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Abstract Activity cliffs have large impact in drug discov-
ery; therefore, their detection and quantification are of major
importance. This work introduces the metric activity cliff
enrichment factor and expands the previously reported activ-
ity cliff generator concept by adding chemotype information
to representations of the activity landscape. To exemplify
these concepts, three molecular databases with multiple bio-
logical activities were characterized. Compounds in each
database were grouped into chemotype classes. Then, pair-
wise comparisons of structure similarities and activity dif-
ferences were calculated for each compound and used
to construct chemotype-based structure–activity similarity
(SAS) maps. Different landscape distributions among four
major regions of the SAS maps were observed for different
subsets of molecules grouped in chemotypes. Based on this
observation, the activity cliff enrichment factor was calcu-
lated to numerically detect chemotypes enriched in activity
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cliffs. Several chemotype classes were detected havingmajor
proportion of activity cliffs than the entire database. In addi-
tion, some chemotype classes comprising compounds with
smooth structure activity relationships (SAR) were detected.
Finally, the activity cliff generator concept was applied to
compounds grouped in chemotypes to extract valuable SAR
information.
Graphic abstract
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Abbreviations

ACEF Activity cliff enrichment factor
COX Cyclooxygenase
DAT Dopamine transporter
ECFP Extended connectivity fingerprint
EstateIndices Electrotopological state indices
MACCS Molecular ACCess System
MATs Monoamine transporters
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MEQI Molecular Equivalence Indices
MEQNUM Molecular equivalence number
NAC/CF Number of activity cliffs / chemo-

type frequency
NET Norepinephrine transporter
NSGs Network-like similarity graphs
PPAR Peroxisome proliferator-activated

receptor
QSAR Quantitative structure–activity

relationships
ROCS Rapid overlay of chemical struc-

tures
SALI Structure–activity landscape index
SARI SAR index
SAS Structure–activity similarity
SERT Serotonin transporter
SAR Structure–activity relationships
TopAtomPairs Topological atom pairs
TopPh4AtomPairs Topological pharmacophore atom

pairs
TopAtomTorsions Topological atom torsions
TopAtomTriplets Topological atom triplets
TopPh4AtomTriplets Topological pharmacophore atom

triplets

Introduction

Activity cliffs can be defined as pairs of similar compounds
with very high differences in activity [1]. Certainly, these
kinds of compounds are of interest in medicinal chemistry
because they are associated with high SAR information con-
tent [2,3]. It is worth mentioning that activity cliffs fall out
of the similarity-property principle and are usually incor-
rectly predicted by quantitative structure–activity relation-
ships (QSAR) models [1,4,5]; therefore, their visualization
and quantification in screening datasets are of interest on
SAR and QSAR studies [2]. Graphical methods designed to
detect activity cliffs are inspired by the emerging concept of
the activity landscape [2]. An activity landscape is defined as
any representation that integrates similarity and potency rela-
tionships between compounds sharing the same biological
activity [3,6]. Thesemethods include structure–activity simi-
larity (SAS)maps [7], network-like similarity graphs (NSGs)
[8], structure–activity landscape index (SALI) graphs [9],
etc. In addition to graphical methods, numerical SAR analy-
sis functions have been introduced. These functions aid to
characterize the SAR nature of molecular databases based
on indices, i.e., Structure–Activity Landscape Index (SALI)
and SAR Index (SARI) [9–11]. Furthermore, some meth-
ods to characterize local SAR information and activity cliffs
have been reported [12,13]. In a recent work, Kayastha
et al. proposed local SAS maps as representations formed

by plotting all compound pairs formed by a specific com-
pounds [12]. This concept is related to our previous work
where an activity cliff generator was defined as a molecule
with high probability to form activity cliffs with structurally
similar molecules tested in the same biological assay [13].
Additionally, Hu and Bajorath proposed the structural cat-
egorization of activity cliffs as R-group cliffs (compound
pairs with same scaffold and different R-groups), chirality
and topology cliffs (compound pairs with same scaffold and
R-groups), and scaffold cliffs (compound pairs with different
scaffold and same R-group) [14]. As part of our-continued
effort to further advance the concept of local activity land-
scapes and their characterization, i.e., activity cliff detection,
herein we use a chemotype-based classification to define
local activity landscapes. Then, chemotype-based activity
landscapes were analyzed employing the concepts of activity
cliff enrichment factor (ACEF) and activity cliff generators.
To illustrate our results, three screening datasets with dif-
ferent sizes were analyzed including compounds screened
against three monoamine transporters (MATs): dopamine
(DAT), norepinephrine (NET), and serotonin (SERT) trans-
porters, two cyclooxygenases (COX-1 and -2), and three
peroxisome proliferator-activated receptors (PPAR α, δ and
γ). MATs have received considerable attention as targets for
psychiatric and neurological disorders as depression, atten-
tion deficit, hyperactivity disorder, Parkinson’s disease, and
schizophrenia [15,16]. Cyclooxygenases are important since
they are targeted by non-steroidal anti-inflammatory drugs
and have been proposed as target for cancer therapy in com-
binationwith other chemotherapeutic agents [17,18]. Finally,
the activation of PPARs offers a promising strategy for the
treatment of diabetes mellitus, obesity, and related cardio-
vascular complications [19–21].

Materials and methods

Dataset

Three molecular databases previously used for activity land-
scape modeling studies were used in this work as benchmark
datasets [21–24]. The first database includes 299 compounds
tested against threemonoamine transporters recently used by
Dimova et al. [22]. Each molecule in the dataset has reported
Ki values against DAT,NET, and SERT.A second set has 658
cyclooxygenase inhibitors obtained from the Binding Data-
base [25–27].These compoundshave reported activity (IC50)

against COX-1 andCOX-2. The third set of compounds com-
prises 168 PPAR ligands, with IC50 values against α, δ, and
γ receptors, obtained from the Binding Database. A gen-
eral overview of activities, for each target, is summarized
in the parameters presented in the Supporting Information
(Table S1).
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Fig. 1 Example of the generation of chemotypes using cyclic systems
resolution level. The resulting chemotypes were used to group com-
pounds with the same molecular scaffold

Molecular classification into chemotype classes

The chemotype of each molecule in the datasets was calcu-
lated using molecular equivalence indices (MEQI) at cyclic
system resolution [28–32]. Those compounds that presented
the same chemotype were grouped together. The generation
of chemotypes at cyclic system resolution consists of remov-
ing all side chains from the molecule, while bond orders and
atom types are conserved as shown in Fig. 1. Exocyclic bonds
of carbonyls, imines, sulfones, and sulfoxides were consid-
ered as part of the cyclic system if they are directly boned to a
ring, as well as all functional groups forming linkers between
two rings. Although cyclic system resolution was considered
in this work, different resolutions or any other definition of
molecular scaffold can be used as long as they are generated
in a consistent manner.

Molecular similarity

Molecular similarities were calculated using eleven 2D fin-
gerprints implemented in MayaChemTools [33] and two
3D shape methods available in Rapid Overlay of Chemi-
cal Structures (ROCS) [34]. For 2D and 3D representations,
the Tanimoto coefficient was used to calculate N (N − 1)
/2 pairwise structural similarities (SSi j ) for each pair of
molecules i and j [35,36]. The 2D fingerprints namely
atom neighborhoods [37], atom types, electrotopological
state indices (EstateIndices) [38], extended connectivity
(ECFP4) [39], MACCS (322 bits) [40], path length, topo-
logical atom pairs (TopAtomPairs) [41], topological atom
torsions (TopAtomTorsions) [42], topological atom triplets
(TopAtomTriplets), topological pharmacophore atom pairs
(TopPh4AtomPairs) [43], and topological pharmacophore
atom triplets (TopPh4AtomTriplets) [44] implemented in a
set of Perl scripts available in MayaChemTools were used.
To apply 3D similarity methods, the structures were opti-

Fig. 2 General form of the structure–activity similarity (SAS) maps
showing fourmajor regions.Regions I and II are associatedwith scaffold
hopping and smooth SAR, respectively. Region IV indicates discontin-
uous SAR and activity cliffs

mized to obtain a single low-energy conformation using a
modified Dreiding force field implemented in Vconf soft-
ware [45,46]. Although the use of multiple conformations
is desirable for activity landscape studies [47], we use a
single low-energy conformation to calculate 3D similarity
representations as an approximation to simplify this work by
introducing the less variables as possible. 3D representations
included Tanimoto Shape Index (ShapeTanimoto) and Com-
boScore/2 (mean value of ShapeTanimoto and Color Score)
[48,49]. Despite the inherent conformational issues, the use
of 3D structural representations is valuable in activity land-
scape studies [50].

Since structural similarities have a strongdependencewith
the molecular representation used [50], three uncorrelated
structure similarity representations namely MACCS keys,
TopPh4AtomPairs, and ComboScore/2 were combined in a
mean similaritymeasure, taking into account the principles of
data fusion [36,51]. Similar criteria to select fingerprint rep-
resentations to obtain consensusmodels of activity landscape
have been used in several studies and extensively discussed
[52].

Activity differences

For each dataset of N compounds tested against target T,
N (N − 1)/2 absolute value of pairwise activity differences
corresponding to each possible pair of compounds in the
dataset was calculated from the following equation [21,53]:
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Fig. 3 Most frequent cyclic systems found in the analyzed databases (frequency ≥10). Chemotype identifier and frequency are displayed. a
Compounds screened against monoamine transporters. b Cyclooxygenase inhibitors. c PPAR ligands

|�A(T)i, j | = |A(T)i − A(T) j | (1)

where A(T)i and A(T) j are the activities of the i th and j th
molecules ( j > i), in pIC50 or pKi values, tested against the
target T. In this work, T = COX-1, COX-2, NET, SERT, DAT,
PPARα, PPARδ, and PPARγ.

Activity landscape with SAS maps

SAS maps were generated by plotting the structural similar-
ity in the X-axis against the absolute value of the activity
difference in the Y-axis for each pair of compounds; thus,
for a set of N compounds tested against target T, each SAS
map contains N (N − 1)/2 data points [13]. As is shown in
Fig. 2, SAS maps can be roughly divided in four zones (I–
IV) by imposing activity difference and molecular similarity
threshold values to aid their interpretation [13]. The X-axis
in SAS maps was divided using, as a heuristic threshold,
the lowest similarity value observed in the top 10 % com-
pounds with higher similarity. The activity difference axis
(Y-axis) threshold was set to a value of 1 log unit to define
boundaries between regions I/III and II/IV. Other criteria to
define structure similarity and activity difference thresholds
can be employed as reviewed byMedina-Franco [52]. Points

that fall in each region can be associated with different SAR,
briefly, data points that fall in region I are associated with
scaffold hops having low structure similarity and low activity
differences [52]. Points in region II are associated with com-
pounds with smooth SAR having high structure similarity
and low activity differences [52]. Region III corresponds to
low structure similarity and high activity differences. Region
IV contains molecular pairs that correspond to activity cliffs
having high structure similarity and high activity difference
[1,3,52].

SAS maps defined with chemotype information

All compound pairs in each database were distinguished
depending on whether both molecules in the pair share the
same chemotype or not. Data points where both compounds
contain the same chemotypewere further differentiated in the
SAS maps using different colors. In this work, only chemo-
types containing at least ten molecules were analyzed. Each
chemotype λ comprises Nλ(Nλ − 1)/2 pairwise compar-
isons of structure similarity and activity differences, where
Nλ(Nλ ≥ 10) is the number of compounds classified in
chemotype λ.
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Fig. 4 Cumulative distribution functions of structural similarities
using different 2D and 3D fingerprint representations. a 299 com-
pounds screened against monoamine transporters (44,551 structural

similarities), b 658 compounds with activity against COX-1 and COX-
2 (216,153 structural similarities), c 168 compounds screened against
PPAR α, δ, and γ (14,028 structural similarities)

Activity cliff enrichment factor

For each chemotype λ, activity cliff enrichment factor
(ACEF) was calculated using the following equation:

ACEF(λ) = AC(xλ)

AC(xχ )
(2)

where ACEF(λ) is the activity cliff enrichment factor for the
λth chemotype, which relates the fraction of activity cliffs
formedwithmolecules that fall in the λth chemotype AC(xλ)

with respect to the fraction of activity cliffs in the entire
database AC(xχ ).

AC(xλ) was calculated as follows:

AC(xλ) = |C IV
λ |

|Cλ| (3)

where |C IV
λ | is the number of activity cliffs (pairs of com-

pounds that fall in region IV in the SAS maps) in the
chemotype class λ, and |Cλ| is the total number of pairs of
compounds in the same chemotype class (λ).

AC(xχ ) was calculated as follows:

AC(xχ ) = |C IV
χ |

|Cχ | (4)

where |C IV
χ | is the total number of activity cliffs, and |Cχ | is

the total number of pairs in the database.Noteworthy,AC(xχ )

is fraction of the total number of activity cliffs (as defined in
the SASmaps) that does not depend on the chemotype classi-
fication. Similar indices were previously reported to identify
chemotypes enriched with active and selective compounds
[23,54].
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Fig. 5 SAS maps for databases analyzed in this study. Each data point
indicates a pairwise comparison of 299 compounds (44,551 datapoints)
screened against monoamine transporters (NET, SERT, and DAT), 658
compounds (216,153 datapoints) with activity against cyclooxygenases

(COX-1 and COX-2) and 168 compounds (14,028 datapoints) screened
against PPARs (α, δ, and γ). Mean similarity was calculated using
three selected similarity representations in all cases (MACCS keys,
TopPh4AtomPairs and ComboScore/2)

Activity cliff generators based on chemotypes

We computed the number of activity cliffs with chemotype
λ (NACxλ) as the frequency of each compound (x) in points
that fall in region IV of SAS maps if the corresponding
chemotype frequency λ(CFλ) is equal or greater than 10.
NACxλ was scaled by the chemotype frequency using the
expression (NACxλ/CFλ). Compounds with NACxλ/CFλ ≥
2 standard deviations relative to the corresponding mean of
the distribution of the total NACxλ/CFλ values were consid-
ered as activity cliff generators.

Results and discussion

Chemotype classification

Molecules in each database were classified in cyclic sys-
tems. Figure 3 shows the most common cyclic systems in
each database. In this work, only cyclic systems found in
at least ten molecules (frequency ≥10) were considered as
relevant, since they correspond to the most common molec-
ular scaffolds. For compounds screened against monoamine
transporters, 91 cyclic systems were identified of which nine

123



Mol Divers (2015) 19:1021–1035 1027

Fig. 6 SASmaps including chemotype information for databases ana-
lyzed in this study. Each data point indicates a pairwise comparison of
299 compounds (44,551 datapoints) screened against norepinephrine
transporter (a–c), 658 compounds (216,153 datapoints) with activ-
ity against cyclooxygenase-2 (d–Medina-Franco), and 168 compounds
(14,028 datapoints) screened against PPARγ (g–i). Representative

chemotypes were highlighted in color code represented by Nλ(Nλ −
−1)/2 pairwise comparisons of structure similarity and potency differ-
enceswhere Nλ is the number of compounds classified in the chemotype
λ. Also, chemotype code and the number of data pointswhere both com-
pounds fall in a particular chemotype are indicated at the top of each
map

of them have high frequency (≥10). Also, 191 cyclic sys-
tems were found for cyclooxygenase inhibitors, and 16 of
them have high frequency. Furthermore, PPAR ligands data-
base contains 66 cyclic systems of which only three have
high frequency.

Molecular similarity

For each database, pairwise structural similarities were cal-
culated using 13 structural representations. This resulted in
44,551 pairwise structural similarities for 299 compounds
tested against monoamine transporters, 216,153 for 658

cyclooxygenase inhibitors, and 14,028 for 168PPAR ligands.
Cumulative distribution functions for each representation and
for the mean similarity are shown in Fig. 4. Results show
that most of the 2D and 3D representations have different
ranges of similarity values. This is consistent with previ-
ous studies where different ranges of similarity values are
identified for molecular fingerprints obtained from different
design [13,20,45]. The statistics of structural similarities are
summarized in Table S2 in the Supporting Information indi-
cating the maximum, third and first quartile, median, mean,
and standard deviation. Results indicate that Atom neigh-
borhoods, ExtendedConnectivity, andTopAtomTriplets have
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the lowest similarity values for all databases analyzed.
Also, median values are close to mean values in all the
cases. Orthogonal representations were selected taking into
account the correlation of pairwise similarities between dif-
ferent descriptors and their ability to capture molecular
features by different methodologies. The correlation matrix
for different 2D and 3D representations for each database
can be found in the Supporting Information (Tables S3–
S5). Three low correlated representations namely MACCS
keys,TopPh4AtomPairs, andComboScore/2were selected to
compute mean similarity. Noteworthy, all selected represen-
tations show low correlation between them in all databases
studied (correlation < 0.6). MACCS and TopPh4AtomPairs
have correlations of 0.25, 0.31, and 0.53 for MATs, COXs,
and PPARs databases, respectively. Also,MACCS and Com-
boScore/2 have correlations of 0.28, 0.50, and 0.38, for the
same databases, respectively. Finally, TopPh4AtomPairs and
ComboScore/2 have correlations of 0.33, 0.32, and 0.30,
respectively. It is worth mentioning that the selected struc-
ture representations are able to capture different molecular
information since they have different design. The represen-
tation MACCS is based on substructures, TopPh4AtomPairs
is based on atom pairs, and ComboScore/2 is based on 3D
molecular shape and color features (related to 3D pharma-
cophoric elements) [40,43,48,49].

Activity landscape with SAS maps

Figure 5 shows a general overview of the activity landscape
with SAS maps for all databases analyzed. It is worth noting
the different point distributions in the databases under study.
SASmaps for monoamine transporters and cyclooxygenases
are characterized by compound pairs that cover a wide range
of mean molecular similarity and potency differences. In
other words, these databases are characterized by structurally
diverse compounds, which cover a wide potency range (see
Tables S6–S7 in the Supporting Information). In contrast,
SAS maps for PPARs are characterized by the lower activ-
ity differences and the lowest structure similarity coverage.
Therefore, this database is characterized by structurally sim-
ilar compounds and low potency variations as compared with
compounds tested against cyclooxygenases and monoamine
transporters. This is an indication that a smaller part of the
activity landscape is being captured by this database, and it
has the most continuous SAR among the databases included
in this study.

Mapping chemotypes in SAS maps

Although SAS maps give a general overview of the activ-
ity landscape, extract specific SAR information from these
representations is not straightforward; therefore, additional
information can be mapped in SAS maps to simplify their Ta
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Table 2 ACEF for all databases
studied using a threshold of 1 in
activity differences and 0.702,
0.681, and 0.698 in structure
similarity for MATs, COXs, and
PPARs databases, respectively

Chemotype Frequency (pairs) ACEF NET ACEF SERT ACEF DAT

Monoamine transporters database

Database 299 (44551) 1.00 1.00 1.00

CK1V9 34 (561) 3.87 6.35 6.75

KZHH1 24 (276) 11.30 12.91 6.52

TKV67 20 (190) 5.23 7.16 4.63

HQRBX 18 (153) 0.00 0.42 4.28

GPE6K 15 (105) 3.87 2.88 2.53

06EYD 13 (78) 0.00 1.11 2.88

6LPG3 11 (55) 5.34 3.93 8.55

LJX63 11 (55) 10.27 1.57 0.00

MDBLZ 11 (55) 11.50 11.78 1.49

Chemotype Frequency (pairs) ACEF COX-1 ACEF COX-2

Cyclooxygenases database

Database 658 (216153) 1.00 1.00

PP97T 82 (3321) 10.66 10.73

6CEKT 36 (630) 7.50 7.92

ZZ2VF 29 (406) 8.59 6.42

L2U5P 26 (325) 2.98 5.09

USZ6T 325 (26) 2.01 1.26

C9L9P 18 (153) 6.33 5.78

4ZLWP 17 (136) 0.00 0.00

QZ3TX 16 (120) 7.87 4.53

E5CGF 15 (105) 9.69 0.65

USKFM 14 (91) 5.33 5.73

Z3903 14 (91) 2.93 8.47

RF2VF 13 (78) 1.55 0.00

R79ZD 12 (66) 8.81 10.65

24N4H 11 (55) 10.13 7.01

QP8FX 10 (45) 1.62 5.04

VDXB1 10 (45) 4.31 3.02

Chemotype Frequency (pairs) ACEF PPARα ACEF PPARδ ACEF PPARγ

PPAR ligands database

Database 168 (14028) 1.00 1.00 1.00

X1R61 17 (136) 9.24 6.85 4.65

A04KM 16 (120) 0.42 4.44 1.05

X6B2V 13 (78) 0.00 0.00 0.00

interpretation such as chemotype information. SAS maps
including chemotype information visually depicts the local
activity landscape of subsets of compounds sharing the same
chemotype. Using this approach, it is possible to analyze
the distribution of the pairs of compounds for each fre-
quent cyclic system and then identify the cyclic systems with
the highest faction of activity cliffs. Also, is of interest the
detection of themost common cyclic systems present in com-
pounds that frequently form activity cliffs; this is activity

cliff generators. While detection of chemotypes enriched in
activity cliffs gives a general overview of local activity land-
scape based on chemotypes, i.e., continuous or discontinuous
chemotype landscape, the detection of activity cliff genera-
tors gives important advantage to highlight small structural
changes on substituents that a specific scaffold should have
to exhibit high activity differences.

Figure 6 shows some examples of SAS maps highlighting
with a color code those points where both molecules in the
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Fig. 7 Number of activity cliffs
formed by each compound
divided by the chemotype
frequency for NET database;
only chemotypes with frequency
≥10 were considered in this
analysis. Compounds with the
fraction [number of activity
cliffs]/[chemotype frequency]
higher than two standard
deviations of the average are
considered activity cliff
generators. Different
chemotypes are labeled by the
corresponding MEQNUM and
are represented with different
colors

pair share the same chemotype. As described in theMethods,
SASmaps in Fig. 6 were divided in fourmajor regions (I–IV)
using a threshold value of 1 for activity difference and the
top 10 % pairs with the highest structure similarity for each
database. Only the SAS maps for NE transporter, COX-2,
and PPARγ are shown in Fig. 6; however, other biological
activities and databases can be analyzed similarly.

Different distributions in regions I–IV were observed in
SAS maps for each chemotype class showed in Fig. 6. Note
that, in general, most of the data points are in region II. This is
not surprising since molecules sharing the same scaffold will
have generally high mean structure similarity (see Table S7
in the Supporting Information). However, some chemotypes
have different distributions in regions I–IV as illustrated in
Fig. 6. Figure 6a–c show local chemotype activity landscapes
for compounds that fall in three chemotypes for the NET
dataset. In this case, pairs that fall in chemotype KZZH1
are distributed between regions II and IV (Table 1). Note-
worthy, some pairs in region IV for KZZH1 present high
activity differences, in some casesmore than two logarithmic
units; hence, this chemotype is characterized by a heteroge-
neous SAR and the presence of activity cliffs for the current
database (Table S6). Chemotype TKV67 shows pairs dis-
tributed in regions I–IV, although this observation is highly
dependent of the structure similarity threshold used as refer-
ence, it is clear the overall lower structure similarity values
for this chemotype (mean = 0.765 and median = 0.759)
as compared with chemotype KZZH1 (mean = 0.870 and
median = 0.865), see Table S7 in the Supporting Informa-
tion. This last observation can be rationalized in function
of the structural diversity of side chains of compounds with
cyclic system TKV67 as compared with KZZH1. In con-
trast, chemotype HQRBX, where all molecular pairs fall in
region II, is characterized by a flat SAR having molecules
with high structure similarity (mean = 0.914 and median

= 0.918) and low activity differences (mean = 0.204 and
median = 0.173). Interesting results were also found for
COX-2 inhibitors; Fig. 6d shows that chemotype PP97T
covers a broad area of the ‘landscape space.’ Also, chemo-
type L2U5P (Fig. 6e) shows an interesting pattern where
molecular pairs were mainly found in two zones including
pairs having low and very high activity differences. For the
same database, 4ZLWP (Fig. 6f) is an example of chemotype
characterized by a flat SAR. On the other hand, only chemo-
types X1R61, A04KM, and X6V2V have high frequency
for PPARγ ligands. The SAS maps including these chemo-
types are shown in Fig. 6g–i. Data points for chemotypes
X1R61 and A04KM are mainly located at region II and IV,
whereas pairs with chemotype X6V2V fall only in region II.
It is worth mentioning that pairs in region IV for chemotypes
X1R61 and A04KM have activity difference values lower
than 2 units; therefore, changes in structure have only low or
moderate impact in potency for this database.

The number of molecule pairs that fall in each region
of SAS maps was calculated for all databases. The results
for monoamine transporters database are shown in Table 1;
whereas the same data for COXs and PPARs databases can
be found in Tables S8–S9 of the Supporting Information.
As can be deduced from Table 1, quantitative comparison
of each chemotype in SAS maps is meaningful only when
comparing subsets with the same chemotype across regions
I–IV, i.e., 50 % of the pairs with chemotype KZZH1 fall in
region IV for NET database; therefore, activity cliffs having
this chemotype are frequent. Also, the quantitative analysis
in Table 1 enables the cross-comparison ofmolecules sharing
the same scaffold and tested against multiple targets employ-
ing the same thresholds in activity and molecular similarity.
For example, molecule pairs with chemotype HQRBX have
a total flat SAR in NET landscape, whereas some activity
cliffs (32 pairs with activity differences ≥ 1) can be found
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Table 3 Activity cliff generators for MATs, COXs, and PPARs data-
bases

Chemotype Compound Act. cliffs Factor (NACxλ/CFλ)

NET (threshold = mean [NACxλ/CFλ] + 2STD = 0.7024)

KZHH1 82 17 0.7083

KZHH1 140 17 0.7083

KZHH1 156 17 0.7083

KZHH1 275 17 0.7083

6LPG3 237 10 0.9091

MDBLZ 92 9 0.8182

CK1V9 150 26 0.7647

LJX63 294 8 0.7273

SERT (threshold = 0.7447)

KZHH1 233 20 0.8333

KZHH1 250 19 0.7917

KZHH1 68 19 0.7917

KZHH1 204 18 0.7500

TKV67 198 16 0.8000

TKV67 267 15 0.7500

CK1V9 162 27 0.7941

DAT (threshold = 0.6168)

CK1V9 110 26 0.7647

CK1V9 223 23 0.6765

CK1V9 116 22 0.6471

KZHH1 115 21 0.8750

KZHH1 82 17 0.7083

6LPG3 237 10 0.9091

COX-1 (threshold = 0.7055)

PP97T 141 71 0.8659

PP97T 144 70 0.8537

PP97T 123 63 0.7683

PP97T 142 63 0.7683

PP97T 483 61 0.7439

PP97T 504 61 0.7439

PP97T 485 60 0.7317

PP97T 488 60 0.7317

PP97T 128 59 0.7195

PP97T 112 58 0.7073

PP97T 116 58 0.7073

PP97T 151 58 0.7073

E5CGF 460 12 0.8000

E5CGF 450 11 0.7333

QZ3TX 56 15 0.9375

6CEKT 184 28 0.7778

R79ZD 195 9 0.7500

ZZ2VF 436 21 07241

COX-2 (threshold = 0.7146)

PP97T 489 69 0.8415

PP97T 128 63 0.7683

Table 3 continued

Chemotype Compound Act. cliffs Factor (NACxλ/CFλ)

PP97T 119 62 0.7561

PP97T 485 62 0.7561

PP97T 97 59 0.7195

L2U5P 257 23 0.8846

L2U5P 255 22 0.8462

L2U5P 256 20 0.7692

6CEKT 186 29 0.8056

6CEKT 167 28 0.7778

QZ3TX 52 14 0.8750

PPARδ (threshold = 0.5072)

X1R61 14 11 0.6471

X1R61 135 10 0.5882

A04KM 144 9 0.5625

PPARγ (threshold = 0.4742)

X1R61 135 15 0.8824

for the same chemotype when the molecules were evaluated
against DAT. However, since the number of pairs in SAS
maps for each chemotype is related to chemotype frequency,
the quantitative characterization by the number of molecular
pairs that fall regions I–IV cannot be used for comparisons
between different chemotypes.

Activity cliff enrichment factor for chemotype classes

The concept of activity cliff enrichment factor (ACEF) is
introduced in this work to normalize the number of activ-
ity cliffs in each chemotype taking as a reference the entire
database. This factor makes possible to compare the rel-
ative number of activity cliffs between chemotype classes
for the most important chemotypes in the databases, this is,
chemotypes with a considerable frequency useful to extract
SAR information. The purpose of ACEF is to identify cyclic
systems enriched in activity cliffs for the current databases.
Calculated ACEF values for the most frequent chemotypes
(frequency ≥ 10) are shown in Table 2. Note that ACEF
for the entire database has a value of one in all databases;
therefore, chemotypes with values higher than one are rich in
activity cliffs as comparedwith the entire database. Similarly,
chemotypes with value lower than one are poor in activity
cliffs, thus representing a smoother landscape as compared to
those scaffolds with ACEF>1. ChemotypeKZHH1 has high
ACEF against the three monoamine transporters (≥6.52).
In contrast HQRBX has only high ACEF for DAT (4.28).
These measures of ACEF for individual chemotypes along
with the visual representations of the SAR in the SAS maps
(Fig. 6a, c) can be interpreted in function of SAR discontinu-
ity. Chemotype KZHH1 is characterized by a heterogeneous
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Fig. 8 Chemical structure of compounds that form activity cliffs with the activity cliff generator 82 for NET database. Each compound is labeled
with their identification number, biological activity Ki(nM), activity difference (|AD|), and mean similarity

SAR for all monoamine transporters, whereas HQBRX has
a flat SAR for NET and SERT. Interesting chemotypes for
COX inhibitors with contrasting ACEF values are PP97T
and 4ZLWP: while PP97T shows the highest ACEF against
both cyclooxygenases (≥10.66), 4ZLWP is characterized by
a flat SAR for both targets. Similar results were found for the
PPARs dataset. In this case, X1R61 is the chemotype with
the highest ACEF (≥4.65), whereas X6B2V has a totally flat
SAR for the three studied targets.

The ACEF measure can provide useful information when
choosing a scaffold for lead optimization. For example,
compounds containing cyclic systems with high ACEF are
interesting, as it is more likely to have large changes in activ-
ity with few structural modifications. On the other hand,
compounds having cyclic systems with a low ACEF can be
useful to develop predictive models, i.e., QSAR.

Chemotype-based activity cliff generators

In addition to the characterization of chemotypes enriched
with activity cliffs, it is of interest the detection of chemo-
types associated with activity cliff generators. It is worth
noting that characterization of activity cliff generators in
this work was carried employing a slight modification of
the original definition reported by Méndez-Lucio et al.

[13]. In this case, we computed the fraction: [number of
activity cliffs]/[chemotype frequency] in order to compare
results between compounds classified by chemotype classes
with different frequencies (see Methods). For NET database
(Fig. 7), some compounds classified in chemotype KZHH1
tend to form high number of activity cliffs, e.g., compounds
82, 140, 156, and 275. Note that this same chemotype also
has high ACEF for NET database (Table 2). Similar figures
highlighting chemotypes with activity cliff generators for
SERT, DAT, COXs, and PPARs can be found in the Support-
ing Information as Fig. S1–S7. Additionally, Table 3 shows
chemotypes that have at least one activity cliff generator, the
number of compounds associated with each generator, and
the relation NACxλ/CFλ (factor). Table 3 also shows that
chemotypes KZHH1 andCK1V9 comprisemost of the activ-
ity cliff generators forMATs. Similarly, chemotype PP97T is
rich in activity cliff generators for COXs databases. Further-
more, for COX-2 database, chemotype L2U5P is associated
with three activity cliff generators. This result is in agree-
ment with the SAS map presented in Fig. 6e, where several
molecular pairs form deep activity cliffs (activity difference
≥ 2 log units). For PPARs database, a low number of activity
cliff generators were identified. The most important chemo-
type identified is X1R61, which is present in two activity cliff
generators for PPARδ and in one generator for PPARγ.
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Figure 8 shows the chemical structure of a representative
activity cliff generator (82) with chemotype KZHH1 and
molecules that form activity cliffs with this compound for
the NET set. All compounds in this figure are arranged in
decreasing order of activity difference. Note that in deeper
activity cliffs (82_156, 82_140, 82_275, 82_49 and 82_266),
the most active compounds have specific stereochemistry
(1R,2S,3R,5R) in the 8-azabicyclo[3.2.1]octane nucleus.
Changes in this stereochemistry lead to a decrement in activ-
ity (compare compounds 204 and 275). Also, N -methylation
appears to be unfavorable as is shown by the ‘shallow cliff’
82_118 (|AD| = 1.016) in comparison with the ‘deep cliff’
82_275 (|AD| = 3.108) [55]. Interestingly, some subtypes of
activity cliffs (based on the classification proposed byHu and
Bajorath) can be observed in Fig. 8, i.e., 82_156 and 82_140
are examples of topology and R-group cliffs, respectively
[14]. Additional conclusions can be generated by the analy-
sis of different activity cliff generators, chemotype classes,
and biological activities.

Conclusions and perspectives

In this work activity landscape representations employing
SAS maps annotated with chemotype information were gen-
erated for three structural diverse databases with multiple
biological activities. The addition of chemotype informa-
tion in these representations gave a general overview of the
SAR nature related to each cyclic system for the databases
analyzed. In addition, it makes feasible to easily quantify
activity cliffs related to each chemotype. Abundance of
activity cliffs in each chemotype was compared between
chemotypes and entire databases employing a new index
introduced in this work named activity cliff enrichment fac-
tor. Using this approach, some chemotypes were identified as
riches in activity cliffs for MATs (i.e., KZHH1), COXs (i.e.,
PP97T), and PPARs (i.e., X1R61) databases. The ACEF val-
ues give information concerning to chemotypeswith high and
low SAR discontinuity and can provide useful information
when choosing a scaffold for lead optimization and predictive
studies; whereas discontinuous landscapes are rich in SAR
information (i.e., activity cliffs), continuous landscapes can
be especially useful in predictive approaches (i.e., QSAR).
Also, the activity cliff generator concept was applied to com-
pounds grouped in each chemotype to highlight structural
features that lead to high changes in activity. Some chemo-
types were identified as cyclic systems that usually form
activity cliff generators forMATs (i.e., KZHH1andCK1V9),
COXs (i.e., PP97T), and PPARs (i.e., X1R61) databases. The
SAR analysis of activity cliffs leads to specific SAR conclu-
sions for the datasets studied. In this context, the inclusion of
chemotype information in activity landscape representations

aids the SAR interpretation and characterization of diverse
molecular databases.
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