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Abstract JAK2 and JAK3 are non-receptor protein tyro-
sine kinases implicated in B-cell- and T-cell-mediated dis-
eases. Both enzymes work via different pathways but are
involved in the pathogenesis of common lymphoid-derived
diseases. Hence, targeting both Janus kinases together can
be a potential strategy for the treatment of these diseases.
In the present study, two separate pharmacophore-based 3D-
QSAR models ADRR.92 (Q2

test0.663, R2
train0.849, F value

219.3) for JAK2 and ADDRR.142 (Q2
test0.655, R2

train 0.869,
F value 206.9) for JAK3 were developed. These models
were employed for the screening of a PHASE database
of approximately 1.5 million compounds; subsequently, the
retrieved hits were screened employing docking simulations
with JAK2 and JAK3 proteins. Finally, ADME properties
of screened dual inhibitors displaying essential interactions
with both proteins were calculated to filter candidates with
poor pharmacokinetic profiles. These candidates could serve
as novel therapeutic agents in the treatment of lymphoid-
related diseases.
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Introduction

Janus kinases are non-receptor protein tyrosine kinases
which mediate the signaling of various cytokines pathways,
and anomalous regulation of these pathways can lead to var-
ious cancerous conditions. For the prevention or control of
above-mentioned diseases, inhibition of these cytokine path-
ways is necessary either directly or by the inhibiting Janus
kinases that participate in cytokine-mediating signaling as
secondary messengers. JAK2 is involved in multi cytokine
pathways along with other JAK members, but its role in IL-
6-mediated signaling is significant in various physiological
processes such as bone metabolism, acute phase response,
hematopoiesis, and B-cell differentiation [1]. Imbalance in
IL-6-mediated signaling can increase B-cell differentiation
which further leads to lymphoid-derived diseases. JAK3 also
plays a vital role in lymphoid development via IL-2 path-
way that regulates the activity of distinct lymphoid cell pop-
ulations including T and B lymphocytes and natural killer
(NK) cells [2]. The imbalance in IL-2-mediated signaling
also contributes in the pathogenesis of lymphoid-derived
diseases. Thus, the development of dual JAK2/3 inhibitors
could be efficacious strategy to treat a variety of lymphoid-
derived diseases that are dependent on the JAK2 and JAK3
signaling cascade. A drug in clinical trials, AG-490, which
is dual JAK2/3 inhibitor, effectively blocks uncontrolled B-
cell growth in the patients suffering from acute lymphoblastic
leukemia by inhibiting the abnormal constitutive activation
of JAK2 detected within these cells [3]. It also blocks the
IL-2-mediated cell growth of phytohemagglutinin (PHA) or
antigen-specific-activated human T cells through inactivation
of JAK3 and STAT5 signaling pathway [4].

In the present study, two separate pharmacophore models
were developed for JAK2 and JAK3 enzymes; consequently,
the models were employed for the screening of a PHASE

123

http://dx.doi.org/10.1007/s11030-013-9497-z


254 Mol Divers (2014) 18:253–267

molecular database of 1.5 million molecules. The combined
approach of pharmacophore-based virtual screening (PBVS)
and structure-based virtual screening (SBVS) was utilized in
the identification of new dual inhibitory agents for JAK2 and
JAK3. We used AG490 as reference for our study so as to get
final hits having potency and activity closer to this drug.

Computational methods

Molecular modeling—data selection and processing

Two datasets consisting of 252 JAK2 and 211 JAK3 inhibitor
compounds mentioned in Table S1 and S2 (supplementary
data), respectively, were selected from the literature [5–
23]. The biological activities of both the datasets extended
(IC50 values) over a wide range 0.00009–29.000 and 0.0006–
51.300µM, respectively. The reported IC50 values were con-
verted into respective pIC50values by taking the negative log-
arithm of the IC50 values (−logIC50) and were subsequently
utilized for the development of pharmacophore model. Mae-
stro, an integrated visualization interface for all Schrödinger
software, was used to sketch all compounds [24], and these
molecules were optimized using Ligprep [25] employing the
OPLS_2005 force field.

Pharmacophore generation

PHASE, a high-performance program module of Schrödinger
for ligand-based drug design, was used to generate phar-
macophore models [26]. Since most of the studied lig-
ands were flexible, all possible conformations for a lig-
and were generated using mixed Monte Carlo minimization
method (MCMM)/low mode docking (LMOD) approach.
For conformation sampling, energy window of 20 kcal/mol
was employed to increase the chances of finding the rep-
resentative conformer close to the bound structure. After
conformation generation, ligands were assigned as actives
and inactives by giving an appropriate activity threshold
value. The activity threshold value was selected on the
basis of dataset activity distribution. Using the “create site”
option in PHASE, molecules were assigned different phar-
macophoric features. PHASE provides six pharmacophoric
features: hydrogen bond acceptor (HBA) (A), hydrogen bond
donor (HBD) (D), hydrophobic (H), negatively charged (N),
positively charged (P), and aromatic ring (R) features. The
conformational space of active molecules was utilized for the
generation of common pharmacophore hypotheses (CPH),
which groups together similar pharmacophores according to
their intersite distances. The resulting hypotheses obtained
were scored and ranked on the basis of scoring parameters,
i.e., survival and survival minus inactive (S − I ) score. The
scoring was done to identify the best candidate hypothe-
sis, which provided an overall ranking of all the hypothe-

ses. The hypotheses so generated were then clustered, and a
representative model from each cluster was selected on the
basis of the highest S − I score. The selected models were
thereafter utilized for the alignment of non-model molecules
which were subsequently intended for the development of
3D-QSAR model.

3D-QSAR development

Three-dimensional quantitative structure–activity relation-
ship (QSAR) is the computational method used in the devel-
opment of relationship between independent (structural com-
ponents) and dependent variables (biological activity) to
obtain a reliable statistical model for prediction of the activ-
ities of new molecules [27,28]. QSAR modeling was carried
out using the selected hypotheses by randomly dividing the
dataset into training set and test set on the basis of proper
variation of activity. For the generation of 3D-QSAR models,
all training set molecules aligned over the common pharma-
cophoric sites were placed into regular 1 Å cubic grids. Each
cube was allocated 0 or 1 “bits” to account the different types
of atomic features in training set molecules that occupy the
cube. Each occupied cube gives rise to one or more volume
bits, where a separate bit is allocated for each different cate-
gories of atom that occupy the cubes. A large pool of binary
values (0 and 1) was formed for the dataset molecules that
were treated as independent variable for the generation of
QSAR models. The best QSAR model was selected on the
basis of high value of Q2

test (correlation of prediction for test
set) and R2

train (correlation of prediction for training set). The
5 and 7 component (PLS factor) models with good statistics
were obtained for the dataset of JAK2 and JAK3, respec-
tively, whereas the maximum number of PLS factors in each
model can be 1/5 of the total number of training set mole-
cules. Further increase in the number of PLS factors did not
improve the model statistics or predictive ability.

Since pharmacophore model is theoretical model, it is nec-
essary to analyze whether or not the developed model is able
to predict the active compounds. Thus, the developed models
need to be validated before going for further implementation.
The validation of the models was carried out by different val-
idation methods including both internal and external valida-
tion. For the validation of the generated QSAR model for its
external predictive ability and reliability, test set prediction
using Pearson-r was examined. Pearson coefficient of corre-
lation determines the predictive reliability of the generated
model for external dataset molecules that have not been con-
sidered for the development of model i.e., test set molecules.
In addition, the validation for the external predictive ability of
the generated model further validated by calculating a set of
parameters i.e., R2

o or R′
o

2 close to R2, [(R2−R2
o)/R2] < 0.1

or [R2 − R′
o

2
/R2] < 0.1, and the corresponding 0.85 ≤ k ≤

1.15 or 0.85 ≤ k′ ≤ 1.15 [29].
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The other validation methods include applicability domain
(APD) calculation that determines the resemblance between
training and test set compounds and Y-randomization which
analyze the robustness of the generated model. The APD
calculation was carried out using “canvas” program in which
similarity measurements were determined on the basis of
Euclidean distances between all pairs of training and test set
compounds. In this validation parameter, the similarity of
test set molecules must reside within the threshold (APD)
otherwise selected model is considered to be unreliable for
the prediction of new compounds.

APD = 〈d〉 + σ Z

〈d〉 new average, σ is standard deviation of training set mole-
cules with distances lower than previously calculated average
value, and Z is an empirical cutoff with default value of 0.5.

Y-randomization is determined by scrambling the activity
data of training set molecules in random manner and to gener-
ate different training sets from the original training set. There-
after, for the random sets, value of R2 was determined and
the average value so obtained was reported as R2

scramble. This
R2

scramble was calculated using PHASE module. The value of
R2

scramble should be less than the R2
train of the original selected

model.

Virtual screening

Virtual screening (VS) was performed in order to identify
those structures among conformers database which are most
likely to bind to a drug target. VS was carried out systemati-
cally using integral use of two techniques classified as SBVS
and ligand-based virtual screening (LBVS). The database
screening using pharmacophore model is a method of LBVS
to screen millions of multi-conformational compounds to
retrieve structurally diverse hits. To overcome the drawback
of LBVS, i.e., lacking the ability to identify false hits, com-
bination of SBVS and LBVS is used as integrated approach
in drug discovery protocol.

A PHASE database of 1.5 million molecules was
employed for the screening with the selected JAK2 and JAK3
pharmacophore models for the identification of new hits.
These hit compounds contain the structural features that over-
lap the selected model. The hit molecules were further docked
using Glide [30,31] in the JAK2 and JAK3 proteins to remove
the false negative and positive hits. Some parameters related
to oral bioavailability and pharmacokinetic profile of the
designed molecules were computationally calculated using
Qikprop [32]. These calculated parameters were finally used
for filtering and ranking the large number of screened mole-
cules. Qikprop is based on the principle of Lipinski’s rule of
five. According to this rule, poor absorption is expected if
molecular weight (MW) > 500, partition coefficient (logP)
> 5, HBDs > 5, and HBAs > 10. The ADME parameters

include partition coefficient (QPlogPo/w), water solubility
(QPlogS), cell permeability (QPPCaco), percentage human
oral absorption, etc.

Finally, ligands were sampled for post-processing with
Prime/MM–GBSA which predicts the binding energy of set
of ligands and a single receptor. The MM–GBSA binding
energy (�Gbind) is estimated in kcal/mol using equation:

MM−GBSA �Gbind = ER:EL − EL − ER

where ER:EL is prime energy of the optimized complex, EL
is prime energy of optimized free ligand, and ER is prime
energy of optimized free receptor.

Results and discussion

Pharmacophore generation and 3D QSAR

A pharmacophore modeling study for phenylaminopyrimi-
dine JAK2 inhibitors has been reported in 2011 considering
44 molecules [33]. In the present study, diverse dataset of 252
inhibitors of JAK2 including the above-mentioned series was
utilized for the study. For the generation of pharmacophore
model, the molecules were divided into active, inactive, and
moderately active molecules. For JAK2 inhibitors, threshold
value was 9.35 for active ligand and 5.10 for inactive ligand.
For this, a total of 16 molecules were considered active, 14
molecules as inactives, and rest were considered moderately
active. In the case of JAK3 inhibitors, threshold value was
taken 8.20 for actives and 5.00 for inactives that contain total
of 16 molecules active and 15 molecules as inactive. The con-
formational space of each molecule was then sampled using
MCMM/LMOD algorithm. A maximum of 1,000 conform-
ers were generated for each molecule within energy window
of 20 kcal/mol and root mean square deviation (RMSD) value
of 1 Å to remove unnecessary conformers. For the genera-
tion of pharmacophore models, the software was restricted
to explore minimum of 4 and maximum of 5 sites for both
JAK2 and JAK3 inhibitors and these models were restricted
to match 16 of 16 and 12 of 16 active molecules, respectively.
A total of 17 hypotheses were obtained for JAK2 and 13 for
JAK3 inhibitors and were subsequently ranked on the basis
of survival score and survival minus inactive (S − I ) score
that correspond to score active and score inactive, respec-
tively. The hypotheses so generated had very similar active
and inactive score; therefore, in order to avoid selection of
similar kind of hypothesis, all the generated hypotheses were
clustered and a representative of each cluster was selected on
the basis of highest S − I score. Thus, a total of 5 hypotheses
were selected each for JAK2 and JAK3 belonging to differ-
ent cluster and the statistical parameters of these models are
reported in the Table 1.

The 3D-QSAR models for both the datasets were gener-
ated by dividing the dataset molecules into test and train-
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Table 1 Statistical results of
PHASE-generated
pharmacophore hypotheses for
JAK2 and JAK3 inhibitors

a S − I survival minus inactive
score corresponds to score
inactives and high value of
S − I represents the hypothesis
that is more likely to pick active
molecules than inactives
A hydrogen bond acceptor, D
hydrogen bond donor, H
hydrophobic, R ring aromatic

Hypothesis ID Survival score S − I scorea Site Vector Volume # Matches

For JAK2 inhibitors

ADRR.54 103.713 102.337 0.880 0.947 0.681 16

ADRR.92 103.445 102.311 0.750 0.921 0.573 16

ADRR.87 102.921 101.788 0.540 0.812 0.370 16

AADR.9 102.562 101.427 0.400 0.657 0.302 16

AADR.1 102.342 101.320 0.290 0.632 0.218 16

For JAK3 inhibitors

ADDRR.14 91.014 89.748 0.280 0.804 0.412 12

ADDRR.44 90.588 89.580 0.710 0.934 0.664 12

ADDRR.107 89.549 88.605 0.690 0.907 0.567 12

ADDRR.142 89.370 88.355 0.390 0.845 0.437 13

ADDRR.141 89.292 88.276 0.360 0.823 0.407 13

Table 2 Details of dataset for 3D-QSAR of JAK2 and JAK3 inhibitors

Name of target Total number
of molecules

Training set Test set

JAK2 252 161 91

JAK3 211 130 81

ing set molecules considering uniform variation of biolog-
ical activity of the molecules given in Table 2. The best
hypothesis of JAK2 was ADRR.92, indicating that JAK2
inhibitors have one hydrogen bond acceptor (A), one HBD
(D), and two ring aromatic (R) features. This hypothesis was
selected on the basis of highest Q2

test value i.e., 0.663 and
also showed high R2

train (0.849) and F value (219.3). The
large value of F (Fisher test value) indicated a statistically
significant regression model. Similarly, best hypothesis of

JAK3 (ADDRR.142) was selected which showed high Q2
test

(0.655) and also showed high R2
train (0.869) and F value

(206.9). The ADDRR.142 comprised five features includ-
ing one HBA (A), two HBD (D), and two ring aromatic
(R) features. The selected models of both JAK2 and JAK3
also rendered the good predictive power over other mod-
els. The statistical results of generated QSAR models are
mentioned in Table 3. The spatial arrangement of features
along with their distance present in four (ADRR.92) and five
(ADDRR.142) featured pharmacophore models of JAK2 and
JAK3 and its mapping over their corresponding highest active
molecules is shown in the Fig. 1a–d. The correlation graphs
obtained between experimental and the predicted activity of
training set molecules and test set molecules obtained from
the best models are displayed in Fig. 2a–d. The high values of
Pearson-r for test set molecules i.e., 0.837 (JAK2) and 0.816

Table 3 Statistical results of the generated 3D-QSAR models for JAK2 and JAK3 inhibitors

Model ID # PLS factors SD R2
train F value Stability RMSE Q2

test Pearson-r

For JAK2

ADRR.54 3 0.612 0.768 170.200 0.949 0.693 0.651 0.819

ADRR.92 4 0.492 0.849 219.300 0.868 0.681 0.663 0.837

ADRR.87 3 0.667 0.719 201.900 0.967 0.859 0.463 0.684

AADR.9 5 0.436 0.882 232.300 0.790 0.736 0.606 0.791

ADDR.1 4 0.487 0.852 224.000 0.828 0.902 0.409 0.643

For JAK3

AADHR.14 3 0.399 0.829 204.000 0.774 0.752 0.453 0.679

ADDRR.44 3 0.421 0.811 178.800 0.852 0.736 0.482 0.707

ADDRR.107 3 0.368 0.853 240.800 0.827 0.769 0.435 0.676

ADDRR.142 4 0.352 0.869 206.900 0.748 0.597 0.655 0.816

ADDRR.141 4 0.352 0.868 205.600 0.754 0.620 0.629 0.799

SD standard deviation, R2
train coefficient of prediction for training set molecules, F value Fisher test, RMSE root means squared error, Q2

test cross
validation coefficient of prediction for test set molecules, Pearson-r Pearson coefficient of correlation for test set molecules
Bold model is the best model for JAK2 and JAK3 selected on the basis of highest
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Fig. 1 Intrasite distances of the best pharmacophore models ADRR.92 (a), intrasite distances of ADDRR.142 (c), mapping of ADRR.92 over the
highest active molecule JAK2-150 (b), and mapping of ADDRR.142 over the highest active molecule JAK3-43 (d)

(JAK3) described the high external predictive ability of these
models. The best models also showed acceptable values of
k, 1.007; k′, 0.984; R2

o, 0.995, R′
o

2, 0.989 for JAK2 and k,
0.991; k′, 1.000; R2

o, 0.993, R′
o

2, 1.000 for JAK3, confirming
the prediction reliability of both selected models. The values
of calculated APD of test set molecules were also observed
to be within the range of calculated APD of training set mole-
cules indicating the reliability of models for the prediction of
new compounds (Table 4). In Y-randomization, the selected
3D-QSAR models of JAK2 and JAK3 exhibited lower val-
ues of R2

scramble, i.e., 0.638 and 0.684, respectively, as com-
pared to corresponding original values of R2

train, confirming
the trueness of the selected models. Three features, i.e., HBA
(A), HBD (D), and ring aromatic (R) of the selected model
of JAK2 inhibitors are similar to that of already published
pharmacophore model.

Virtual screening

In our integrated VS protocol, 1.5 million PHASE data-
base molecules were screened through the validated pharma-
cophore model of JAK2 and 1,000 molecules were retrieved
due to restriction of maximum output molecules. These 1,000
molecules were subsequently screened through JAK3 model
that retrieved 436 molecules. These 436 molecules con-
tained the structural features of both pharmacophore mod-
els but could have different conformations that might not
properly interact with JAK2 and JAK3 proteins. To avoid
the selection of false negative molecules that did not inter-
act properly with proteins and false positive molecules that
show the interactions but not favourable, docking analysis
was carried out. A number of 3D structures of both JAK2
and JAK3 in complex with different ligands are available
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Fig. 2 Correlation graph between experimental and predicted activities of: training set molecules of JAK2 (a), test set molecules of JAK2 (b),
training set molecules of JAK3 (c), and test set molecules of JAK3 (d)

in PDB data bank. For the docking analysis, suitable struc-
tures were selected on the basis of cross-docking experiments
(Fig 3).

Protein selection

Cross-docking is the process of extraction of all ligands from
their crystal structures and then redocked those ligands in
each crystal protein individually. The redocked ligands are
then aligned over their actual crystal ligands, and deviation
between the two ligands is assessed as RMSD. The average

RMSD of all redocked ligands in each protein was deter-
mined to signify the quality of crystal protein. The lower
RMSD value represents the ability of the crystal protein
to dock the molecules more accurately. Among 28 crys-
tal structures available for JAK2 with different ligands, six
(PDB ID: 3KRR, 3E62, 3E63, 3E64, 3UGC, and 4FVQ)
were selected on the basis of good resolution <2 Å. From
these, 3UGC showed the lowest RMSD value [34–37]. On the
other hand, eight crystal structures of JAK3 (PDB ID: 1YVJ,
4HVD, 3PJC, 4HVI, 4HVH, 4HVG, 3LXK, and 3LXL) were
available at PDB site [15,38–40]. Among them, 4HVD was
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Table 4 Applicability domain calculations for the test set molecules of
JAK2 and JAK3

Compound
(JAK2)

Distance
(APD = 5.963)

Compound
(JAK2)

Distance
(APD = 5.963)

JAK2-208 3.742 JAK2-242 3.317

JAK2-149 3.162 JAK2-160 3.605

JAK2-151 3.162 JAK2-173 1.414

JAK2-221 3.605 JAK2-252 2.236

JAK2-226 4.359 JAK2-12 2.449

JAK2-214 3.605 JAK2-24 3.742

JAK2-145 3.162 JAK2-124 3.162

JAK2-148 3.317 JAK2-94 3.000

JAK2-115 2.000 JAK2-52 2.646

JAK2-101 1.732 JAK2-123 3.162

JAK2-110 2.000 JAK2-10 3.605

JAK2-111 2.449 JAK2-196 2.646

JAK2-135 3.162 JAK2-195 3.162

JAK2-140 3.000 JAK2-77 2.646

JAK2-103 1.732 JAK2-247 2.646

JAK2-112 2.828 JAK2-87 2.449

JAK2-176 2.646 JAK2-205 2.449

JAK2-62 3.000 JAK2-193 2.449

JAK2-209 3.742 JAK2-48 2.646

JAK2-142 3.162 JAK2-79 2.646

JAK2-167 2.828 JAK2-202 2.646

JAK2-128 3.000 JAK2-89 2.449

JAK2-162 4.000 JAK2-1 2.236

JAK2-177 2.449 JAK2-191 2.236

JAK2-55 2.645 JAK2-244 2.449

JAK2-250 5.830 JAK2-189 3.162

JAK2-61 3.000 JAK2-85 1.000

JAK2-7 3.464 JAK2-78 2.646

JAK2-12 4.690 JAK2-84 1.000

JAK2-136 3.000 JAK2-185 2.646

JAK2-168 1.732 JAK2-199 2.449

JAK2-130 3.000 JAK2-198 2.236

JAK2-27 5.291 JAK2-197 2.236

JAK2-33 5.291 JAK2-184 2.646

JAK2-170 1.414 JAK2-246 2.449

JAK2-58 3.000 JAK2-50 2.646

JAK2-5 2.236 JAK2-35 2.449

JAK2-13 3.605 JAK2-64 3.317

JAK2-172 1.414 JAK2-117 5.292

JAK2-100 2.828 JAK2-235 3.000

JAK2-169 1.732 JAK2-67 3.000

JAK2-97 2.645 JAK2-37 2.449

JAK2-171 1.414 JAK2-40 2.449

JAK2-92 2.828 JAK2-65 3.000

JAK2-16 3.741 JAK2-229 4.123

JAK2-99 2.828

Table 4 continued

Compound
(JAK3)

Distance
(APD = 5.521)

Compound
(JAK3)

Distance
(APD = 5.521)

JAK3-98 2.000 JAK3-140 2.828

JAK3-179 2.236 JAK3-12 2.828

JAK3-93 2.000 JAK3-121 3.605

JAK3-95 2.828 JAK3-141 2.449

JAK3-97 3.741 JAK3-14 2.828

JAK3-176 2.828 JAK3-88 2.000

JAK3-184 2.646 JAK3-155 3.000

JAK3-175 4.000 JAK3-87 2.000

JAK3-178 3.605 JAK3-42 2.449

JAK3-96 2.646 JAK3-194 3.873

JAK3-180 2.236 JAK3-129 2.646

JAK3-172 2.000 JAK3-17 5.385

JAK3-70 3.000 JAK3-44 2.449

JAK3-31 2.449 JAK3-1 3.317

JAK3-78 1.732 JAK3-64 3.162

JAK3-68 2.646 JAK3-171 2.000

JAK3-162 3.162 JAK3-89 2.000

JAK3-145 2.828 JAK3-10 4.472

JAK3-152 3.873 JAK3-190 3.742

JAK3-81 2.236 JAK3-104 2.828

JAK3-157 3.000 JAK3-28 3.000

JAK3-182 2.646 JAK3-138 2.449

JAK3-117 2.828 JAK3-192 3.742

JAK3-127 3.317 JAK3-15 5.099

JAK3-128 3.000 JAK3-205 2.646

JAK3-122 4.690 JAK3-60 3.317

JAK3-63 1.732 JAK3-196 3.742

JAK3-113 2.828 JAK3-101 2.828

JAK3-129 3.464 JAK3-103 3.317

JAK3-167 3.162 JAK3-202 3.873

JAK3-130 3.000 JAK3-137 3.742

JAK3-73 3.000 JAK3-46 2.645

JAK3-75 2.828 JAK3-147 4.582

JAK3-76 3.162 JAK3-59 3.162

JAK3-65 2.646 JAK3-102 3.317

JAK3-41 3.605 JAK3-100 3.317

JAK3-52 5.477 JAK3-23 2.828

JAK3-133 3.742 JAK3-30 2.828

JAK3-105 4.000 JAK3-3 3.317

JAK3-210 3.000 JAK3-35 2.449

JAK3-74 2.828

selected for further docking processes on the basis of cross-
docking experiments. The result of cross-docking analysis
is mentioned in Table 5. Thus, crystal proteins 3UGC for
JAK2 and 4HVD for JAK3 were selected for further docking
analysis of hits retrieved after VS.
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Fig. 3 Flowchart of hierarchical virtual screening protocol

Investigation of important amino acid residues of JAK2 and
JAK3 for their inhibition

Not all amino acid residues present in active site of JAK2
and JAK3 are equally important for their inhibition. Hence,
relative importance of active site amino acid residues for
inhibition of both enzymes was determined using docking
analysis of highest active molecule. Additionally, a dual
inhibitor of JAK3, compound AG490, which is under clini-
cal development, was also subjected to docking analysis. The
interactions shown by highest active molecule of JAK2 and
JAK3 and dual inhibitor AG490 with active site amino acid
residues of these enzymes are mentioned in Table 6. From
the above docking analysis it was concluded that amino acid
residues Glu930 and Leu932 are crucial for JAK2 inhibitory
activity, whereas Glu903 and Leu905 amino acid residues
are important for JAK3 inhibitory activity. Moreover, avail-
able crystal structures of JAK2 and JAK3 were visually ana-
lyzed for determination of important amino acid residues
for inhibition of these enzymes. The amino acid residues
found important after visual inspection were complemen-
tary to obtained docking results. The interactions shown
by crystal structures of JAK2 and JAK3 are mentioned in
Table 5.

Docking, ADME, and energy calculation

Docking was carried out to increase the power of
pharmacophore-based screening and to differentiate between

Table 5 Essential amino acid residues’ interactions along with average RMSD values of JAK2 and JAK3 proteins

JAK2 proteins
PDB ID Resolution (Å) Glu898 Glu930 Leu932 ILe973 His974 Asp994 Average RMSD

3KRR 1.80
√

1.006

3E62 1.92
√ √

1.251

3E63 1.90
√ √

1.009

3E64 1.80
√ √

1.171

3UGC 1.34
√ √ √ √ √

0.618

4FVQ 1.75
√ √

0.944

JAK3 proteins
PDB ID Resolution (Å) Glu903 Leu905 Arg953 Average RMSD

3LXK 2.00
√ √

0.562

3LXL 1.74
√ √

0.602

3PJC 2.20
√ √

0.672

4HVD 1.85
√ √

0.434

4HVG 2.75
√ √

0.470

4HVH 2.30
√ √

0.544

4HVI 2.40
√ √

0.651

1YVJ 2.55
√ √ √

0.695

Bold text represents the selected protein for both enzymes on the basis of RMSD
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Table 6 Docking interaction of active molecules and drug molecule along with glide g-score

JAK2
Compound Glu898 Glu930 Leu932 Asp994 Glide g-score �G MM–GBSA

JAK2-150
√ √ −7.902 −97.755

AG490
√ √ √ −9.628 −71.368

JAK3

Compound Lys855 Glu903 Leu905 Asp967 Glide g-score �G MM–GBSA

JAK3-43
√ √ √ −11.634 −53.162

AG490
√ √ √ −8.306 −60.200

Table 7 ADME properties of 24 newly designed multikinase inhibitor molecules using Qikprop module of Maestro 9.2

S.
no.

PHASE
ID

Q Plog
Pa

o/w

Q Plog
Sb

QPlog
HERGc

QPPCacod QPPMDCKe Percent
human oral
absorbtionf

�G MM–
GBSAg

(kcal/mol)

�G MM–
GBSAh

(kcal/mol)

1 0214490 3.203 −4.113 −5.299 367.195 180.485 91.609 −75.786 −69.542

2 0250134 2.870 −4.546 −5.515 76.882 54.257 77.503 −93.388 −67.350

3 0278736 4.567 −6.487 −6.676 428.911 630.414 100.000 −82.909 −77.280

4 0288703 3.169 −4.969 −6.501 283.853 249.833 89.404 −76.926 −68.609

5 0330007 4.063 −6.117 −6.819 887.653 434.918 100.000 −77.827 −54.544

6 0359603 3.107 −5.124 −6.291 176.352 130.539 85.341 −76.965 −56.852

7 0372499 3.372 −6.056 −6.918 356.649 480.673 92.367 −89.651 −76.454

8 0410536 4.079 −5.263 −5.585 1795.934 931.554 100.000 −67.918 −59.250

9 0469729 3.400 −4.380 −4.393 810.537 588.210 100.000 −59.545 −65.462

10 0569123 3.109 −4.893 −6.229 599.583 284.598 94.865 −67.392 −55.523

11 0578637 2.263 −4.447 −5.617 280.118 226.606 83.999 −85.284 −63.555

12 0606317 2.765 −4.029 −5.521 93.596 79.221 78.419 −86.996 −64.471

13 0626788 4.287 −5.883 −6.763 154.372 65.658 91.217 −98.069 −62.625

14 0678936 2.23 −4.542 −5.705 581.937 275.555 92.959 −62.583 −59.938

15 0702232 3.880 −5.790 −6.381 445.264 289.059 100.000 −75.164 −67.145

16 0855481 2.656 −5.959 −6.507 58.241 22.893 74.092 −90.682 −73.322

17 0855521 2.364 −5.604 −5.911 63.102 24.966 73.004 −87.753 −58.953

18 0892200 2.236 −3.000 −5.006 337.667 153.004 85.291 −78.667 −73.322

19 0892201 3.106 −3.743 −5.602 763.818 912.566 96.730 −86.213 −57.271

20 0892208 2.505 −3.253 −5.459 448.395 207.892 89.073 −60.199 −72.359

21 1229018 1.838 −2.639 −4.988 344.392 156.300 83.113 −70.212 −75.799

22 1252274 2.107 −5.001 −6.015 69.704 27.800 59.318 −92.465 −76.181

23 1343134 3.417 −3.985 −4.983 1302.198 3431.741 100.000 −81.875 −56.662

24 1489134 3.789 −4.097 −5.321 1670.406 2127.591 100.000 −82.042 −71.377

a Predicted octanol/water partition coefficient logP (acceptable range −2.0–6.5)
b Predicted aqueous solubility: S in mol/L (acceptable range −6.5–0.5)
c Predicted IC50 value for blockage of HERG K+ channels (concern below −5.0)
d Predicted Caco-2 cell permeability in nm/s (acceptable range <25 is poor and >500 is great)
e Predicted apparent MDCK cell permeability in nm/s
f Percentage of human oral absorption (<25 % is poor and >80 % is high)
g Binding energy of compound-JAK2 complex
h Binding energy of compound-JAK3 complex
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Table 8 Predicted activities and docking interactions of final 24 molecules after VS

S. 

no.

PHASE 

database 

ID

Structure

Predi

cted 

activi

tya

Predi

cted 

activi

tyb

Docking
Glide 

gscore

(JAK2)

Glide 

gscore

(JAK3)

JAK3 JAK2

Glu 

903

Leu 

905

Glu 

930

Leu 

932

1 0214490

H
N

O

F HO
O

O

7.364 6.785 −9.150 −9.064

2 0250134
N
H

H
N

O

HO
O

O

S

O

6.989 6.709 −10.064 −9.401

3 0278736

H
N

O

OH
O

O Cl

Cl

7.198 7.073 −9.926 −7.660

4 0288703

H
N

O

OH
O

O

NCl

8.350 6.556 −10.402 −10.224

5 0330007

N
H

N
H

N

OO

7.597 7.297 −8.927 −7.476

6 0359603

NH

N
H

H
N

O

N
H

S O

O

7.160 6.985 −7.900 −8.243

7 0372499

O

O N
H

S N

N

S

O

H2N

O

7.769 6.567 −6.414 −6.905

8 0410536
N
H

N
H N

N

O

7.036 7.297 −7.913 −6.788

9 0469729
N
H

N
H

N
N

CH3
O

7.575 7.297 −8.633 −7.613

10 0569123 N
H

N
H

CH3
O

HN

H3C

O 8.047 7.297 −7.072 −6.527

11 0578637
N
H

S

N

N S

H3C O

O

CH3

NH2

7.181 7.561 −8.944 −8.772
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Table 8 continued

S. 

no.

PHASE 

database 

ID

Structure

Predi

cted 

activi

tya

Predi

cted 

activi

tyb

Docking
Glide 

gscore

(JAK2)

Glide 

gscore

(JAK3)

JAK3 JAK2

Glu 

903

Leu 

905

Glu 

930

Leu 

932

12 0606317

NH

N
H

H
N

O

N
H

O

O

O
7.382 7.297 −9.370 −8.420

13 0626788

NH

N
H

H
N

O

O

O

O

7.592 7.297 −12.405 −9.082

14 0678936

N
H

N
H

O

N
H CH3

O

CH3

O

7.345 7.297 −6.923 −8.665

15 0702232 HN

O

CH3

S

HN N

N N

CH3

7.550 7.126 −9.111 −8.847

16 0855481

N

N N

H
N

O

CH3

OH3C
OH

H2N O

O

7.256 6.760 −9.678 −9.186

17 0855521

N

N N

H
N

CH3

O
H3C

OH

NH2O

O

CH3

7.970 6.760 −9.799 −7.395

18 0892200

N
O O CH3

O

N
HO

HO 8.037 8.163 −9.016 −8.703

19 0892201
N

O

Cl

N
HO

HO
7.665 7.931 −8.871 −7.168

20 0892208
N

N
N

HO HO

N

7.650 8.180 −9.628 −8.074
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Table 8 continued

S. 

no.

PHASE 

database 

ID

Structure

Predi

cted 

activi

tya

Predi

cted 

activi

tyb

Docking
Glide 

gscore

(JAK2)

Glide 

gscore

(JAK3)

JAK3 JAK2

Glu 

903

Leu 

905

Glu 

930

Leu 

932

21 1229018

N

N

O
CH3

O

OH

OH

7.343 7.259 −10.961 −9.068

22 1252274

N

N
N
H

N

N
O N

NH2

O
N

O

7.623 7.430 −7.946 −6.029

23 1343134

N

N

OH

O
Cl

Cl

OH

7.540 7.161 −8.272 −7.786

24 1489134

N

O

Cl

OH

OH

7.231 7.845 −11.066 −7.639

a Activity predicted by ADRR.92
b Activity predicted by ADDRR.142

active and inactive ligands. The 436 retrieved database can-
didates from VS were docked into the active site of JAK2
protein. Among them, 204 molecules showing the impor-
tant inhibitory interactions with amino acid residues Glu930
and Leu932 were selected and subsequently docked with
JAK3 protein. After visual inspection, 69 compounds were
extracted on the basis of interaction of these candidates with
important amino acid residues Glu903 and Leu905. These
69 molecules thus obtained possess dual inhibitory activity
against JAK2 and JAK3 and showed interaction with both
types of proteins.

Finally to filter the molecules with poor pharmacokinetic
profiles, ADME properties were calculated. Incorporation
of ADME predictions as a part of the drug development
process can generate lead compounds that are more likely
to exhibit satisfactory ADME performances during clinical
trials. A total of 24 candidates out of 69 were filtered out

on the basis of pharmacokinetic parameters thereby indicat-
ing their potential to act as drug-like molecules. The best 24
dual JAK2/JAK3 inhibitors were further subjected to Prime
MM–GBSA for the calculation of binding free energy. The
MM–GBSA binding free energy of all ligands along with its
pharmacokinetic parameters of the final 24 hits is given in
Table 7. The Prime MM–GBSA binding free energy rang-
ing −59.545 to −98.069 (JAK2) and −54.544 to −77.280
(JAK3) and glide docking score −12.405 to −6.414 (JAK2)
and −6.029 to −10.224 (JAK3) of the selected 24 molecules
are comparable to the binding free energy of clinical trial drug
AG-490 suggesting good binding affinity with enzymes. The
MM–GBSA scores of the selected molecules were also found
to be comparable to those of the co-crystal ligands with MM–
GBSA scores for JAK2 and JAK3 ligands being −152.081
and −79.942, respectively. Interestingly, it was found that
basic structural motifs of two hits (Phase ID 0855481 and
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Fig. 4 Docking interactions of compound 0288703 with JAK2 protein (a) and JAK3 protein (b)

0855521) among 24 have been filed as patent by Almirall
S.A. as dual JAK2/3 inhibitor [41]. Thus, these 24 candidates
could be better drug candidates for targeting JAK2 and JAK3
enzymes. The interaction details along with glide g-score of
all 24 final hits are mentioned in Table 8.

Docking results of one of the hit compounds, i.e., com-
pound 0288703, that showed good dual inhibitory activ-
ity are displayed in Fig. 4. The compound 0288703 shows
two hydrogen bonding interactions with the JAK2 protein
(Fig. 4a). The hydroxyl group and the carbonyl group of the
compound interact with carbonyl group of Glu 930 and amino
group of Leu 932, respectively. This compound also interacts
with JAK3 protein giving five hydrogen bonding interactions
(Fig. 4b). The hydroxyl group of the compound forms two
hydrogen bonds with Leu 905; the oxygen atom and hydro-
gen atom of this hydroxyl group give interaction with amino
group and carbonyl group of Leu 905, respectively. The nitro-
gen of pyridine nucleus of the compound shows interaction
with NH of the side chain of Arg 911, the carbonyl group of
the compound interacts with SH of Cys903, and the NH of
the compound interacts with Leu828.

Conclusion

Multi-target potential of the drug molecules is considered
as beneficial for the treatment of multi-pathway diseases.
Lymphoid-derived diseases originate from multiple path-
ways; thus, its intervention with molecules having multi-
target potential would serve as better therapy. Two well-
known kinases JAK2 and JAK3 reported in the literature
are involved in the progression of lymphoid-derived dis-

eases. Thus, our study aimed to design some new mole-
cules describing inhibitory potential for both JAK2 and
JAK3.

Two ligand-based pharmacophore models were generated
for the dataset of inhibitor molecules of JAK2 and JAK3 to
dig out the essential structural features required for inhibi-
tion of both enzymes which are helpful for screening of novel
molecules having inhibitory activity against both enzymes.
The selected models as shown by the correlation statistics
and predictive statistics are very much significant to draw
explicit inferences. Finally, 24 potential hits with good phar-
macokinetic profile and predicted activity were identified by
calculating ADME properties and docking analysis, respec-
tively. This study provides a set of guidelines that will greatly
help in designing the novel and more potent JAK2/JAK3 dual
inhibitors.
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