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Abstract A series of diverse polyfunctionalized trihetero-
cyclic benzothiazoles were easily prepared in excellent yields
via the Biginelli reaction of 2-aminobenzothiazole with sub-
stituted benzaldehydes and α-methylene ketones using FeF3

as an expeditious catalyst under solvent-free conditions. The
protocol provides a practical and straightforward approach
toward highly functionalized triheterocyclic benzothiazole
derivatives in excellent yields. The reaction was conveniently
promoted by FeF3 and the catalyst could be recovered easily
after the reaction and reused without any loss of its catalytic
activity. The advantageous features of this methodology are
high atom economy, operational simplicity, shorter reaction
time, convergence, and facile automation.

Keywords 4H-pyrimido[2, 1-b]benzothiazoles · Iron (III)
fluoride · Multicomponent reaction · Solvent free · MCRs

Introduction

Substituted benzothiazoles have received considerable atten-
tion in the field of synthetic organic chemistry due to their
numerous applications in the pharmaceutical industry. Func-
tionalized benzothiazoles have shown anticonvulsant [1],
antitumor [2], antiinflammatory [3], and antitubercular [4]
activities, and also act as chemosensitizers in chemother-
apy and neuroprotectant-cerebral antischemic agents [5–7].
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Furthermore, they are also extensively used in material sci-
ence. The industrial applications such as antioxidants [8],
vulcanization accelerators [9], and a dopant in light emit-
ting organic electroluminescent devices [10] have also been
reported. The important of chemical and pharmacological
properties of benzothiazoles derivatives and the develop-
ment of synthetic methods which enable a facile access to
these heterocyclic compounds are desirable. Recently, many
efforts have been devoted to develop novel and highly effi-
cient synthetic protocols for the synthesis of functional-
ized benzothiazoles such as multicomponent coupling reac-
tions, transition metal catalyzed cyclizations, and [3+2]
cycloadditions [11–18]. In the midst of them, multicom-
ponent coupling reactions (MCRs) are known as a power-
ful tool for the construction of novel and structurally com-
plex molecules in a single pot ensuring high atom econ-
omy, good overall yields and high selectivity, lower costs,
shorter reaction times, minimizing waste, labor, energy,
and avoidance of expensive purification processes [19–
21].

The best-known multicomponent reaction for 4H-
pyrimido[2,1-b]benzothiazoles and related polyheterocycles
is the Biginelli reaction [22–24]. The simple and straightfor-
ward procedure reported by Biginelli [25] in 1893 involves
a three-component condensation reaction of β-ketoesters,
arylaldehydes, and urea to give 3,4-dihydropyrimidin-2-
(1H)one in one-pot procedure. The urea has been reported as
2-aminobenzimidazoles and 2-aminobenzothioazoles deriv-
atives as alternates [26–28]. The Biginelli reaction can be
promoted by acid or base catalysis or by heating. Very
recently, catalysts such as AlCl3 [29], TBAHS [30], hydro-
talcite [31], and N,N-dichlorobis(2,4,6-trichlorophenyl) urea
[32] have been shown to be effective for the synthesis of
4H-pyrimido[2,1-b]benzothiazoles. Although these methods
provide good results in many instances, there is still a great
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demand for rapid and environment-friendly catalytic reac-
tion conditions. We decided to find out the best environment-
friendly catalytic system for this one-pot Biginelli reac-
tion.

It is reported that FeF3 is an efficient and inexpensive cat-
alyst for the synthesis of polyhydroquinoline derivatives via
unsymmetrical Hantzsch reaction [33]. We tested the three-
component reaction of 2-aminobenzothiazole with substi-
tuted benzaldehydes and α-methylene ketones using FeF3

as an expeditious catalyst under solvent-free conditions. We
found FeF3 to be an effective catalyst for the synthesis of tri-
heterocyclic 4H-pyrimido[2,1-b]benzothiazole derivatives
in good to excellent yields and short reaction times. Based on
our previous endeavors in exploring novel and practical mul-
ticomponent reactions to synthesize useful heterocyclic com-
pounds [34–37], we proceeded to investigate the potential use
of FeF3 as a catalyst for the synthesis of 4H-pyrimido[2,1-
b]benzothiazoles. So herein we wish to report a tandem syn-
thesis of 4H-pyrimido[2,1-b]benzothiazole derivatives by
using FeF3 as expeditious reusable catalyst in an excellent
yield (Scheme 1).

Results and discussion

In order to optimize the reaction conditions, 2-aminobenzo-
thiazole, 4-chlorobenzaldehyde, and methyl acetoacetate
were taken as model reactants in the presence of differ-
ent catalyst and solvent (Table 1). In order to establish
the effectiveness of the catalyst for the synthesis of 4H-
pyrimido[2,1-b]benzothiazole derivatives, a test reaction was
performed without catalyst using 2-aminobenzothiazole, 4-
chlorobenzaldehyde, and methyl acetoacetate in ethanol at
reflux. It was found that only a trace amount of prod-
uct was obtained in the absence of catalyst even after
10 h (Table 1, entry 1). In order to develop a viable
approach, the model reaction was investigated using dif-
ferent catalysts including CaCl2, SiO2, FeCl3, Zn(OTf)2,

ZnCl2, CuCl2, FeF3, Li(OTf), SnCl2. 2H2O, and CuF2.
Among all screened catalyst, FeF3 gave the best result in
view of yield and reaction time (Table 1, entry 8). In contrast
CaCl2, SiO2, Zn(OTf)2, ZnCl2, Li(OTf), and SnCl2. 2H2O
did not afford the desired product in good yields (Table 1,
entries 2, 3, 5, 6, 10, and 11). FeF3 was shown to be more
effective than CuF2 in terms of yield and time for completion
of the reaction (Table 1, entries 8 and 13).

To assess the effect of solvents on this reaction, we
screened different solvents such as toluene, EtOH, acetoni-
trile, DMF, ethylene glycol, methanol, water, and THF. It was
observed that under solvent condition required longer times
(2–4 h) to afford comparable yields (Table 1, entries 14–20).
When the reaction was performed under solvent-free con-
ditions, high yield of target product was obtained (Table 1,
entry 8). Moreover, we found that the yields were affected
by the amount of FeF3 loaded. When 5, 10, and 20 mol% of
FeF3 were used, the yields were 90, 98, and 95 %, respec-
tively (Table 1, entries 8, 21, and 22). Therefore, 10 mol% of
FeF3 was sufficient and optimal quantity for the completion
of the reaction.

To explore the scope and limitations of this reaction fur-
ther, we extended our studies to the use of various sub-
stituted aryl/aliphatic aldehydes and α-methylene ketones
in the presence of 2-aminobenzothiazole. It was gratify-
ing to observe that most of the tested substrates exhib-
ited satisfactory reactivity profiles, in all cases leading to
a heterocyclization sequence that readily afforded the tar-
get structures (Table 2). Compared with aromatic aldehydes,
aliphatic aldehyde afforded relatively lower yields of the cor-
responding 4H-pyrimido[2,1-b]benzothiazole. A variety of
α-methylene ketones like various substituted acetoacetates,
1,3 diketones, as well as isopropyl acetoactate reacted with
2-aminobenzothiazole and aldehydes under optimized con-
ditions.

The reusability of the FeF3 catalyst is one of the most
important benefits and makes it useful for commercial appli-
cations as well. Thus, the recovery and reusability of the
catalyst were investigated. The recyclability of the catalyst
was checked with model reaction (Table 3, entries 1–4). The
catalyst was recovered after completion of the first fresh run,
the reaction mixture cooled to room temperature, and then
water was added. The catalyst was dissolved in water and
product was precipitated out. The precipitated crude product
was separated by simple filtration and FeF3was recovered
by evaporating the aqueous layer under reduced pressure.
The recovered FeF3 (10 mol%) was dried at 90–100 ◦C for
12 h and tested in up to three more reaction cycles. The
same catalyst (10 mol%) was reused for subsequent reac-
tions (three runs) with fresh substrates under the same con-
ditions. The catalyst showed excellent recyclability in all
these reactions (Table 3), as the reaction times and yield
remained almost the same without having a loss of catalytic
activity.
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Table 1 Optimization of catalysts, solvents, and temperature in the synthesis of 4aa

S

N
NH2

O O

S

N
N

O

++

O

O
Catalyst

O H

Cl

Cl

1a 2a 3a 4aa

No. Catalyst (10 mol%) Solvent Condition Time (h) Yielda (%)

1 – Ethanol Reflux 10 22

2 CaCl2 Ethanol Reflux 8 35

3 SiO2 Solvent free 100 ◦C 6 38

4 FeCl3 Ethylene glycol 120 ◦C 3 65

5 Zn(OTf)2 Methanol 80 ◦C 5 50

6 ZnCl2 Ethanol Reflux 4 55

7 FeF3 Ethanol Reflux 3 90

8 FeF3 Solvent free 80 ◦C 0.5 98

9 CuCl2 Solvent free 80 ◦C 3 75

10 Li(OTf) Solvent free 80 ◦C 3 60

11 SnCl2·2H2O Solvent free 80 ◦C 2 65

12 FeCl3 Solvent free 80 ◦C 3 85

13 CuF2 Solvent free 80 ◦C 2 80

14 FeF3 Water Reflux 2 80

15 FeF3 DMF Reflux 3 82

16 FeF3 Methanol Reflux 4 85

17 FeF3 Ethylene glycol 120 ◦C 3 82

18 FeF3 CAN 100 ◦C 2 86

19 FeF3 Toluene 100 ◦C 2.5 88

20 FeF3 THF Reflux 2 85

21 FeF3 (5 mol%) Solvent free 80 ◦C 0.5 90

22 FeF3 (20 mol%) Solvent free 80 ◦C 0.5 95

Reaction conditions: 4-Cl benzaldehyde (1 mmol), methyl acetoacetate (1 mmol), 2-aminobenzothiazole (1 mmol), catalyst (10 % mol)
a Isolated yield

Conclusion

In summary, we have described an efficient and environmen-
tally benign protocol for the synthesis of fully substituted tri-
heterocyclic benzothiazole functionalities via Biginelli reac-
tion of 2-aminobenzothiazole with diversified α-methylene
ketones and aldehydes using iron fluoride as a recyclable cat-
alyst. The main advantages of this present methodology are
the simple work up, easy recovery of catalyst, no need for
anhydrous conditions, no base, or any additional activator
required.

Experimental

Chemicals were purchased from Aldrich and Alfa Aesar
chemical companies and used as it is. The NMR spectra were

recorded in CDCl3 on a Jeol JNM ECP 400 NMR instrument
using TMS as an internal standard. The HRMS was recorded
on a Jeol JMS-700 mass spectrometer. Melting points were
taken in open capillaries on an Electrothermal-9100 instru-
ment (Japan).

General procedure for the synthesis of fully substituted
triheterocyclic benzothiazole functionalities (Table 2)

A mixture of aldehydes (1 mmol), α-methylene ketone
(1 mmol), and 2-aminobenzothiazole (1 mmol) was heated
at 80 ◦C under solvent-free conditions using iron flouride as
a catalyst (10 mol%). The reaction was monitored by TLC.
After completion of the reaction, the reaction mixture was
cooled to room temperature, and the residue was diluted
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Table 2 Synthesis of triheterocyclic benzothiazole functionalities catalyzed by FeF3

Entry Aldehydes α-Methylene ketone Product Time 

(h) 

Yield
a

(%)

MP (°C) References

1 O H

Cl

2a

O O

O

3a

S

N
N

O
O

Cl

4aa

0.5 98 179–180 – 

2 O H

2b

O O

O

3b
S

N
N

O
O

4bb

1 95 153–154 – 

3 O H

Cl

2a

O O

O

3c

S

N
N

O
O

Cl

4ac

0.7 96 132–133 – 

4 O H

Cl

2a

O O

O

3d

S

N
N

O
O

Cl

4ad

0.5 97 83–84 – 

5 O H

Cl

2a

O O

O

3e
S

N
N

O
O

Cl

4ae

1.5 93 112–113 

– 

6 O H

Cl

2a

O O

O

3f

S

N
N

O
O

Cl

4af

1 92 

127–128 

– 
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Table 2 continued

Entry Aldehydes α-Methylene ketone Product Time 

(h) 

Yield
a

(%)

MP (°C) References

7 O H

Cl

2a

O O

O
Cl

3g

S

N
N

O
O

Cl

Cl

4ag

2 90 
135–136 – 

8 O H

Cl

2a

O O

O
F

F
F

3h
S

N
N

O
O

Cl

F

F
F

4ah

2 88 
143–144 

– 

9 O H

F O O

S

N
N

O

F

1 93 
122–123 

– 

2c 3i 4ci

10 O H

Cl

2a

O O

O

3j

S

N
N

O
O

Cl

4aj

1.5 90 
102–103 

– 

11 O H

Cl

2a

O O

O

O2N

3k S

N
N

O

Cl

O

NO2

4ak

1.5 90 

198–199 

– 
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Table 2 continued

Entry Aldehydes α-Methylene ketone Product Time 

(h) 

Yield
a

(%)

MP (°C) References

12 O H

2d

O O

O

3a

S

N
N

O
O

4da
1 93 

146–147 

– 

13 O H

Cl

2e

O O

O

3a

S

N
N

O
O

Cl

4ea
0.5 93 

153–154 

– 

14 O H

2b

O O

O

3a

S

N
N

O
O

4ba 1 90 

154–155 

– 

15 O H

F

2f

O O

O

3a
S

N
N

O
O

F

4fa

1.5 88 

139–140 

– 

16 O H

F

2c

O O

O

3a

S

N
N

O
O

F

4ca

2 91 

160–161 

– 

17 O H

Br

2g

O O

O

3a
S

N
N

O
O

Br

4ga

0.5 96 

166–167 

– 
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Table 2 continued

Entry Aldehydes α-Methylene ketone Product Time 

(h) 

Yield
a

(%)

MP (°C) References

18 O H

ClF

O O

O

3a

S

N
N

O
O

Cl

F

4ha

2.5 85 

148–149 

– 
2h

19 O H

OMe

2i

O O

O

3a

S

N
N

O
O

MeO

4ia
1.5 89 

145–146 

– 

20 O H

OMe
OMe

MeO

2j

O O

O

3a

S

N
N

O
O

OMeMeO

MeO

4ja

1.5 87 

138–139 

– 

21 O H

Cl

2k

O O

O

3a
S

N
N

O
OCl

4ka

0.5 95 

139–140 

– 

22 

H

O

2l

O O

O

3a

S

N
N

O
O

4la
2 85 

123–124 

– 

23 

O

H

O O

O

3a

S

N
N

O
O

4ma

2.5 88 120–121 – 

2m

123



396 Mol Divers (2014) 18:389–401

Table 2 continued

Entry Aldehydes α-Methylene ketone Product Time 

(h) 

Yield
a

(%)

MP (°C) References

24 O H

Cl

2e

O O

O

3b
S

N
N

O
O

Cl

4eb

0.5 94 125–127 30 

25 O H

Cl

2a

O O

O

3b

S

N
N

O
O

Cl

4ab

0.5 93 
142–143 

– 

26 O H

OH

2n

O O

O

3b

S

N
N

O
O

HO

4nb

1.5 88 209–210 31 

27 O H

NO2

2o

O O

O

3b

S

N
N

O
O

O2N

4ob

2 85 155–156 30 

28 O H

OMe

2p

O O

O

3b

S

N
N

O
O

MeO

4pb

1.5 86 140–141 30 

Reaction conditions: aldehyde (1 mmol),α-methylene ketone (1 mmol), 2-aminobenzothiazole (1 mmol), catalyst (10 mol%), solvent-free conditions,
80 ◦C
a Isolated yield

123



Mol Divers (2014) 18:389–401 397

Table 3 Recycling and reuse of FeF3

Entry Reaction cycle Yielda (%)

1 First (fresh run) 98

2 Second cycle 96

3 Third cycle 95

4 Fourth cycle 95

a Isolated yield

with water. The mixture was filtered and washed with water.
The FeF3 catalyst was dissolved in water and also recovered
by evaporating the aqueous layer under reduced pressure.
The solid crude product was easily purified by column chro-
matography over silica gel using hexane and ethyl acetate to
get pure product 4.

Methyl-2-methyl-4-(4-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4aa)

Pale yellow solid, m.p. 179–180 ◦C; Yield 98 %. 1H
NMR (400 MHz, CDCl3): δ 7.43 (dd, J1 = 8 Hz, J2 =
1.84 Hz, 1H), 7.37–7.34 (m, 2H), 7.24–7.20 (m, 3H), 7.14–
7.10 (m, 1H), 7.04 (d, 8 Hz, 1H), 6.37 (s, 1H), 3.71 (s,
3H), 2.44 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ
167.94, 164.57, 156.35, 140.96, 138.84, 135.24, 129.98,
129.49, 127.76, 125.20, 124.87, 123.94, 112.66, 103.65,
85.17, 52.26, 24.88 ppm. HRMS (ESI, m/z): Calcd for
C19H15ClN2O2S (m/z) 370.0543. Found: 370.0543.

Ethyl-2-methyl-4-(4-methylphenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4bb)

Brown solid, m.p. 153–154 ◦C; Yield 95 %. 1H NMR
(400 MHz, CDCl3): δ 7.38 (d, 8 Hz, 1 H), 7.31 (d, 8 Hz,
2H), 7.25–7.17 (m, 1H), 7.10–7.03 (m, 4H), 6.35 (s, 1H),
4.18–4.13 (m, 2H), 2.47 (s, 3H), 2.22 (s, 3H), 1.28 (t, 12 Hz,
3H) ppm. 13C NMR (100 MHz, CDCl3): δ 166.49, 163.35,
154.34, 154.31, 138.47, 138.10, 137.94, 129.98, 129.26,
128.98, 127.09, 126.54, 123.87, 123.81, 122.06, 111.77,
103.18, 60.02, 57.48, 23.42, 21.06, 14.33 ppm. HRMS
(ESI, m/z): Calcd for C21H20N2O2S (m/z) 364.1245 Found:
364.1245.

Isopropyl-2-methyl-4-(4-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ac)

Brown solid, m.p. 132–133 ◦C; Yield 96 %. 1H NMR
(400 MHz, CDCl3): δ 7.43–7.35 (m, 3H), 7.23–7.19 (m,
3H), 7.13–7.09 (m, 1H), 7.04 (d, 8Hz, 1H), 6.35 (s, 1H),
5.06–5.03 (m, 1H), 2.45 (s, 3H), 1.28 (d, 8 Hz, 3H), 1.21 (d,
8 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ 165.88,
163.20, 154.74, 139.86, 137.77, 134.08, 128.75, 128.60,

126.59, 124.02, 123.73, 122.21, 111.52, 102.99, 67.62,
57.10, 23.75, 22.19, 21.97 ppm. HRMS (ESI, m/z): Calcd
for C21H19ClN2O2S (m/z) 398.0856 Found: 398.0856.

Ethyl-2-phenyl-4-(4-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ad)

Yellow solid, m.p. 83–84 ◦C; Yield 97 %. 1H NMR
(400 MHz, CDCl3): δ 7.49–7.47 (m, 3H), 7.39–7.33 (m,
5H), 7.29–7.25 (m, 3H), 7.19–7.15 (m, 1H), 7.10 (d, 8
Hz, 1H), 6.50 (s, 1H), 3.89–3.86 (m, 2H), 0.82 (t, 12 Hz,
3H) ppm. 13C NMR(100 MHz, CDCl3): δ 166.69, 163.42,
155.04, 140.56, 139.80, 137.69, 134.34, 129.07, 128.44,
128.38, 128.13, 127.70, 126.78, 124.23, 124.14, 122.30,
111.69, 102.74, 60.07, 57.60, 13.50 ppm. HRMS (ESI,
m/z): Calcd for C25H19ClN2O2S (m/z) 446.0856 Found:
446.0856.

Ethyl-2-butyral-4-(4-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ae)

Brown solid, m.p. 112–113 ◦C; Yield 93 %. 1H NMR
(400 MHz, CDCl3): δ 7.41 (d, 8 Hz, 1H), 7.38–7.35 (m,
2H), 7.22–7.17 (m, 3H), 7.12–7.03 (m, 2H), 6.37 (s,
1H), 4.19–4.14 (m, 2H), 2.80–2.77 (m, 2H), 1.70–1.65
(m, 2H), 1.28 (t, 12 Hz, 3H), 0.99 (t, 12 Hz, 3H) ppm.
13C NMR(100 MHz, CDCl3): δ 166.24, 163.45, 158.90,
140.02, 137.82, 134.09, 128.82, 128.53, 128.36, 126.74,
126.56, 123.95, 123.82, 122.18, 11.45, 102.65, 60.15, 57.09,
38.20, 22.06, 14.29 ppm. HRMS (ESI, m/z): Calcd for
C22H21ClN2O2S (m/z) 412.1012 Found: 412.1012.

Ethyl-2-4-isobutyryl-4-(4-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4af)

Brown solid, m.p. 127–128 ◦C; Yield 92 %. 1H NMR
(400 MHz, CDCl3): δ 7.41 (d, 8 Hz, 1H), 7.37–7.30 (m,
2H), 7.22–7.18 (m, 3 H), 7.13–7.07 (m, 1H), 7.03 (d,
8 Hz, 1H), 6.34 (s, 1 H), 4.19–4.14 (m, 2H), 3.97–3.93
(m, 1H), 1.29–1.20 (m, 6H), 1.13 (t, 12Hz, 3H) ppm.
13C NMR(100 MHz, CDCl3): δ 166.28, 163.62, 163.34,
140.21, 137.87, 134.04, 129.41, 129.06, 128.81, 128.49,
126.44, 123.95, 123.78, 122.15, 111.24, 101.38, 60.08,
57.08, 30.67, 20.49, 20.37, 14.29ppm. HRMS (ESI, m/z):
Calcd for C22H21ClN2O2S (m/z) 412.1012 Found:
412.1012.

Ethyl-2-4-chloro-4-(4-chlorophenyl)-4H-
pyrimido[2,1-b][1,3]benzothiazole-3-carboxylate (4ag)

Brown solid, m.p. 135–136 ◦C; Yield 90 %. 1H NMR
(400 MHz, CDCl3): δ 7.45 (dd, J1 = 4H z, J2 = 8Hz, 1H),
7.39-7.36 (m, 2H), 7.31 (s, 1H), 7.25–7.21 (m, 2H), 7.17–
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7.13 (m, 1H), 7.07 (d, 8 Hz, 1H), 6.41 (s, 1H), 4.74–4.70
(m, 2H), 4.23–4.18 (m, 2H), 1.30 (t, 12 Hz, 3H) ppm. 13C
NMR (100 MHz, CDCl3): δ 165.00, 164.37, 139.13, 137.41,
134.57, 129.77, 129.53, 129.02, 128.61, 128.43, 126.79,
126.35, 125.11, 124.38, 124.01, 122.35, 111.67, 104.17,
60.83, 57.14, 44.58, 14.20ppm. HRMS (ESI, m/z): Calcd
for C20H16Cl2N2O2S (m/z) 418.031 Found: 418.031.

Ethyl-2-4-trifluoro-4-(4-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ah)

Pale yellow solid, m.p. 143–144 ◦C; Yield 88 %. 1H NMR
(400 MHz, CDCl3): δ 7.49 (dd, J1 = 4H z, J2 = 8Hz, 1H),
7.35–7.32 (m, 2H), 7.28–7.17 (m, 4H), 7.07 (d, 8 Hz, 1H),
6.43 (s, 1H), 4.20–4.15 (m, 2H), 1.23 (t, 12 Hz, 3H) ppm.
13C NMR (100 MHz, CDCl3): δ 164.89, 163.66, 137.85,
136.99, 135.18, 129.74, 129.39, 128.27, 127.38, 127.02,
124.76, 124.07, 122.45 ppm. HRMS (ESI, m/z): Calcd for
C20H14ClF3N2O2S (m/z) 438.0417 Found: 438.0417.

2-Methyl-4-(4-fluorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-ethanone (4ci)

Brown solid, m.p. 122–123 ◦C; Yield 93 %. 1H NMR
(400 MHz, CDCl3): δ 7.46–7.38 (m, 3H), 7.24 (d, 8 Hz, 1H),
7.16–7.7.07 (m, 2H), 6.92–6.87 (m, 2H), 6.55 (s, 1H), 2.45
(s, 3H), 2.40 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ
195.28, 163.69, 154.56, 137.89, 137.19, 128.88, 128.80,
126.85, 125.95, 125.95, 124.24, 123.90, 122.15, 115.61,
115.40, 114.18, 111.94, 56.24, 31.92, 25.19 ppm. HRMS
(ESI, m/z): Calcd for C19H15FN2OS (m/z) 338.0889 Found:
338.0889.

T-Butyl-2-4-methyl-4-(4-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4aj)

Brown solid, m.p. 102–103 ◦C; Yield 90 %. 1H NMR
(400 MHz, CDCl3): δ 7.42 (dd, J1 = 4Hz, J2 = 8H z, 1H ),
7.36–7.34 (m, 2H), 7.24–7.20 (m, 3H), 7.13–7.09 (m, 1H),
7.03 (d, 8 Hz, 1H), 6.33 (s, 1H), 2.41 (s, 3H), 1.46 (s,
9H) ppm. 13C NMR (100 MHz, CDCl3): δ 165.79, 162.86,
153.67, 139.83, 137.85, 134.03, 128.75, 128.48, 126.55,
123.93, 123.76, 122.20, 111.42, 104.23, 80.69, 57.09, 28.40,
23.69 ppm. HRMS (ESI, m/z): Calcd for C22H21ClN2O2S
(m/z) 412.1012 Found: 412.1012.

Ethyl-2-4-nitrophenyl-4-(4-chlorophenyl)-4H-
pyrimido[2,1-b][1,3]benzothiazole-3-carboxylate (4ak)

Orange solid, m.p. 198–199 ◦C; Yield 90 %. 1H NMR
(400 MHz, CDCl3): δ 8.23–8.20 (m, 2H), 7.56–7.47 (m,
5H), 7.32–7.13 (m, 5H), 6.56 (s, 1H), 3.92–3.90 (m, 2H),

0.89 (t, 10 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ
165.54, 164.02, 153.02, 147.54, 147.42, 139.43, 137.45,
134.65, 129.29, 129.22, 128.88, 128.40, 128.05, 127.04,
124.63, 124.06, 123.89, 122.97, 122.44, 111.94, 103.51,
60.42, 57.51, 13.66 ppm. HRMS (ESI, m/z): Calcd for
C25H18ClN3O4S (m/z) 491.0707 Found: 491.0707.

Methyl-2-methyl-4-(4-isopropylphenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4da)

Brown solid, m.p. 146–147 ◦C; Yield 93 %. 1H NMR
(400 MHz, CDCl3): δ 7.42 (d, 8 Hz, 1H), 7.32 (d, 8 Hz,
1H), 7.26–7.20 (m, 1H), 7.13–7.08 (m, 4H), 6.36 (s, 1H),
3.71 (s, 3H), 2.82–2.76 (m, 1H), 2.44 (s, 3H), 1.16 (d, 8 Hz,
6H) ppm. 13C NMR (100 MHz, CDCl3): δ 168.16, 164.57,
155.96, 149.96, 139.86, 139.20, 128.01, 127.82, 127.67,
124.92, 123.17, 112.87, 104.07, 58.45, 52.17, 34.79, 24.86,
24.76 ppm. HRMS (ESI, m/z): Calcd for C22H22N2O2S
(m/z) 378.1402 Found: 378.1402.

Methyl-2-methyl-4-(2-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ea)

Yellow solid, m.p. 153–154 ◦C; Yield 93 %. Mp 153–154 ◦C.
1H NMR (400 MHz, CDCl3): δ 7.61 (dd, J1 = 4Hz, J2 =
8Hz, 1H), 7.43 (d, 8 Hz, 1H), 7.38 (d, 8 Hz, 1H), 7.28–
7.22 (m, 2H), 7.19–7.09 (m, 3H), 6.75 (s, 1H), 3.67 (s, 3H),
2.48 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ 166.58,
163.47, 155.59, 139.67, 138.16, 131.45, 130.25, 129.65,
129.45, 128.16, 126.80, 124.09, 123.26, 121.99, 111.60,
102.47, 54.36, 50.97, 23.53 ppm. HRMS (ESI, m/z): Calcd
for C19H15ClN2O2S (m/z) 370.0543 Found: 370.0543.

Methyl-2-methyl-4-(4-methylphenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ba)

Brown solid, m.p. 154–155 ◦C; Yield 90 %. 1H NMR
(400 MHz, CDCl3): δ 7.41–7.39 (m, 1H), 7.30 (d, 8 Hz,
2H), 7.22–7.18 (m, 1H), 7.11–7.04 (m, 4H), 6.35 (s,
1H), 3.69 (s, 3H), 2.44 (s, 3H), 2.23 (s, 3H) ppm. 13C
NMR (100 MHz, CDCl3): δ 168.11, 164.55, 155.95, 139.65,
139.21, 139.15, 130.44, 128.05, 127.66, 124.95, 124.90,
123.18, 112.83, 104.08, 58.53, 52.15, 24.80, 22.19 ppm.
HRMS (ESI, m/z): Calcd for C20H18N2O2S (m/z) 350.1089
Found: 350.1089.

Methyl-2-methyl-4-(2-fluorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4fa)

Yellow solid, m.p. 139–140 ◦C; Yield 88 %. 1H NMR
(400 MHz, CDCl3): δ 7.52–7.48 (m, 1H), 7.39 (d, 8 Hz,
1H), 7.25–7.22 (m, 2H), 7.20–7.09 (m, 2H), 7.06–6.95 (m,
2H), 6.67 (s, 1H), 3.67 (s, 3H), 2.49 (s, 3H) ppm. 13C
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NMR (100 MHz, CDCl3): δ 167.67, 164.49, 160.88, 158.40,
157.06, 139.02, 130.84, 130.81, 127.92, 126.27, 126.23,
125.18, 124.62, 123.18, 116.39, 116.16, 112.11, 112.06,
102.85, 52.19, 51.85, 24.65 ppm. HRMS (ESI, m/z): Calcd
for C19H15FN2O2S (m/z) 354.0838 Found: 354.0838.

Methyl-2-methyl-4-(4-fluorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ca)

Yellow solid, m.p. 160–161 ◦C; Yield 91 %. 1H NMR
(400 MHz, CDCl3): δ 7.44–7.37 (m, 3H), 7.25–7.20 (m,
1H), 7.14–7.05(m, 2H), 6.95–6.90 (m, 2H), 6.38 (s, 1H), 3.71
(s, 3H), 2.45 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ
166.92, 163.66, 155.10, 137.80, 137.34, 128.84, 128.76,
126.63, 124.05, 123.80, 122.23, 115.72, 115.51, 111.62,
102.80, 57.00, 51.16, 23.76 ppm. HRMS (ESI, m/z): Calcd
for C19H15FN2O2S (m/z) 354.0838 Found: 354.0838.

Methyl-2-methyl-4-(4-bromophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ga)

Yellow solid, m.p. 166–167 ◦C; Yield 96 %. 1H NMR
(400 MHz, CDCl3): δ 7.42 (d, 8 Hz, 1H), 7.37 (d, 8Hz, 2H),
7.30–7.27 (m, 2H), 7.22 (t, 12 Hz, 1H), 7.12 (t, 12 Hz,
1H), 7.03 (d, 8 Hz, 1H), 6.35 (s, 1H), 3.71 (s, 3H), 2.44 (s,
3H) ppm. 13C NMR (100 MHz, CDCl3): δ 166.79, 163.44,
155.25, 140.33, 137.68, 131.81, 128.68, 126.65, 124.08,
123.72, 122.33, 122.22, 111.53, 102.44, 57.10, 51.16, 23.77
ppm. HRMS (ESI, m/z): Calcd for C19H15BrN2O2S (m/z)
414.0038 Found: 414.0038.

Methyl-2-methyl-4-(2-chloro-6-fluorophenyl)-4H-
pyrimido[2,1-b][1,3]benzothiazole-3-carboxylate (4ha)

Orange solid, m.p. 148–149 ◦C; Yield 85 %. 1H NMR
(400 MHz, CDCl3): δ 7.40 (dd, J1 = 2Hz, J2 = 8Hz, 1H),
7.22–7.7.09 (m, 6H), 6.99 (s, 1H), 3.65 (s, 3H), 2.44 (s,
3H) ppm. 13C NMR (100 MHz, CDCl3): δ 167.73, 164.42,
157.97, 139.23, 131.22, 131.12, 127.85, 125.07, 124.30,
123.14, 112.05, 51.93, 24.84 ppm. HRMS (ESI, m/z): Calcd
for C19H15BrN2O2S (m/z) 388.0449 Found: 388.0449.

Methyl-2-methyl-4-(2-methoxyphenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ia)

Yellow solid, m.p. 145–146 ◦C; Yield 89 %. 1H NMR
(400 MHz, CDCl3): δ 7.47 (dd, J1 = 2Hz, J2 = 8Hz, 1H),
7.35–7.7.31 (m, 2H), 7.20–7.13 (m, 2H), 7.07–7.03 (m,
1H), 6.87–6.80 (m, 2H), 6.71 (s, 1H), 3.91 (s, 3H), 3.63
(s, 3H), 2.46 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ
168.00, 164.38, 156.99, 156.23, 139.47, 130.86, 130.79,
130.68, 127.44, 124.61, 124.35, 122.75, 122.13, 103.09,

56.66, 53.24, 51.85, 24.50 ppm. HRMS (ESI, m/z): Calcd
for C20H18N2O3S (m/z) 366.1038 Found: 366.1038.

Methyl-2-methyl-4-(3,4,5-methoxyphenyl)-4H-
pyrimido[2,1-b][1,3]benzothiazole-3-carboxylate (4ja)

Brown solid, m.p. 138–139 ◦C; Yield 87 %.1H NMR
(400 MHz, CDCl3): δ 7.46 (dd, J1 = 2Hz, J2 = 8Hz, 1H),
7.28–7.23 (m, 1H), 7.17–7.10 (m, 2H), 6.60 (s, 2H), 6.36
(s, 1H), 3.76 (t, 12 Hz, 12H), 2.44 (s, 3H) ppm. 13C
NMR (100 MHz, CDCl3): δ 167.08, 153.32, 136.97, 126.67,
124.05, 124.05, 123.72, 122.19, 111.80, 103.97, 102.81,
60.71, 57.70, 56.13, 51.13, 23.72 ppm. HRMS (ESI, m/z):
Calcd for C22H22N2O5S (m/z) 426.1249 Found: 426.1249.

Methyl-2-methyl-4-(3-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ka)

Yellow solid, m.p. 139–140 ◦C; Yield 95 %. 1H NMR
(400 MHz, CDCl3): δ 7.45–7.40 (m, 2H), 7.30–7.11 (m,
5H), 7.05 (d, 8 Hz, 1H), 6.37 (s, 1H), 3.72 (s, 3H), 2.45 (s,
3H) ppm. 13C NMR (100 MHz, CDCl3): δ 167.87, 164.59,
156.52, 144.31, 138.80, 135.73, 131.04, 129.69, 128.21,
127.82, 126.30, 125.23, 124.87, 123.36, 112.64, 103.42,
58.32, 52.28, 24.89 ppm. HRMS (ESI, m/z): Calcd for
C19H15ClN2O2S(m/z) 370.0543 Found: 370.0543.

Methyl-2-methyl-4-(butyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4la)

Brown solid, m.p. 123–124 ◦C; Yield 85 %. 1H NMR
(400 MHz, CDCl3): δ = 7.48 (t, 8Hz, 1H), 7.38–7.33 (m,
1H), 7.20 (d, 8Hz, 2H), 5.59 (t, 8Hz, 1H), 3.78 (s, 3H), 2.41
(s, 3H), 1.80–1.77(m, 1H), 1.55–1.52 (m, 1H), 1.40–1.36 (m,
1H), 1.12–1.07 (m, 1H), 0.79–0.78(m, 3H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 167.27, 164.16, 157.35, 137.98,
126.65, 124.04, 123.78, 122.36, 111.02, 100.06, 53.22,
51.13, 36.19, 23.45, 16.80, 13.97 ppm. HRMS (ESI, m/z):
Calcd for C16H18N2O2S (m/z) 302.1089 Found 302.1089

Methyl-2-methyl-4-(propyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ma)

Brown solid, m.p. 120–121 ◦C; Yield 88 %.1H NMR
(400 MHz, CDCl3): δ = 7.47 (d, 8Hz, 1H), 7.36–7.33 (m,
1H), 7.18 (t, 8Hz, 2H), 5.61 (t, 8Hz, 1H), 3.78 (s, 3H),
2.42 (s, 3H), 1.89–1.87(m, 1H), 1.63–1.61 (m, 1H), 0.79(t,
12Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.25,
164.29, 157.55, 137.96, 126.62, 123.98, 123.78, 122.35,
111.05, 99.36, 54.07, 51.12, 26.56, 23.47, 7.69 ppm. HRMS
(ESI, m/z): Calcd for C15H16N2O2S (m/z) 288.0932 Found
288.0932.
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Ethyl-2-methyl-4-(2-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4eb)

Yellow solid, m.p. 125–127 ◦C; Yield 94 %. 1H NMR
(400 MHz, CDCl3): δ 7.62 (dd, J1 = 4Hz, J2 = 8Hz, 1H),
7.47 (d, 8 Hz, 1H), 7.38 (d, 8 Hz, 1H), 7.27–7.23 (m,
2H), 7.19–7.09 (m, 3H), 6.76 (s, 1H), 4.17–4.13 (m,
2H), 2.49 (s, 3H), 1.24 (t, 12 Hz, 3H) ppm. 13C NMR
(100 MHz, CDCl3): δ 166.22, 163.33, 155.31, 139.58,
138.23, 131.46, 130.45, 129.68, 129.45, 128.08, 126.74,
124.04, 123.26, 121.98, 111.67, 102.77, 59.99, 54.46, 23.66,
14.42 ppm. HRMS (ESI, m/z): Calcd for C20H17ClN2O2S
(m/z) 384.0699 Found 384.0699.

Ethyl-2-methyl-4-(4-chlorophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ab)

Brown solid, m.p. 142–143 ◦C; Yield 93 %.1H NMR
(400 MHz, CDCl3): δ 7.42–7.35 (m, 3H), 7.21–7.17 (m,
3H), 7.10–7.02 (m, 2H), 6.36 (s, 1H), 4.19–4.14 (m,
2H), 2.46 (s, 3H), 1.28 (t, 12 Hz, 3H) ppm. 13C NMR
(100 MHz, CDCl3): δ 166.31, 163.28, 154.90, 139.83,
137.07, 134.07, 128.77, 128.50, 126.59, 124.03, 123.70,
122.18, 111.53, 102.69, 60.13, 57.06, 23.70, 14.34 ppm.
HRMS (ESI, m/z): Calcd for C20H17ClN2O2S (m/z)
384.0699 Found 384.0699.

Ethyl-2-methyl-4-(4-hydroxyphenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4nb)

White solid, m.p. 209–210 ◦C; Yield 88 %.1H NMR
(400 MHz, CDCl3): δ 9.31 (s, 1H), 7.56–7.32 (m, 4H), 7.22–
7.01 (m, 2H), 6.89–6.72 (m, 2H), 6.32 (s, 1H), 4.08–
4.14 (m, 2H), 2.49 (s, 3H), 1.26 (t, 12Hz, 3H) ppm. 13C
NMR (100 MHz, CDCl3): δ 165.21, 163.24, 156.31, 153.58,
136.49, 132.65, 128.87, 126.38, 123.42, 122.85, 122.21,
116.01, 111.85, 102.36, 59.45, 56.21, 23.11, 14.32 ppm.
HRMS (ESI, m/z): Calcd for C20H18N2O3S (m/z) 366.1038
Found 366.1038.

Ethyl-2-methyl-4-(4-nitrophenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4ob)

Pale yellow solid, m.p. 155–156 ◦C; Yield 85 %.1H NMR
(400 MHz, CDCl3): δ 7.65–7.32 (m, 4H), 7.21–7.05 (m,
4H), 6.42 (s, 1H), 4.25–4.15 (m, 2H), 2.46 (s, 3H), 1.30 (t,
12Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ 165.21,
163.45, 155.86, 148.23, 147.56, 137.69, 128.32, 126.19,
124.67, 123.89, 122.89, 122.01, 112.14, 102.09, 59.49,
57.23, 23.43, 14.66 ppm. HRMS (ESI, m/z): Calcd for
C20H17N3O4S (m/z) 395.0940 Found 395.0940.

Ethyl-2-methyl-4-(4-methoxyphenyl)-4H-pyrimido[2,1-
b][1,3]benzothiazole-3-carboxylate (4pb)

Yellow solid, m.p. 140–141 ◦C; Yield 86 %.1H NMR
(400 MHz, CDCl3): δ 7.55–7.30 (m, 4H), 7.01–6.82 (m,
4H), 6.31 (s, 3H), 4.12–4.02 (m, 2H), 3.75 (s, 3H), 2.41 (s,
3H), 1.27 (t, 12Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3):
δ 166.45, 163.28, 159.45, 153.87, 152.23, 138.69, 132.79,
128.31, 125.98, 123.47, 122.87, 122.06, 120.69, 118.92,
112.89, 103.56, 60.85, 58.36, 55.21, 23.45, 14.23 ppm.
HRMS (ESI, m/z): Calcd for C21H20N2O3S (m/z) 380.1195
Found 380.1195.
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