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Abstract The features and theoretical background of a
new and free computational program for chemometric analy-
sis denominated IMMAN (acronym for Information theory-
based CheMoMetrics ANalysis) are presented. This is multi-
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platform software developed in the Java programming lan-
guage, designed with a remarkably user-friendly graphical
interface for the computation of a collection of information-
theoretic functions adapted for rank-based unsupervised and
supervised feature selection tasks. A total of 20 feature
selection parameters are presented, with the unsupervised
and supervised frameworks represented by 10 approaches
in each case. Several information-theoretic parameters tradi-
tionally used as molecular descriptors (MDs) are adapted for
use as unsupervised rank-based feature selection methods.
On the other hand, a generalization scheme for the previ-
ously defined differential Shannon’s entropy is discussed,
as well as the introduction of Jeffreys information mea-
sure for supervised feature selection. Moreover, well-known
information-theoretic feature selection parameters, such as
information gain, gain ratio, and symmetrical uncertainty are
incorporated to the IMMAN software (http://mobiosd-hub.
com/imman-soft/), following an equal-interval discretization
approach. IMMAN offers data pre-processing functionali-
ties, such as missing values processing, dataset partition-
ing, and browsing. Moreover, single parameter or ensem-
ble (multi-criteria) ranking options are provided. Conse-
quently, this software is suitable for tasks like dimensional-
ity reduction, feature ranking, as well as comparative diver-
sity analysis of data matrices. Simple examples of applica-
tions performed with this program are presented. A compar-
ative study between IMMAN and WEKA feature selection
tools using the Arcene dataset was performed, demonstrat-
ing similar behavior. In addition, it is revealed that the use of
IMMAN unsupervised feature selection methods improves
the performance of both IMMAN and WEKA supervised
algorithms.

Graphical abstract Graphic representation for Shannon’s
distribution of MD calculating software.
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Introduction

In recent years, there has been a significant upsurge in the
number and diversity of molecular structure-characterizing
features, also known as molecular descriptors (MDs), imple-
mented in various educational and commercial computa-
tional programs [1–9]. This increase is, however, not nec-
essarily all advantageous as it engenders high-dimensional
space, which usually has a detrimental influence on the per-
formance of regression and classification algorithms. More-
over, an exhaustive search of the entire MD space in search
of subsets of features that best describe a specified molecular
property comes along with high computational complexity, in
addition to the fact that such exploration may lead to the selec-
tion of features that aggravate data overfitting [10]. The chal-
lenge of dealing with high-dimensional data is not limited to
chemoinformatics. High-throughput data matrices obtained
in genomics with microarray technology, metabolomics, pro-
teomics, and texts analysis are typical examples of datasets
characterized by the “small sample-many features” problem
[10]. It is thus important to develop procedures that filter
out noisy, redundant, or highly correlated variables without
affecting the learning performance. It is known that usu-
ally, dimensionality reduction improves the quality of models
(especially, their predictive power) and information extracted
from models, in addition to permitting greater computational
efficiency. Optimum classification models should ideally dis-
criminate the molecules belonging to different classes, cre-
ated on the basis of specified molecular properties or activ-
ities, the most common example being binary classifiers.
Unfortunately, there exists no universally superior feature
selection algorithm, since a method unsuitable for particular
application may perform ideally in another. This illation is
also known as the “no free lunch theorem” [11]. As a result,
many computational methods for feature selection have been

proposed in the literature and these are basically divided into
filters, wrappers, and embedded methods. While wrapper and
embedded methods incorporate learning algorithms in their
settings, filter methods rely on the intrinsic tendencies of data
as criteria for feature selection. Although it is known that filter
methods may induce the selection of sets with redundant fea-
tures, their key advantage is that the selected features are not
adapted to a specific predictor algorithm and are thus suitable
for dimensionality reduction tasks as well. Feature selection
methods follow two primary objectives: (1) Obtain the finest
low-dimensionality representation of data matrices, when no
dependant (response) variables are available (or considered).
The algorithms designed for this purpose are known as unsu-
pervised methods. Examples of such methods include cluster
analysis, principal component analysis, Shannon’s entropy
ranking, among others [1,12,13]. (2) Screen for features
that best correlate with response variables for classification
and regression. The procedures employed for this objective
are collectively denominated as supervised methods. Typi-
cal examples include information gain, relief [14], Pearson
correlation coefficients, and Fisher ratio, among others.

On the whole, feature selection methods are applica-
tions of diverse theoretical concepts and methods aimed
at evaluating data patterns (or tendencies) as well as rela-
tions among features and/or instances. This article focuses
exclusively on information-theoretic methods for feature
selection from both a supervised and unsupervised per-
spective. Information-theoretic functions have increasingly
deserved more attention as solid tools for various chemomet-
ric tasks. Consequently, a comprehensive review of the litera-
ture for all information theory-based unsupervised and super-
vised feature selection measures has been performed and all
these algorithms condensed in a free computational program
denominated IMMAN (acronym for Information theory-
based CheMoMetrics ANalysis). In addition, information-
theoretic parameters previously used to define the informa-
tion content of a molecular graph are adapted for use as alter-
native criteria for rank-based feature selection approaches.
Moreover, the concept of Symmetrical Kullback–Leibler
Entropy (SKL), also known as Jeffreys Information [15,16],
is introduced as an objective measure of the divergence
between two probability distributions.

Program design

IMMAN offers a user-friendly graphical interface stratified
in sections according to the different information-theoretic
concepts and is developed using the JAVA programming lan-
guage. The programs developed using this language may be
executed in different architectures or operating systems, such
as Windows, Linux, or OS X. The quantity of RAM neces-
sary for the utilization of the IMMAN software depends on
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Fig. 1 IMMAN’s graphical user interface (GUI)

the size of the data to be analyzed. Batch files (.bat) and shell
scripts (.sh) are provided to augment the maximum heap size
for the java engine. Depending on the RAM available on
the system, a program could be executed via these files (or
scripts) to award greater heap size to the java engine and
avoid Out of Memory errors. The default setting for java lies
in the range 16–64 MB, which is normally too small.

The IMMAN system comprises two major classes that
manage the datasets over which computations are to be per-
formed. The DataSet class is a representation of the files
that are introduced to the system for processing. This class
contains attributes, such as file name, an array for identifica-
tion codes for the instances, the number of instances, and the
number of variables contained, among others. Additionally,
within this class there is a list of objects for the Variable class.
These objects are attributes for the variables of the dataset
to be analyzed and include variable name, position occu-
pied by variable in the dataset, an array of instance values
for the variable, and statistical parameters, such as the max-
imum, minimum, median, and the standard deviation which
are calculated on creating the object. The Variable class is
the central axis of the system; it is the one that contains all the
operations related with the information-theoretic parameters.
Overall, the system comprises a total of 64 classes contained
in 17 packages.

The accepted input file formats for IMMAN are Tab and
Comma Separated Value files (.txt, .csv). In the conception

of this application, we considered it useful to provide for
real-time computations of multiple dataset files, and thus
comparisons of features or datasets from different sources
are possible. Several data pre-processing functions, such as
missing values replacement (i.e., with the minimum, maxi-
mum, mean, geometric mean, median, or with a user-defined
numeric value) or feature deletion, data selection (in the sense
that not all loaded datasets may be used for computations),
data browsing or inspection, and feature-based dataset par-
titioning (in cases where the user desires to operate with a
reduced number of features) are provided. In addition, for
supervised feature selection tasks an option is provided for
converting continuous response variables to categorical ones
to serve as class variables. Figure 1 provides an image of the
IMMAN’s graphic user interface.

It is important to remark that IMMAN provides the pos-
sibility of performing single parameter ranking or ensem-
ble (multi-criteria) ranking using the former as base ranking
methods. Note that the ensemble ranking procedure could
be performed using the scores (values for the analyzed fea-
tures) or the positions they occupy on ranking, following
specified amalgamation criteria (i.e., product, mean, geo-
metric mean, or sum). In addition, other than the rank-based
unsupervised and supervised computations, graphic visual-
izations for these outcomes could be employed. The unsu-
pervised graphical analysis options include Shannon’s dis-
tribution graph, histogram graph, importance and correla-
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Fig. 2 Workflow for the operations carried out with the IMMAN program

tion graphs, respectively, while supervised graphic analysis
allows for the importance and correlation graphs, exclusively.

Calculations performed may be exported to the report
and, if desired, saved as Tab Separated Value files (.txt).
Figure 2 is an illustrative work flow of operations performed
with the IMMAN program. For more information see http://
mobiosd-hub.com/imman-soft/.

Theory

Unsupervised variable ranking-based feature selection
approaches

In unsupervised paradigms, the feature selection algorithms
are unguided by objective functions but rather rely on math-
ematical quantification of intrinsic properties of datasets.
Although in recent years, due to the enormous explosion
of amounts of unlabeled datasets, there has been growing
interest in unsupervised feature selection methods; these are
simply a handful compared to the bulk of the supervised
algorithms. Unsupervised feature selection algorithms ame-
liorate the performance of clustering algorithms, genomic
microarray data analysis and similarity/dissimilarity studies
of molecular compounds [17–19]. The unsupervised feature
selection methods implemented in IMMAN are now briefly
discussed.

Shannon’s entropy and related entropic measures

Shannon’s Entropy (SE) and Scaled Shannon’s Entropy
(sSE) are proposed by Godden and Bajorath [20,21] as para-

meters for the quantification of the information content, and
thus the variability of MDs. These entropic measures may
therefore be used as criteria to rank features in a dataset and
if a threshold value is defined, a subset of features is retained
for use in building correlation and/or classification models. A
brief recapitulation of the theoretical aspects of this method-
ology is available as supporting information (SI1).

On the other hand, while SE has been previously used
as a measure for structural and/composition diversity of
molecules through the so-called information theory-based
MDs (or information indices), there exists a series of other
information-theoretic parameters, mathematically related to
Shannon’s entropy, that have been traditionally used to serve
the same purpose, but not for feature selection tasks. These
parameters include negentropy (nSE), Brillouin redundancy
index (rSE), Gini index (gSE), and informational energy con-
tent (iSE) [1,22]. In this sense these parameters are likewise
adapted for use in the evaluation of the information content
of features. Table 1 shows the mathematical definitions of
these parameters, as implemented in the IMMAN software.

These parameters follow a fixed, data independent dis-
cretization scheme (unsupervised equal-interval binning),
where a predetermined number of bins is defined. Although
the number of discrete intervals is user-defined, SE maxi-
mization is advised in that the number of bins should allow
an equal distribution of instances (or an approximation)
in the discrete intervals. It should be noted that although
this discretization approach has been often criticized for
being liable to bad cuts leading to uneven distribution of
instances, studies have shown that equal-interval binning can
yield excellent results, for example with the Naïve Bayes
classifier [23].
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Table 1 Information-theoretic
parameters implemented in the
IMMAN software

Parameter Symbol Formula

Negentropy nSE nSE = n log2 n −
G∑

g=1
ng log2ng

n is the number of instances

ng is the number of instances in discrete interval g

Brillouin
redundancy index

rSE r SE = 1 − SE
log2 N = 1 − sSE

N is the number of discrete intervals (bins)

Gini index gSE gSE = ∑

g �=k
pg · pk

pg probability that a randomly selected instance belong to
discrete interval g.

pk probability that a randomly selected instance belong to
discrete interval k.

Informational energy
content

iSE i SE = ∑
p2

g

Singular value decomposition entropy (SVDEi)

This entropy measure evaluates the contribution of the i th

feature to the dataset entropy following a leave-one-out
(LOO) setting [24,25]. Let Sj represent singular values of the
matrix A[nxm] of n instances and m features. Then S2

j denotes

the eigenvalues of the n×n matrix A∗At . The dataset entropy
is defined by

E(A) = − 1

log N
∗

N∑

j=1

S2
j

ST
log

S2
j

ST
, (1)

where ST denotes the total sum of the S2
j values. Therefore,

the contribution of the i th feature to the dataset entropy is
defined as follows:

DSEi = E(A) − E(A′), (2)

where A′ denotes the matrix A without the analyzed feature.
In this sense, features may be ranked according to their rel-
ative contribution to the dataset entropy.

Degenerative entropy raid (DGSE) and degenerated value
(DV)

The DV is a diversity measure based on the number of
instances characterized differently by features in a data
matrix and is defined as

DV(X) = Instancestotal − Instancesdifferent

Instancestotal
. (3)

The DV varies between 0 and 1, with the lower bound
(DV = 0) corresponding to the ideal case where X assigns
different values for all instances while the upper bound (DV
= 1) stands for maximum degeneracy. Note that the DV is
not strictly an entropic measure. Its inclusion is justified by
its relationship with the DGSE as shown below. The DGSE

evaluates the feature variability according to the degenerated
value and is expressed as follows:

DGSE(X) = DV(X) ∗ SE(X)DV(X)

SE(X)inst
, (4)

where DV (X) is the degenerated value for variable X,
SE(X)DV(X), and SE(X)inst are Shannon’s entropy for X
using as the number of discrete intervals the DV and number
of instances, respectively.

Euclidean distance-based entropy (EDSE)

The EDSE is computed on the distance among instances, as
a measure of the clustering tendency of instances according
to variable X, and is expressed as follows [26]:

EDSE(X)=
∑

i

∑

j

[
Dij log2 Dij+(1 + Dij) log2(1−Dij)

]
,

(5)

where Dij is the normalized distance in the range [0.0–1.0]
between the instances Xi and Xj. The EDSE is low for data
with clustering tendency and high otherwise, a characteris-
tic that makes it suitable for unsupervised feature selection
procedure. Optimality is related with minimum EDSE for
subsets of features.

Altogether, ten unsupervised rank-based feature selection
methods are discussed. These are essentially divided into the
discretization scheme-based algorithms (e.g., SE, sSE, nSE,
rSE, gSE, and iSE), and those that do not follow any dis-
cretization procedure (e.g., SVDE, DGSE, DV, and EDSE).
These algorithms provide an important arsenal of tools for
unsupervised feature selection and dimensionality reduction.

123



310 Mol Divers (2015) 19:305–319

Supervised feature selection algorithms

Supervised feature selection algorithms estimate the func-
tional dependency between features and class labels. Based
on the feature evaluation method, these algorithms are
divided into two main groups: feature subset selection and
feature ranking. While the former assesses the discrimination
power of subsets of features, the latter evaluates individual
features weighted by their degree of relevance. The IMMAN
software supervised algorithms belong to the latter. Note that
with this approach, a simple filtering criterion is followed
(using a defined threshold value or the first k features) and
no heuristic search strategy or learning scheme is employed.

Differential Shannon’s entropy

To analyze the variability of compound populations, God-
den and Bajorath [21] propose a parameter denominated
“Differential Shannon’s entropy.” The initial definition was
conceived by comparing two compound populations. In this
report, however, this definition is generalized for n datasets,
defined as

DSE = SE1,2,3...n − (SE1 + SE2 + SE3 + ...SEn)/n, (6)

where “SE1,2,3...n” is the SE calculated for the combination
of n compound datasets under consideration. DSE is a mea-
sure of the complementarity of n compound collections with
regard to the descriptor under analysis. The application of
this measure in feature selection tasks is straight forward, in
place of compound datasets, class-based partitions are con-
sidered. The default configuration is for binary class labels,
adjustable to n classes. Note that IMMAN provides an option
for transforming a continuous Y response into a categorical
one, following a percentile-based rule. The usability of DSE
in the identification of features useful in compound classifi-
cation tasks has been demonstrated, see ref [27].

However, it should also be clarified that in strictly
information-theoretic term, the terms DSE is used for entropy
computations of continuous sources (or variables), rather
than discrete variables as used in the initially proposed defi-
nition.

Mutual information differential Shannon’s entropy
(MI-DSE)

The MI-DSE is introduced as a modification of DSE to select
class-specific features when there exists notable differences
in compound class sizes [28]. The MI-DSE is mathematically
expressed as follows:

MI-DSE(X) = SEnorm(X, Y ) − SE(X) − SE(Y )

2
, (7)

where SEnorm(X, Y) is the normalized entropy calculated
on two compound classes X and Y combined, SE(X) and
SE(Y) Shannon’s entropy for X and Y, respectively.

Symmetric Kullback–Leibler entropy: Jeffreys information

Kullback–Leibler entropy or divergence is a heuristic mea-
sure of the “distance” between two probability distributions
f (xi ) and g(xi ), and it is defined as [15,29,30]

DK L(F
∥
∥G) =

m∑

i=1

f (xi )log

(
f (xi )

g(xi )

)

, (8)

where f (xi ) is the experimental (real) distribution and g(xi )

is the theoretical (approximative) distribution. Viewed from a
source coding perspective, Kullback–Leibler entropy defines
the additional number of bits needed to codify independent
draws of a discrete (o continuous) variable I with proba-
bility distribution f (xi ), when a different distribution g(xi )

is used [15,29,30]. Kullback–Leibler divergence, however,
presents one shortcoming: it is a subjective parameter, i.e., its
value depends on the choice of which variable is considered
as experimental and the other theoretical. In other words,
Kullback-Leibler divergence is asymmetrical and thus is not
an ideal parameter for probability distributions comparisons
in which a distinction between experimental and theoreti-
cal variables is inapplicable. To eliminate this limitation, a
symmetric function of Kullback–Leibler divergence, denom-
inated Jeffreys information (JI), is used and defined as [16]

JI(F
∥
∥G) = DK L(F

∥
∥G) + DK L(G

∥
∥F). (9)

Contrary to Kullback–Leibler divergence, JI is an “unbi-
ased” measure of the distance/dissimilarity of variable dis-
tributions between compound classes and thus applicable in
rank-based supervised feature selection tasks. High JI values
are related with maximum functional dependence between
the features and class labels, and low JI values otherwise.

Information gain (IG), gain ratio (GR), and symmetrical
uncertainty (SU)

The IG of attribute X refers to the reduction in uncertainty
about class attribute Y given that X is known and mathemat-
ically defined as follows [23]:

IG(X |Y ) = H(X) − H(X |Y ), (10)

where H(X) and H (X|Y) are entropy of attribute X and
entropy of X given Y, respectively.

The GR is a normalization of the IG to compensate for the
preference for the attribute with large number of values and
is defined as [31]
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GR(X, Y ) = IG(X |Y )

H(X, Y )
, (11)

where IG (X|Y) and H(X, Y) are the information gain of X
given Y and the intrinsic information (entropy of distribution
of instances into branches), respectively.

The SU compensates for IG’s bias toward attributes with
more values and is mathematically expressed as [32]

SU(X, Y ) = IG(X
∣
∣Y )

SE(X) + SE(Y )
. (12)

Symmetrical Uncertainty normalizes its value to the range
[0, 1], where 0 indicates that the attributes are completely
independent while 1 indicates that each attribute predicts the
values of the other.

It should be highlighted that while IG, GR, and SU have
previously been reported in the literature and implemented
in several feature selection software, the difference with the
IMMAN’s approach is that an unsupervised equal-interval
discretization procedure is employed. Note that while the
number of discrete intervals is pre-defined by the user, SE
maximization is advised in that the number of bins should
allow an equal distribution of instances (or an approximation)
in the discrete intervals.

Sample case studies

The primary objective of these studies is to exemplify the
practical utility of IMMAN in chemometric tasks. These
studies are divided in three parts: Case studies I and II demon-
strate the application of SE in comparative studies of fami-
lies of molecular characterizing parameters and software for
these, respectively, from an unsupervised feature selection
perspective. On the other hand, case study III deals with the
application of the unsupervised and supervised feature selec-
tion tools in classification tasks. Comparisons with WEKA
software are made.

Case study I

In this section, we compare the performance of families
of DRAGON’s MDs [2] using SE measure, following the
synthesis that high SE features are sensitive to progres-
sive changes in chemical structures and thus generally suit-
able for correlation studies, while low SE features the
contrary. For this study, the PrimScreen1 diversity dataset
(available at http://www.otavachemicals.com/component/do
cman/doc_download/19-primscreen-1-db) was employed.
Some MD families were grouped together into bigger fami-
lies forming a total of 13 super-families. Using a discretiza-
tion scheme of 1,000 bins, SE values were computed and
the best 111 MDs in each family graphically represented
for analysis. This cut-off value was not arbitrary chosen, but

rather the family that presented the least number of variables
determined this value. The probability-based normalization
procedure is not advised when working with dataset files
with differences in the number of variables as it gives a biased
graphic impression of a dataset file with much more variables
in respect to other datasets. Figure 3 shows a graphic repre-
sentation of a family-wise SE distribution for DRAGON’s
MDs.

It is interesting to note that, generally 3D MD families
show superior entropy distribution with 3D-molecule repre-
sentations of structures based on electron diffraction (3D-
MoRSE) MDs presenting the best performance while the
worst entropy distribution is observed with fingerprint-based
MDs (i.e., 2D Binary and Frequency fingerprints, respec-
tively) and the superfamily 0D-1D & Others (molecular
properties and charge descriptors), respectively. This is a
logical result since 3D MDs take into account the nature
and connectivity of the atoms, as well as the overall spatial
configuration of the molecule, contrary to fingerprint-based
MDs and 0D-1D MDs which are generally concerned with
the identification of atom types, functional groups, or sub-
stituents of interest in a molecule and are thus insensitive to
structural or conformational changes in molecular structures
and therefore present high degeneracy. On the other hand, it
would also be informative to assess the representativity of
the overall best twenty MDs in terms of their SE values, of
the commercial software DRAGON [2]. Table 2 shows the
SE, sSE, nSE, rSE, gSE, iSE, DGSE, DV, and EDSE val-
ues, for the best twenty MDs ranked according to SE, for a
discretization scheme of 1000 bins.

As it can be observed, the highest representativity is
achieved with Randic Molecular Profiles (derived from the
distance distribution moments of the geometry matrix) with
five MDs (i.e., DP12, DP14, DP15, SP14, and SP16), fol-
lowed by four MDs for the Connectivity and Topological
Index families, respectively, i.e., (X2, X3sol, XMOD, X0v)
and (Xu, S1K, S2K, RHyDp). GETAWAY and Geometric
indices are represented by two MDs each [(HTv, H3p) and
(G1, G2), respectively] and finally one Molecular Property
(i.e., AMR), Eigenvalue-based index (i.e., SEig) and Consti-
tutional MD (i.e., Sp). These indices (or families) could be
recommended as “ideal” features to be taken into account in
molecular modeling and in the drug discovery process. It is
not surprising that these MDs families have been successively
applied in the modeling and prediction of a wide range of
physicochemical, pharmacological, and toxicological prop-
erties of several molecular datasets [33–44]. The AMR, as
an index in particular, is well known and frequently used in
QSPR/QSAR models with comprehensible physicochemical
interpretation.

Additionally, it is of interest to evaluate the degree of cor-
relation of the unsupervised feature selection methods. To
this end, for each feature selection method, the best 100 MDs
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Fig. 3 Graphic representation
for Shannon’s entropy
distribution of DRAGON’s MDs

Table 2 The twenty best MDs of commercial software DRAGON, ranked according to Shannon’s entropy

Feature SE sSE (10−1) nSE (103) rSE (10−1) gSE (10−3) iSE (10−3) DGSE (10−1) DV (10−1) EDSE (105) Ensemble (102)a

AMR 9.022 9.053 9.022 9.466 1.180 2.170 9.966 9.970 6.847 15.993 (20)

X0v 9.012 9.043 9.012 9.573 1.165 2.224 9.521 9.550 6.879 16.332 (14)

Xu 9.006 9.036 9.006 9.635 1.244 2.228 9.471 9.550 6.805 16.328 (15)

S2K 9.004 9.035 9.004 9.646 1.327 2.206 8.921 9.040 6.689 16.161 (19)

G1 8.998 9.029 8.998 9.707 1.235 2.238 9.902 9.900 6.819 16.362 (13)

X2 8.998 9.029 8.998 9.708 1.210 2.226 9.336 9.360 6.808 16.274 (18)

DP12 8.989 9.020 8.989 9.798 1.336 2.234 9.545 9.600 6.605 16.284 (17)

XMOD 8.980 9.011 8.980 9.892 1.339 2.276 9.913 9.930 6.793 16.538 (9)

RHyDp 8.980 9.011 8.980 9.893 1.292 2.262 9.726 9.770 6.709 16.436 (12)

X3sol 8.979 9.010 8.979 9.898 1.242 2.264 9.432 9.460 6.773 16.447 (11)

DP14 8.979 9.009 8.979 9.906 1.293 2.280 9.652 9.680 6.792 16.560 (7)

Sp 8.978 9.009 8.978 9.909 1.165 2.278 8.002 8.140 6.780 16.543 (8)

H3p 8.972 9.003 8.972 9.974 1.341 2.250 6.954 7.190 6.659 16.304 (16)

SEig 8.969 9.000 8.969 10.002 1.332 2.290 9.927 9.970 6.612 16.579 (6)

SP16 8.965 8.996 8.965 10.042 1.321 2.352 9.614 9.660 6.900 17.005 (1)

G2 8.960 8.991 8.960 10.093 1.251 2.290 9.686 9.700 6.692 16.529 (10)

SP14 8.958 8.989 8.958 10.108 1.248 2.308 9.497 9.530 6.768 16.651 (4)

HTv 8.952 8.983 8.952 10.168 1.272 2.316 9.447 9.480 6.775 16.674 (3)

DP15 8.951 8.982 8.951 10.181 1.236 2.328 9.771 9.760 6.861 16.754 (2)

S1K 8.946 8.977 8.946 10.234 1.239 2.310 8.412 8.520 6.787 16.595 (5)

aScore-based Ensemble ranking using SE, sSE, nSE, and iSE as the base-ranking methods and the product as the amalgamation rule
Bold values indicate the position of variables ranked according to ensemble ranking

were selected and these used to create an incidence matrix
(n × m), where n are the variables in the original dataset
and m the feature selection parameters. Later, Pearson corre-
lation analysis was performed. Table 3 shows the pair-wise

correlation coefficients for the unsupervised feature selection
methods.

As it can be observed, the parameters that follow an equal-
interval discretization scheme (with the exception of gSE)

123



Mol Divers (2015) 19:305–319 313

Table 3 Correlation coefficients
between unsupervised feature
selection parameters

Bold values indicate the
correlation coefficients values
above cutoff of 0.9

DGSE DV EDSE SVDE gSE iSE SE nSE rSE sSE

DGSE 1.00 0.96 0.00 0.01 −0.05 0.19 0.16 0.16 0.16 0.16

DV 0.96 1.00 0.01 0.02 −0.05 0.21 0.18 0.18 0.18 0.18

EDSE 0.00 0.01 1.00 0.13 0.03 0.25 0.27 0.27 0.27 0.27

SVDE 0.01 0.02 0.13 1.00 −0.04 0.05 0.06 0.06 0.06 0.06

gSE −0.05 −0.05 0.03 −0.04 1.00 −0.05 −0.05 −0.05 −0.05 −0.05

iSE 0.19 0.21 0.25 0.05 −0.05 1.00 0.93 0.93 0.93 0.93

SE 0.16 0.18 0.27 0.06 −0.05 0.93 1.00 1.00 1.00 1.00

nSE 0.16 0.18 0.27 0.06 −0.05 0.93 1.00 1.00 1.00 1.00

rSE 0.16 0.18 0.27 0.06 −0.05 0.93 1.00 1.00 1.00 1.00

sSE 0.16 0.18 0.27 0.06 −0.05 0.93 1.00 1.00 1.00 1.00

are highly correlated, which a logical result is given that
their mathematical definitions are generally related to SE.
This result suggests that these parameters may not be used
concurrently in simple feature ranking. Nonetheless, their
utility is appreciated in an ensemble-based feature ranking
scheme where the magnitudes (scores) or positions yielded
by these parameters for a set of features influence the final
ranking from a multi-criteria perspective. For example, if we
consider the values of the highly correlated parameters SE,
sSE, nSE, and igE of the 20 best MDs (ranked according
to SE) in a score-based ensemble scheme, using the prod-
uct as the amalgamation rule (rSE is left out because it has a
negative relation to the relevance of the features), a rather dif-
ferent ranking pattern is achieved (see “Ensemble” column in
Table 2). Similarly, as expected the DV and DGSE are highly
correlated as well given that the latter is derived from the
former. On the other hand, the parameters that do not follow
the equal-interval discretization procedure are weakly cor-
related among themselves as well as to the bin-based unsu-
pervised feature selection parameters. The orthogonality of
the feature selection parameters is a desirable attribute as
this enables the assessment of distinct tendencies (or pat-
terns) of dataset matrices and thus retrieve dissimilar infor-
mation.

Case study II

Secondly, we performed a study to compare the performance,
in entropy terms, of the most prominent MD calculating soft-
ware programs. This study is key as it takes into account
that there exist several MD calculating programs, and such
abundance presents a dilemma when it comes to choosing
the “ideal” MD computing software for a particular study.
Ideal in this sense refers to software with the most variable
MDs. Like in the former case, using a discretization scheme
of 1000 bins, SE values were calculated for each software
(set of MDs previously computed on PrimScreen1 dataset).
Figure 4 illustrates the graphic representation of Shannon’s

distribution of the best 170 variables (cut-off determined
by BlueDesc) for each of the MD calculating computer
programs.

As it can be observed, the most favorable distribution is
provided by DRAGON software, with 100 % of the compared
MDs presenting SE values greater than 8.7 bits, followed by
MOLD2 and PADEL, respectively. This result suggests that
DRAGON comprises a bigger pool of highly variable MDs,
sensitive to molecular structural differences, than the rest of
the MD calculating software. On the other hand, the worst
Shannon’s entropy distribution is demonstrated by POWER
MV software. The apparently poor performance of POWER
MV is attributed to the fact that the majority of the MDs con-
tained in this software are mainly atom-type counts, and these
possess weak discriminating power among similar molecular
structures. It should be highlighted that the goal of these sam-
ple studies is give simple illustrations of possible case studies
with IMMAN other than to establish strict ranking authority
for the MD computing software. Stronger and more com-
pelling inferences in this direction require studies with other
sets of diverse databases.

Case study III: IMMAN versus WEKA

In this sub-section, we wish to compare the performance of
the feature selection methods implemented in IMMAN and
WEKA, on the basis of the significance of the subsets of
features obtained with the different approaches. Two impor-
tant differences exist between IMMAN and WEKA algo-
rithms: (1) while IMMAN possesses both unsupervised and
supervised methods, WEKA offers supervised algorithms,
exclusively. (2) Another key difference lies with the dis-
cretization methods followed in each case. The IMMAN
algorithms employ an equal-interval binning procedure [23],
in which the instances are distributed in discrete inter-
vals (bins) of equal size according to their numeric val-
ues. On the other hand, WEKA algorithms employ a super-
vised discretization scheme based on an entropy minimiza-
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Fig. 4 Graphic representation for Shannon’s entropy distribution of MD calculating software

tion heuristic following a recursive binary splitting pro-
cedure to obtain multiple intervals for continuous-valued
attributes (multi-interval discretization). For details, see ref
[45]. For this study the Arcene dataset is used. This dataset
is freely available at the UCI Machine Learning Reposi-
tory [46] and is one of the four datasets proposed in the
NIPS 2003 Feature Selection Challenge [47]. The Arcene
dataset exemplifies cases where the number of instances
is small with respect to the features (high-dimensionality
data); a common problem in cheminformatic and/or bioin-
formatics applications. Particularly, this dataset typifies a
two-class classification problem aimed at distinguishing
cancer patterns from normal ones in mass spectrometric
data.

In the first study, IMMAN’s unsupervised and super-
vised feature selection approaches as well as WEKA’s algo-
rithms are employed to obtain subsets of 15 variables, sep-
arately, and these are used to build classification models
using Kth Nearest Neighbors (KNN1) and Support Vector
Machine (SVM) classifiers, respectively, and the percent-
ages of correct classification compared [23]. Tables 4 and 5
show the percentages of correct classification for IMMAN
and WEKA, using KNN1 classifier.

As expected, generally supervised methods perform bet-
ter than unsupervised methods using both KNN1 and SVM
classifiers, as the former favor features that are linked to the
class labels. Using KNN1, it is observed that generally the

Table 4 Comparison of the percentages of correct classification of
KNN1-based classification models using IMMAN’s and WEKA’s fea-
ture selection approaches

Software Method Measure Correct
classification (%)

IMMAN Unsupervised EDSE 77

rSE 74

SE 74

DGSE 70

DV 68

SVDE 64

gSE 46

Supervised SU 81

DSE 77

IG 72

MIDSE 72

GR 67

JI 67

WEKA Supervised W(SU) 83

W(Significance) 82

W(GR) 81

W(IG) 81

W(ChiSquare) 77

W(OneR) 77

W(Relieff) 70
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Table 5 Comparison of the percentages of correct classification of
SVM-based classification models using IMMAN’s and WEKA’s feature
selection approaches

Software Method Measure Correct
classification (%)

IMMAN Unsupervised rSE* 71

SE* 71

DGSE 68

DV 66

EDSE 66

gSE 59

SVDE 52

Supervised IG* 82

SU 79

DSE 78

MIDSE 66

JI 56

GR 54

WEKA Supervised W(GR) 81

W(SU) 80

W(ChiSquare) 77

W(Significance) 77

W(IG) 76

W(OneR) 73

W(Relieff) 70

WEKA’s supervised feature selection algorithm depicts a
slight edge over IMMAN methods (see Table 4), although
there exist parameters that exhibit comparable performance
with WEKA’s algorithms, such as EDSE (77 %), SU (81 %),
and DSE (77 %), with one of them being an unsupervised
method (i.e., EDSE). As for SVM, IMMAN’s IG offers the
highest percentage of correct classification (82 %), followed
by WEKA’s GR (81 %) and SU (80 %), see Table 5. This
result suggests that the IMMAN’s algorithms are effective in
the selection of subsets of features with good classification
accuracy.

One of the key applications of unsupervised methods is
in data dimensionality reduction. In the second experiment,
we use the unsupervised rank-based methods as pre-filters.
For each entropic measure, the mean is determined and used
as threshold value (cut-off). The retained sets of features are
then filtered using the IMMAN and WEKA supervised fea-
ture selection tools, separately, to obtain 15 variable subsets
for each algorithm. The final subsets of variables are then
validated using KNN1 and SVM classifiers. Tables 6 and
7 show the percentages of correct classification using com-
binations of supervised and unsupervised feature selection
approaches, using KNN1 and SVM classifiers, respectively
(note that only the pairings that yield the best percentages of

Table 6 Comparison of the percentages of correct classification for
combinations of unsupervised and supervised methods using KNN1
Classifier

Software Measure Correct
classification (%)

IMMAN SU-SVDE 81

DSE-gSE 78

DSE-DGSE 77

DSE-DV 77

DSE-EDSE 77

DSE-SE 77

SU-EDSE 77

WEKA W(Significance)-gSE 88

W(IG)-gSE 86

W(ChiSquare)-EDSE 85

W(ChiSquare)-SE 85

W(SU)-DGSE 85

W(SU)-SE 85

W(Relieff)-gSE 84

W(Significance)-SVDE 84

W(IG)-SVDE 83

W(SU)-DV 83

W(SU)-EDSE 83

W(SU)-gSE 83

W(Significance)-DV 82

W(Significance)-EDSE 82

W(GR)-DV 81

Table 7 Comparison of the percentages of correct classification for
combinations of unsupervised and supervised methods using SVM
Classifier

Software Measure Correct
classification (%)

IMMAN JI-DGSE 85

JI-DV 85

JI-gSE 85

JI-SE 85

IG-DGSE 82

IG-DV 82

IG-EDSE 82

IG-SE 82

IG-gSE 81

WEKA W(GR)-gSE 83

W(GR)-DGSE 82

W(GR)-SE 82

W(OneR)-DV 82

W(OneR)-SE 82

W(ChiSquare)-EDSE 81
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Table 8 Percentages of correct
classification obtained using the
two-fold feature mixing scheme
according to KNN1 and SVM
classifiers

aSubscript refers to cluster
(measure) with which
combination is made

Cluster Measure KNN1 SVM

Singular Two-folda Singular Two-fold

1 W(Relieff)-DV 65 853 69 832,4

2 JI-DGSE 67 804 85 854,6

3 W(ChiSquare)-DGSE 80 864,13 79 844

4 W(SU) 83 8710 80 869

5 W(IG) 81 864 76 8410

6 JI 67 854 56 852

7 W(OneR)-DV 81 841 82 8415

8 W(OneR)-SVDE 70 795 81 842

9 W(IG)-rSE 74 844 66 864

10 DSE-SVDE 69 874 70 845

11 SE 74 824 71 824

12 GR 67 793,4 54 827

13 SU-EDSE 77 863 75 842

14 MIDSE 72 833 66 808

15 DSE 77 844 78 847

correct classification are shown; for results of all combina-
tions see supporting information SI2).

Generally, the use of unsupervised methods as pre-filters
improves the performance of IMMAN and WEKA super-
vised feature selection tools, for both KNN1 and SVM clas-
sifiers. Nonetheless, it is worth noting that while the use
of unsupervised parameters yields minimal improvements
in the performance of IMMAN supervised algorithms with
the KNN1 classifier, significant improvements are achieved
with WEKA (compare Tables 4, 6). On the other hand,
with SVM classification method, impressive improvements
are observed with IMMAN supervised feature selection
tools, for example the percentage of correct classification
for JI rises from 56 % (see Table 5) to 85 % (see Table
7), yielding superior performance to WEKA algorithms.
This trend (improvement) is evocative of the inexistence
of a universally superior feature selection tool and advo-
cates for the use of combinations unsupervised and super-
vised methods to obtain subsets with a more solid and eas-
ily interpretable knowledge structure amenable to greater
classification accuracy.

In the third experiment, we evaluate the influence of com-
bining variables filtered independently with IMMAN and
WEKA feature selection tools (or pairings of unsupervised
and supervised methods). To this end, an n × m incidence
matrix is constructed, with n being the 1000 features in arcene
dataset and m the feature selection tools, including combina-
tions of unsupervised and supervised parameters. A k-means

cluster analysis (using a k-value of 15) is performed for this
data matrix and for each cluster the algorithm (variable) clos-
est to centroid picked, obtaining a total of 15 dissimilar fea-
ture selection methods. Later, the sets of features originally
filtered by the 15 algorithms from arcene data matrix are
mixed in two- to seven-fold combinations and the resulting
sets of variables used to build classification models using
KNN1 and SVM methods. Table 8 shows the parameters
(or combinations of these) selected for each cluster as well
as comparisons of their percentages of correct classifications
prior to and after performing two-fold variable mixing proce-
dure. For a matrix showing the percentages of correct clas-
sification for all pair-wise combinations for the 15 feature
selection tools, see Supporting Information (SI3). As it can
be observed in Table 8, two-fold mixing of features obtained
using dissimilar algorithms (from a clustering tendency per-
spective) yields significant improvements in classification
accuracy of the models. This is a logical result since mix-
ing features obtained with dissimilar algorithms provides an
information structure with a wider span of the data structure
patterns, which directly influences the performance of the
classifier algorithms.

Figure 5 shows the percentages of correct classification
obtained using up to seven-fold feature mixing schemes,
using the KNN1 classifier. As it can be observed, in all
the cases the percentages of correct classification improve
achieving up to 92 % of correct classification for six- and
seven-fold mixing schemes.
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Fig. 5 Percentages of correct
classification obtained using
feature mixing schemes and
KNN1 classifier

Conclusions

A free computational program for chemometric analysis des-
ignated IMMAN is developed to provide valuable informa-
tion theory-based tools for unsupervised and supervised fea-
ture selection tasks. This software is developed in the Java
programming language and can be executed in different oper-
ating systems. The usability of IMMAN has been demon-
strated with sample case studies, demonstrating satisfactory
behavior. In forthcoming releases, we intend to implement
other information-theoretic formulations as measures of the
correlation and dependence among variables to deal with the
possible redundancy among features, a key handicap of rank-
based methods. However, it is known that combinations of
m top-ranked features considered individually do not nec-
essarily yield the best subset of features, enunciated in the
literature as “the m best features are not the best m features”
[48,49]. Therefore, other goals include the incorporating fea-
ture subset selection algorithms to the IMMAN approach as
well as learning algorithms in the feature selection procedure.

Supporting information available

A brief recapitulation of the theoretical aspects of SE method,
the percentages of correct classification for all pair-wise com-
binations of supervised and unsupervised feature selection
methods are freely available to all interested users as supple-
mentary material via the Internet at http://www.link.springer.

com/journal/11030. The IMMAN computational program,
user manual, and codes may be freely downloaded via Inter-
net at http://mobiosd-hub.com/imman-soft/.

Acknowledgments Barigye, S. J. acknowledges financial support
from CNPq. Marrero-Ponce, Y. thanks the program ‘International Vis-
iting Professor’ for a fellowship to work at Universidad Tecnológica de
Bolívar (Colombia) in 2014. Finally, the authors are also indebted to
the Molecular Diversity Editor in Chief Dr. Guillermo A. Morales for
his comments and manuscript revision, as well as his kind attention.

References

1. Todeschini R, Consonni V (2009) Molecular descriptors for
chemoinformatics, vol 1. Wiley-VCH, Weinheim

2. Todeschini R, Consonni V, Pavan M (2002) DRAGON Software
version 2.1. Milano Chemometric and QSAR Research Group.
Milano

3. Guha R (1991) The CDK descriptor calculator, 0.94th edn. Indiana
4. Yap CW (2011) PaDEL-descriptor: an open source software to

calculate molecular descriptors and fingerprints. J Comput Chem
32:1466–1474. doi:10.1002/jcc.21707

5. Georg H (2008) BlueDesc-molecular descriptor calculator. Univer-
sity of Tübingen, Tübingen

6. Liu J, Feng J, Brooks A, Young S (2005) PowerMV. National Insti-
tute of Statistical Sciences, Research Triangle Park

7. ADRIANA. Code (2011) Molecular Networks. Erlangen, Germany
8. Hong H, Xie Q, Ge W, Qian F, Fang H, Shi L, Su Z, Perkins R,

Tong W (2008) Mold2, molecular descriptors from 2D structures
for chemoinformatics and toxicoinformatics. J Chem Inf Comput
Sci 48:1337–1344. doi:10.1021/ci800038f

9. Kellogg GE (2001) Molconn-Z 4.0 edn. eduSoft, Virginia
10. Liu H, Motoda H (2008) Less is More. In: Liu H, Motoda H

(eds) Computational methods of feature selection. Data mining and

123

http://www.springerlink.bibliotecabuap.elogim.com/journal/11030
http://www.springerlink.bibliotecabuap.elogim.com/journal/11030
http://mobiosd-hub.com/imman-soft/
http://dx.doi.org/10.1002/jcc.21707
http://dx.doi.org/10.1021/ci800038f


318 Mol Divers (2015) 19:305–319

knowledge discovery series. Taylor * Francis Group, Boca Raton,
p 411

11. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1:67–82. doi:10.1109/
4235.585893

12. Venkatraman V, Dalby AR, Yang ZR (2004) Evaluation of mutual
information and genetic programming for feature selection in
QSAR. J Chem Inf Comput Sci 44:1686–1692. doi:10.1021/
ci049933v

13. Yu L, Liu H (2003) Feature selection for high-dimensional data: a
fast correlation-based filter solution. In: Proceedings of the Twen-
tieth international conference on machine learning, Washington
DC

14. Kira K, Rendell L (1992) The feature selection problem: traditional
methods and a new algorithm. Association for the advancement of
artificial intelligence. AAAI Press and MIT Press, Cambridge, pp
129–134

15. Kullback S, Leibler RA (1951) On information and sufficiency.
Ann Math Stat 22:79–86

16. Jeffreys H (1946) An invariant form for the prior probability in
estimation problems. Proc Roy Soc A 186:453–461. doi:10.1098/
rspa.1946.0056

17. Jennifer GD (2008) Unsupervised Feature Selection. In: Liu H,
Motoda H (eds) Computational methods of feature selection. Data
mining and knowledge discovery series. Taylor & Francis Group,
Boca Raton, p 411

18. Varshavsky R, Gottlieb A, Linial M, Horn D (2006) Novel unsuper-
vised feature filtering of biological data. Bioinformatics 22:e507–
e513. doi:10.1093/bioinformatics/btl214

19. Maldonado AG, Doucet JP, Petitjean M, Fan B-T (2006) Molecular
similarity and diversity in chemoinformatics: from theory to appli-
cations. Mol Divers 10:39–79. doi:10.1007/s11030-006-8697-1

20. Godden JW, Stahura FL (2000) Variability of molecular descriptors
in compound databases revealed by Shannon entropy calculations.
J Chem Inf Comput Sci 40:796–800. doi:10.1021/ci000321u

21. Godden JW, Bajorath J (2002) Chemical descriptors with distinct
levels of information content and varying sensitivity to differences
between selected compound databases identified by SE-DSE analy-
sis. J Chem Inf Comput Sci 42:87–93. doi:10.1021/ci0103065

22. Barigye SJ, Marrero-Ponce Y, Pérez-Giménez F, Bonchev D (2014)
Trends in information theory-based chemical structure codifica-
tion. Mol Divers 18:673–686. doi:10.1007/s11030-014-9517-7

23. Witten IH, Eibe F, Hall MA (2011) Data mining: practical machine
learning tools and techniques. The Morgan Kaufmann series in data
management systems, 3rd edn. Morgan Kaufmann, Burlington

24. Alter O, Brown PO, Botstein D (2000) Singular value decompo-
sition for genome-wide expression data processing and modeling.
Proc Natl Acad Sci USA 97:10101–10106. doi:10.1073/pnas.97.
18.10101

25. Devakumari D, Thangavel K (2010) Unsupervised adaptive float-
ing search feature selection based on contribution entropy. In:
2010 international conference on communication and computa-
tional intelligence (INCOCCI), pp 623–627

26. Dash M, Choi K, Scheuermann P, Huan L (2002) Feature selection
for clustering—a filter solution. In: Proceedings of the 2002 IEEE
international conference on data mining (ICDM 2003), pp 115–
122. doi:10.1109/icdm.2002.1183893

27. Stahura FL, Godden JW, Bajorath J (2002) Differential Shannon
entropy analysis identifies molecular property descriptors that pre-
dict aqueous solubility of synthetic compounds with high accuracy
in binary QSAR calculations. J Chem Inf Comput Sci 42:550–558.
doi:10.1021/ci010243q

28. Wassermann AM, Nisius B, Vogt M, Bajorath J (2010) Identifi-
cation of descriptors capturing compound class-specific features
by mutual information analysis. J Chem Inf Model 50:1935–1940.
doi:10.1021/ci100319n

29. Cover TM, Thomas JA (1991) Elements of Information theory.
Wiley, New York

30. Desurvire E (2009) Classical and quantum information theory.
Cambridge University Press, New York

31. Quinlan JR (1983) Learning efficient classification procedures and
their application to chess end games. In: Michalski R, Carbonell
J, Mitchell T (eds) Machine learning. Symbolic computation.
Springer, Berlin, pp 463–482. doi:10.1007/978-3-662-12405-5_
15

32. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988)
Numerical recipes in C: the art of scientific computing. Cambridge
University Press, New York

33. Consonni V, Todeschini R, Pavan M, Gramatica P (2002) Struc-
ture/response correlations and similarity/diversity analysis by
GETAWAY descriptors. Part 2. Application of the novel 3D mole-
cular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci
42:693–705. doi:10.1021/ci0155053

34. Pérez González M, Terán C, Teijeira M, González-Moa MJ (2005)
GETAWAY descriptors to predicting A2A adenosine receptors ago-
nists. Eur J Med Chem 40:1080–1086. doi:10.1016/j.ejmech.2005.
04.014

35. Saiz-Urra L, Pérez González M (2007) Quantitative structure-
activity relationship studies of HIV-1 integrase inhibition.1. GET-
AWAY descriptors. Eur J Med Chem 42:64–70. doi:10.1016/j.
ejmech.2006.08.005

36. Fedorowicz A, Singh H, Soderholm S, Demchuk E (2005)
Structure–activity models for contact sensitization. Chem Res Tox-
icol 18:954–969. doi:10.1021/tx0497806

37. Saiz-Urra L, Pérez González M (2006) QSAR studies about cyto-
toxicity of benzophenazines with dual inhibition toward both topoi-
somerases I and II: 3D-MoRSE descriptors and statistical consider-
ations about variable selection. Bioorg Med Chem 14:7347–7358.
doi:10.1016/j.bmc.2006.05.081

38. Gasteiger J, Sadowski J, Schuur J, Selzer P, Steinhauer L, Stein-
hauer V (1996) Chemical information in 3Dspace. J Chem Inf Com-
put Sci 36:1030–1037. doi:10.1021/ci960343+

39. Gasteiger J, Schuur J, Selzer P, Steinhauer L, Steinhauer V (1997)
Finding the 3D structure of a molecule in its IR spectrum. Fresen
J Anal Chem 359:50–55. doi:10.1007/s002160050534

40. Schuur J, Selzer P, Gasteiger J (1996) The coding of the three-
dimensional structure of molecules by molecular transforms and
its application to structure-spectra correlations and studies of bio-
logical activity. J Chem Inf Comput Sci 36:334–344. doi:10.1021/
ci950164c

41. Baumann K (1999) Uniform-length molecular descriptors for
quantitative structure-property relationships (QSPR) and quanti-
tative structure-activity relationships (QSAR): classification stud-
ies and similarity searching. TRAC 18:36–46. doi:10.1016/S0165-
9936(98)00075-2

42. Jelcic Z (2004) Solvent molecular descriptors on poly(D, L-lactide-
co-glycolide) particle size in emulsification-diffusion process.
Coll Surf A Physico-Chem Eng Asp 242:159–166. doi:10.1016/
j.colsurfa.2004.03.027

43. Todeschini R, Bettiol C, Giurin G, Gramatica P, Miana P, Argese
E (1996) Modeling and prediction by using WHIM descriptors
in QSAR studies. Submitochondrial particles (SMP) as toxic-
ity biosensors of chlorophenols. Chemosphere 33:71–79. doi:10.
1016/0045-6535(96)00153-1

44. Randic M (1995) Molecular profiles. Novel geometry-dependent
molecular descriptors. New J Chem 19:781–791

45. Fayyad UM, Irani KB (1993) Multi-interval discretization of
continuous-valued attributes for classification learning. In: Pro-
ceedings of the 13th international joint conference on artificial
intelligence, pp 1022–1027. http://dblp.uni-trier.de/db/conf/ijcai/
ijcai93.html#FayyadI93

123

http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1021/ci049933v
http://dx.doi.org/10.1021/ci049933v
http://dx.doi.org/10.1098/rspa.1946.0056
http://dx.doi.org/10.1098/rspa.1946.0056
http://dx.doi.org/10.1093/bioinformatics/btl214
http://dx.doi.org/10.1007/s11030-006-8697-1
http://dx.doi.org/10.1021/ci000321u
http://dx.doi.org/10.1021/ci0103065
http://dx.doi.org/10.1007/s11030-014-9517-7
http://dx.doi.org/10.1073/pnas.97.18.10101
http://dx.doi.org/10.1073/pnas.97.18.10101
http://dx.doi.org/10.1109/icdm.2002.1183893
http://dx.doi.org/10.1021/ci010243q
http://dx.doi.org/10.1021/ci100319n
http://dx.doi.org/10.1007/978-3-662-12405-5_15
http://dx.doi.org/10.1007/978-3-662-12405-5_15
http://dx.doi.org/10.1021/ci0155053
http://dx.doi.org/10.1016/j.ejmech.2005.04.014
http://dx.doi.org/10.1016/j.ejmech.2005.04.014
http://dx.doi.org/10.1016/j.ejmech.2006.08.005
http://dx.doi.org/10.1016/j.ejmech.2006.08.005
http://dx.doi.org/10.1021/tx0497806
http://dx.doi.org/10.1016/j.bmc.2006.05.081
http://dx.doi.org/10.1021/ci960343+
http://dx.doi.org/10.1007/s002160050534
http://dx.doi.org/10.1021/ci950164c
http://dx.doi.org/10.1021/ci950164c
http://dx.doi.org/10.1016/S0165-9936(98)00075-2
http://dx.doi.org/10.1016/S0165-9936(98)00075-2
http://dx.doi.org/10.1016/j.colsurfa.2004.03.027
http://dx.doi.org/10.1016/j.colsurfa.2004.03.027
http://dx.doi.org/10.1016/0045-6535(96)00153-1
http://dx.doi.org/10.1016/0045-6535(96)00153-1
http://dblp.uni-trier.de/db/conf/ijcai/ijcai93.html#FayyadI93
http://dblp.uni-trier.de/db/conf/ijcai/ijcai93.html#FayyadI93


Mol Divers (2015) 19:305–319 319

46. Newman DJ, Hettich S, Blake CL, Merz CJ (1998) UCI repository
of machine learning databases. University of California, Depart-
ment of Information and Computer Science, Irvine, CA. http://
www.ics.uci.edu/~mlearn/MLRepository.html

47. Guyon I, Gunn SR, Ben-Hur A, Dror G (2004) Result analy-
sis of the NIPS 2003 feature selection challenge. In: Advances
in neural information processing systems, Vancouver, BC,
pp 545–552. http://papers.nips.cc/paper/2728-result-analysis-of-
the-nips-2003-feature-selection-challenge

48. Webb AR (2002) Statistical pattern recognition, 2nd edn. Wiley,
Chichester

49. Cover TM (1974) The best two independent measurements are not
the two best. IEEE Trans Syst Man Cybern 4:116–117. doi:10.
1109/TSMC.1974.5408535

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://papers.nips.cc/paper/2728-result-analysis-of-the-nips-2003-feature-selection-challenge
http://papers.nips.cc/paper/2728-result-analysis-of-the-nips-2003-feature-selection-challenge
http://dx.doi.org/10.1109/TSMC.1974.5408535
http://dx.doi.org/10.1109/TSMC.1974.5408535

	IMMAN: free software for information theory-based chemometric analysis
	Abstract 
	Introduction
	Program design
	Theory
	Unsupervised variable ranking-based feature selection approaches
	Shannon's entropy and related entropic measures
	Singular value decomposition entropy (SVDEi)
	Degenerative entropy raid (DGSE) and degenerated value (DV)
	Euclidean distance-based entropy (EDSE)

	Supervised feature selection algorithms
	Differential Shannon's entropy
	Mutual information differential Shannon's entropy (MI-DSE)
	Symmetric Kullback--Leibler entropy: Jeffreys information
	Information gain (IG), gain ratio (GR), and symmetrical uncertainty (SU)


	Sample case studies
	Case study I
	Case study II
	Case study III: IMMAN versus WEKA

	Conclusions
	Supporting information available
	Acknowledgments
	References


