOK (0.13 g,
1.1mmol) in THF (5mL) was added. After stirring for 5min,
chlorotrialkylsilane (amount given in Table 1) was added,
and the reaction mixture was stirred for another 5min at this
temp. Then, a base (amount given in Table 1) was added. In
reactions with additional t-BuOK, it was dissolved in THF
(10 mL). The reaction mixture was allowed to reach room
temp, and then it was stirred for another 2h. The final reac-
tion mixture was poured into diluted HCl and extracted with
ethyl acetate (3×10mL) and driedwithMgSO4. The amount
of product was determined by GC.

General procedure for synthesis of anthranils

To a stirred solution of nitroarene (3mmol) and carbanion
precursor (3mmol) in THF (10 mL) cooled to −60 ◦C, a

solution of t-BuOK (0.37 g, 3.3mmol) in THF (5 mL) was
added. After 5min, chlorotrimethylsilane (1.3 g, 12mmol)
was added, and the reaction mixture was stirred for further
5min at this temp. Then, t-BuOK (1.68 g, 15 mmol) in THF
(20 mL) was added, then the reaction mixture was allowed
to cool to room temp, and it was stirred for another 2–5h.
The reaction mixture was then poured into diluted HCl and
extracted with ethyl acetate (3 × 25 mL). The combined
organic phase was dried with Na2SO4. After evaporation of
the solvent, the residue was chromatographed (Silica gel,
hexane–ethyl acetate 5:1) to afford the desired product. The
following compounds were obtained.

3-Phenyl-2,1-benzisoxazole (3a)

Yellow solid, yield: 0.21 g (35%). Mp. 48–50 ◦C; (lit. [21]
51–53 ◦C). 1H NMR (400MHz, CDCl3): δ =7.05–7.09 (1
H, m), 7.31–7.35 (1 H, m), 7.48–7.63 (4 H, m), 7.83–7.86 (1
H, m), 8.01–8.04 (2 H, m).

3-(4-Methoxyphenyl)-2,1-benzisoxazole (3b)

Yellow crystals, yield: 0.30 g (44%).Mp. 97–99 ◦C; (lit. [64]
99–99.5 ◦C). 1H NMR (500MHz, CDCl3): δ =3.89 (3 H, s),
7.01 (1 H, dd, J = 9.0, 6.5Hz), 7.04–4.09 and 7.95–7.99
(4 H, AA’XX’), 7.30 (1 H, dd, J =9.0, 6.5), 7.57 (1 H, d,
J =9.0Hz), 7.78 (1 H, d, J = 9.0Hz). 13C NMR (125MHz,
CDCl3): δ = 55.45, 113.59, 114.74, 115.29, 120.78, 121.25,
123.99, 128.19, 130.56, 157.84, 161.20, 164.6. MS (m/z,
%): 225 (M+, 100), 210 (16), 182 (68), 154 (25), 135 (5),
127 (100). HRMS for C14H11NO2 calcd.: 225.0790; found:
225.0798.

5-Chloro-3-phenyl-2,1-benzisoxazole (3c)

Yellow solid, yield: 0.62 g (90%). M.p. 110–112 ◦C (lit. [32]
115–117 ◦C). 1H NMR (500MHz, CDCl3): δ =7.26 (1 H,
dd, J =9.5, 1.8Hz), 7.50–7.54 (1 H, m), 7.55–7.61 (3 H, m),
7.83–7.84 (1 H, m), 7.96–7.99 (2 H, m).

5-Chloro-3-(4-chlorophenyl)-2,1-benzisoxazole (3d)

Yellow crystals, yield: 0.27 g (34%). M.p. 212–214 ◦C (lit.
[32] 214–215 ◦C). 1HNMR (500MHz, DMSO-d6): δ =7.46
(1 H, dd, J = 9.6, 1.6Hz), 7.67–7.70 and 8.15–8.18 (4 H,
AA’XX’), 7.78 (1 H, d, J =9.6Hz), 8.26 (1 H, br s). 13C
NMR (125MHz, DMSO-d6): δ =114.55, 117.71, 119.86,
126.11, 128.80, 130.15, 130.35, 133.30, 136.09, 156.31,
163.29. MS (m/z, %): 263 (M+, 54), 228 (100), 202 (20),
200 (61), 164 (18), 156 (22), 141 (13), 139 (42). HRMS for
C13H7Cl2NO calcd. 262.9905, found 262.9912.
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5-Chloro-3-(4-methoxyphenyl)-2,1-benzisoxazole (3e)

Yellow solid, yield: 0.51 g (66%). M.p. 145–147 ◦C (lit.
[32] 143 -145 ◦C). 1H NMR (500MHz, CDCl3): δ =3.89
(3H, s), 7.05–7.08 and 7.89 – 7.92 (4H, AA’XX’), 7.22 (1 H,
dd, J =9.6, 1.7Hz), 7.54 (1 H, d, J =9.6Hz), 7.77 (1H, br
s). 13C NMR (125MHz, CDCl3): δ =55.47, 113.68, 114.85,
116.93, 119.15, 120.67, 128.14, 129.55, 132.35, 156.27,
161.44, 164.44. MS (m/z, %): 259 (M+, 100), 244 (20), 224
(20), 218 (25), 216 (73), 188 (19), 181 (6), 153 (14). HRMS
for C14H10ClNO2 calcd.: 259.0400; found 259.0406.

5-Fluoro-3-phenyl-2,1-benzisoxazole (3f)

Yellow solid, yield: 0.31 g (49%). M.p.=93–95 ◦C lit. [18]
96–97 ◦C). 1H NMR (500MHz, CDCl3): δ =7.18 (1 H, ddd,
J =9.6, 8.6, 4.5Hz), 7.40 (1 H, dd, J =8.6, 2.2Hz), 7.47–
7.51 (1 H, m), 7.53–7.59 (2 H, m), 7.64 (1 H, ddd, J =9.6,
4.5Hz), 7.94 – 7.96 (2 H, m). 13C NMR (125MHz, CDCl3):
δ =102.24 (d, J =25.5Hz), 113.38 (d, J =11.6Hz), 118.16
(d, J =9.3Hz), 123.77 (d, J =31.3Hz), 126.31, 128.09,
129.32, 130.29, 155.95, 159.37 (d, J =247Hz), 164.7 (d, J
= 11.1Hz). MS (m/z, %): 213 (M+, 100), 185 (49), 184 (44),
158 (11), 157 (16), 110 (8), 105 (9). HRMS for C13H8FNO
calcd.: 213.0590; found: 213.0587.

5-Fluoro-3-(4-chlorophenyl)-2,1-benzisoxazole (3g)

Yellow solid, yield: 0.36 g (49%). M.p. 205–207 ◦C. 1H
NMR (500MHz, DMSO-d6): δ =7.46 (1 H, ddd, J =9.6,
9.6, 2.2Hz), 7.66–7.69 and 8.11–8.14 (4 H, AA’XX’), 7.83
(1 H, dd, J = 9.6, 4.8Hz), 7.91 (1 H, dd, J =9.6, 2.2Hz).
13C NMR (125MHz, CDCl3): δ =103.26 (d, J =26.0Hz),
113.52 (d, J =11.6Hz), 118.63 (d, J =9.8Hz), 124.72 (d,
J =31.8Hz), 126.30, 128.47, 130.10, 135.76, 156.00, 159.6
(d, J =245Hz), 163.54 (d, J =11.1Hz). MS (m/z, %): 247
(M+, 99), 212 (100), 184 (74).HRMS forC13H7ClFOcalcld.
247.0200, found 247.0204.

5-Fluoro-3-(4-fluorophenyl)-2,1-benzisoxazole (3h)

Pale yellow solid, yield: 0.24 g (35%). M.p. 161–162
◦C. 1H NMR (500MHz, CDCl3): δ =7.18 (1 H, ddd,
J =9.6, 8.6, 2.2Hz), 7.22–7.30 (2H, m), 7.34 (1 H, dd,
J =8.6, 2.2Hz), 7.66 (1 H, J=9.6, 4.6Hz). 13C NMR
(125MHz, CDCl3): δ =101.96 (d, J =25.5Hz), 113.13 (d,
J =11.4Hz), 116.67 (d, J=22.5Hz), 118.21 (d, J = 9.3Hz),
123.85 (d, J =31.3Hz), 124.45 (d, J =3.8Hz), 128.34 (d,
J=8.7Hz), 155.96, 159.46 (d, J =248Hz), 163.71 (d, J
= 10.9Hz), 163.72 (d, J =253Hz). MS (m/z, %): 231
(M+

, 100), 203 (44), 202 (44), 182 (8), 175 (10). HRMS for
C13H7F2NO calcd. 231.0496; found 231.0498.

3-Phenyl-5-trifluoromethyl-2,1-benzisoxazole (3i)

Yellow crystals, yield: 0.31 g (39%). M.p. 116–121 ◦C.
1H NMR (500MHz, CDCl3): δ =7.46 (1 H, dd, J =9.5,
1.4Hz), 7.55–7.63 (3 H, m), 7.73–7.75 (1 H, m), 8.01–
8.03 (2 H, m), 8.18–8.19 (1 H, m). 13C NMR (125MHz,
CDCl3): δ =112.90, 117.10, 120.13 (q, J =5.3Hz), 123.78
(q, J =272Hz), 125.69 (J =2.6Hz), 126.78 (J =32.5Hz),
126.96, 131.25, 157.49, 167.51.MS (m/z,%): 263 (M+, 100),
244 (12), 235 (14), 216 (10), 194 (6), 185 (9), 166 (21). 51
(22), 77 (52), 105 (14), 166 (21), 216 (10), 244 (12), 263
(100), 264 (26). HRMS for C14H8F3NO calcd. 263.0558,
found 263.0554.

7-Chloro-3-phenyl-2,1-benzisoxazole (3j)

Yellow crystals, yield: 0.15 g (22%). Mp. 105–107 ◦C.
1H NMR (500MHz, CDCl3): δ =7.00 (1 H, dd, J=8.8,
7.0Hz), 7.35 (1 H, d, J =7.0Hz), 7.50–7.59 (3 H, m),
7.76 (1 H, d, J =8.8Hz), 8.00–8.02 (2H, m). 13C NMR
(125MHz, CDCl3) δ =115.56, 119.47, 121.49, 124.81,
126.75, 127.94, 129.37, 129.79, 130.78, 156.22, 166.28. MS
(m/z, %): 229 (M+, 100), 201 (17), 194 (65), 166 (72), 164
(27), 140 (23), 139 (25), 105 (29). HRMS for C13H8ClNO
calcd. 229.0294; found 229.0293.

5-Methoxy-3-(4-chlorophenyl)-2,1-benzisoxazole (3k)

Pale yellow crystals, yield: 0.37 g (48%). M.p. 140–141 ◦C.
1H NMR (500MHz, CDCl3): δ =3.00 (3 H, s), 6.79 (1 H,
d, J = 2.2Hz), 7.06 (1 H, dd, J =9.6, 2.2Hz), 7.50–7.53
and 7.85–7.88 (4 H, AA’XX’), 7.53 (1 H, d, J =9.6Hz). 13C
NMR (125MHz, CDCl3) δ =55.48, 93.73, 114.48, 117.19,
127.20, 127.23, 127.80, 129.50, 135.53, 156.02, 157.01,
160.91. MS (m/z, %): 259 (M+, 30), 224 (100), 216 (23),
196 (8), 188 (11), 181 (13). HRMS for C14H10ClNO2 calcd.
250.0400; found. 259.0400.

5-Methoxy-3-phenyl-2,1-benzisoxazole (3l)

Yellow crystals, yield: 0.24 g (35%). M.p. 79–80 ◦C.
H1HNMR (500MHz, CDCl3): δ =3.88 (1 H, s), 6.87 (1
H, d, J =2.2Hz), 7.05 (1 H, dd, J =9.6, 2.2Hz), 7.44–
7.47 (1 H, m), 7.52–7.56 (3 H, m), 7.93–7.96 (2 H, m).
13C NMR (125MHz, CDCl3): δ =55.44, 94.11, 114.33,
117.08, 126.12, 127.67, 128.83, 129.19, 129.56, 156.01,
156.75, 162.19. MS (m/z, %): 225 (M+, 84), 210 (39), 182
(100), 154 (43), 128 (13), 127 (14). HRMS for C14H11NO2

calcd. 225.0790; found 225.0797.
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N,N-dimetyl-3-phenyl-2,1-benzisoxazol-5-amine (3m)

Yellow crystals, yield: 0.11 g (15%). M.p. 113–115 ◦C.
1H NMR (500MHz, CDCl3): δ =3.02 (6 H, s), 7.25 (1
H, dd, J =9.4, 2.4Hz), 7.40–7.43 (1 H, m), 7.52–7.55 (3
H, m), 7.95–7.97 (2 H, m). 13C NMR (125MHz, CDCl3):
δ =41.35, 94.74, 115.48, 116.29, 125.71, 125.86, 128.97,
129.08, 129.33, 147.44, 155.35 [one signal missing]. MS
(m/z, %): 238 (M+, 100), 237 (49), 223 (24), 209 (12),
195 (40), 167 (20). HRMS for C15H14N2O calcd. 238.1106;
found 238.1105.

5,7-Dimethoxy-3-phenyl-2,1-benzisoxazole (3n)

Yellow crystals, yield: 0.40 g (52%). M.p. 151 ◦C. 1H NMR
(500MHz, CDCl3): δ =3.87 (3 H, s), 3.98 (3 H, s), 6.25 (1 H,
d, J =1.6Hz), 6.46 (1 H, d, J =1.6Hz), 7.42–7.44 (1 H, m),
7.51–7.54 (2H,m), 7.92–7.94 (2H,m). 13CNMR (125MHz,
CDCl3): δ = 55.58, 55.87, 86.43, 102.51, 115.13, 126.05,
128.79, 129.11, 129.46, 149.09, 151.70, 158.10, 162.16. MS
(m/z, %): 255 (M+, 86), 254 (100), 240 (20), 226 (71), 225
(30), 224 (37), 212 (22), 183 (18), 182 (31), 169 (17). HRMS
for C15H13NO3 calcd.: 255.0895, found: 255.0883.
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48. Mąkosza M, Staliński K (1998) Oxidative nucleophilic substitu-
tion of hydrogen in nitroarenes with phenylacetonitrile derivatives.
Tetrahedron 54:8797–8810. doi:10.1016/S0040-4020(98)00472-4
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