FULL-LENGTH PAPER

Synthesis of new 1,5-diaryl-3-(arylamino)-1*H*-pyrrol-2(5*H*)-ones under catalyst-free and solvent-free conditions

Khodabakhsh Niknam · Sanaz Mojikhalifeh

Received: 27 August 2013 / Accepted: 2 December 2013 / Published online: 20 December 2013 © Springer Science+Business Media Dordrecht 2013

Abstract Several new 1,5-diaryl-3-(arylamino)-1*H*-pyrrol -2(5*H*)-ones were synthesized *via* the three-component condensation reaction of aldehydes, aromatic amines, and ethyl pyruvate under catalyst-free and solvent-free conditions. Also, 5-(4-hydroxyl-3-nitrophenyl)-1-(4-methoxy-phenyl)-3-(4-methoxyphenylamino)-1,5-dihydro-pyrrol-2-one was synthesized using oxime instead of aldehyde. The ecofriendly, simple procedure, green procedure, catalyst-free and solvent-free conditions, short reaction times, and high yields of the products are the advantages of this method.

Keywords 1H-Pyrrol-2(5H)-ones \cdot Catalyst-free \cdot Lactams \cdot Solvent-free \cdot MCRs \cdot MCC \cdot 4MCR

Introduction

Lactams, particularly pyrrole derivatives, are important structural motifs found in many natural products, synthetic pharmaceuticals, and molecular materials [1,2]. Among them, 3-arylaminopyrroline-2-one derivatives have shown biological activity, antimicrobial activity, and electroconvulsive shock (ECS)-induced amnesia reversing activity in mice [1–7].

3-Arylaminopyrroline-2-ones were synthesized *via* threecomponent condensation reaction of pyruvic acid derivatives, anilines, and aldehydes, in which sometimes processes and

Electronic supplementary material The online version of this article (doi:10.1007/s11030-013-9496-0) contains supplementary material, which is available to authorized users.

K. Niknam (⊠) · S. Mojikhalifeh Department of Chemistry, Faculty of Sciences, Persian Gulf University, 75169 Bushehr, Iran e-mail: khniknam@gmail.com; niknam@pgu.ac.ir synthesies were preformed for imines or β , γ -unsaturated α ketoesters [3,4,8]. Vaughan and Tripp synthesized 1,5-diary1-2,3-pyrrolidinediones by the condensation of anilines with pyrrolidine-2,3-diones or furan-2(5H)-ones [9]. Wu and co-workers reported a convenient preparation of 3aryl-aminopyrroline-2-ones by the reaction between anilines and β , γ -unsaturated α -ketoesters in boiling dichloromethane [10]. Recently, the synthesis of 1,5-diaryl-3-(arylamino)-1Hpyrrol-2(5H)-ones was reported to take place by condensation reaction between anilines, aldehyde, and ethyl pyruvate using H_2SO_4 [11], different thioureas, phosphoric acid analogues [12], or SiO₂-FeCl₃ as catalysts [13]. However, all these methods suffer from long reaction times and the use of toluene, a solvent recognized for its toxicity. Therefore, there is still demand for more efficient synthetic strategies to provide these compounds.

We report here the synthesis of 1,5-diaryl-3-(arylamino)-1*H*-pyrrol-2(5*H*)-ones via three-component condensation reaction of aldehydes, amines, and ethyl pyruvate under catalyst- and solvent-free conditions (Scheme 1).

Results and discussion

The reaction of benzaldehyde, 4-methyl aniline, and ethyl pyruvate was studied as a model reaction, and the effects of solvents, catalyst loading, and reaction conditions were evaluated (Scheme 2; Tables 1, 2).

As shown in Table 1, different solvents [*n*-hexane (bp $69 \degree C$), dichloromethane (bp $39 \degree C$), chloroform (bp $61 \degree C$), and ethanol (bp $78 \degree C$)], and solvent-free conditions were studied under catalyst-free conditions. The best conditions were found to be solvent-free at $80 \degree C$.

The effect of solid silica-supported acids and bases were investigated (Table 2; Scheme 3). Solid silica-supported

Scheme 1 Synthesis of 1,5-diaryl-3-(arylamino)-1Hpyrrol-2(5H)-one derivatives

Mol Divers (2014) 18:111-117

Table 1 Optimization of the reaction conditions for the synthesis of 3-(p-toluidino)-5-phenyl-1-p-tolyl-1H-pyrrol-2(5H)-one under catalystfree conditions

Entry	Solvent	Conditions	Time (min)	Yield (%) ^a
1	<i>n</i> -Hexane	Reflux (69°C)	100	50
2	Chloroform	Reflux (61 °C)	160	35
3	Dichloromethane	Reflux (40 °C)	160	20
4	Ethanol	Reflux (78 °C)	90	20
5	Solvent-free	rt	120	_
6	Solvent-free	70 °C	40	80
7	Solvent-free	80 °C	20	91
8	Solvent-free	100 °C	17	91

Rection conditions ethyl pyruvate (1 mmol), p-toluidine (2 mmol), benzaldehyde (1 mmol), and solvent (4 mL)

a Isolated product

Table 2 Influence of solid silica-supported acids and bases on our solvent-free reaction

Entry	Catalyst	Amount of catalyst (g)	Time (min)	Yield (%) ^b
1	1	0.008	15	90
2	1	0.01	15	87
3	1	0.03	15	85
4	2	0.008	15	86
5	4	0.008	15	93
6	3	0.05	15	93
7	5	0.075	25	90
8	6	0.05	25	87
9	7	0.05	25	85
10	Catalyst-free	-	20	91

Rection conditions: ethyl pyruvate (1 mmol), p-toluidine (2 mmol), benzaldehyde (1 mmol), and solvent-free conditions at 100 °C ^b Isolated product

bases such as silica-bonded N-propylpiperazine sodium *N*-propionate (1) [14], silica-bonded *N*-propylpiperazine (2) [15,16], silica-bonded N-propyl morpholine (3) [17], and silica-bonded N-propyl-triethylenetetramine (4) [18] were examined in the model reaction as catalyst. As shown in Table 2, the catalytic amounts of 0.008 g for catalysts 1,2, and 4; and 0.05 g for 3 at 100 °C gave the corresponding products in the range of 85-93 solvent-free conditions.

Solid silica-supported acids such as silica-bonded Npropyl-triethylenetetramine sulfamic acid (5) [19], silicabonded S-sulfonic acid (6) [20], and silica-bonded N-propyl sulfamic acid (7) [21] were used as catalysts in model reaction. The catalytic amounts of 0.075 g of catalyst 5 and 0.05 g for catalysts 6 and 7 gave the corresponding products in 90, 87, and 85 % yields, respectively, at 100 °C and under solvent-free conditions (Table 2, entries 7-9). The optimum reaction condition is as follows: aldehyde (1 mmol), anilines (2 mmol), ethyl pyruvate (1 mmol), temperature = $80 \degree C$, no catalyst, and solvent-free.

As shown in Table 3, this three-component condensation reaction proceeded with different substituted aromatic aldehydes and aniline derivatives under the optimized condition. Aromatic aldehydes containing electron-donating groups or electron-withdrawing groups gave corresponding products in high yields (Table 3). Butyraldehyde, the only aliphatic aldehyde tested, gives desired product in 90 % yield (Table 3, entry 12).

3-Pyridine carbaldehyde, the only heterocyclic aldehyde tested, also gave the required product in 90% yield (Table 3, entry 13). As for anilines, those bearing electron-donating and electron-withdrawing groups gave products with high and lower yields, respectively (Table 3).

We would like to mention that when we used 4-hydroxy-3-nitro-benzyl oxime instead of the corresponding aldehyde and treated with ethyl pyruvate and 4-methoxy-aniline, the expected product 5-(hydroxyl-3-nitrophenyl)-1-(4-methoxyphenyl)-3-(4-methox-yphenylamino)-1,5-dihydro-pyrrol-2one was obtained after 25 min in 40 % yield. This confirms that aldehydes are the better substrates than the corresponding oximes in such a three-component condensation reactions.

In conclusion, we present, in this study, the synthesis of 1,5-diaryl-3-(arylamino)-1H-pyrrol-2(5H)-ones that Scheme 3 The structures of solid bases and acids used as catalysts

Table 3 Synthesis results using optimized reaction conditions

Entry	R-CHO	Ar-NH ₂	Time (min)	Yield (%)
1	C ₆ H ₅ -	C ₆ H ₅ -	20	90
2	3-Cl-C ₆ H ₄ -	4-MeO-C ₆ H ₄ -	15	93
3	4ClC6H4-	4-MeO-C ₆ H ₄ -	30	67
4	$4-Br-C_6H_4-$	4-MeO-C ₆ H ₄ -	25	35
5	$C_{6}H_{5}-$	4-Me-C ₆ H ₄ -	20	91
6	$4-MeO-C_6H_5-$	4-Me-C ₆ H ₄ -	40	65
7	$4-O_2N-C_6H_5-$	4-Me-C ₆ H ₄ -	20	70
8	C_6H_5-	3-Cl-C ₆ H ₄ -	35	90
9	$C_{6}H_{5}-$	$4-Cl-C_6H_4-$	25	93
10	C_6H_5-	4-Br-C ₆ H ₄ -	27	95
11	4-MeO-C ₆ H ₅ -	$3-O_2N-C_6H_5-$	65	45
12	CH ₃ CH ₂ CH ₂ -	4-MeO-C ₆ H ₄ -	30	90
13	3-C5H4N-	4-MeO-C ₆ H ₄ -	15	90
14	C_6H_5-	3,4-(Me)2-C6H3-	15	70
15	4-MeO-C ₆ H ₅ -	$3,4-(Me)_2-C_6H_3-$	45	68

a Isolated yield

were prepared by a three-component condensation reaction of aldehydes, aromatic amines, and ethyl pyruvate under catalyst-free and solvent-free conditions in good-to-high yields. This simple and green procedure, under catalyst-free and solvent-free conditions and much shorter reaction times, represents the advantages of this method.

Experimental

General

Chemicals were purchased from Fluka, Merck and Aldrich Chemical Companies and used as received. ¹H-NMR spectra were recorded on a Bruker Ultrashield (400 MHz) using CDCl₃ as deuterated solvent and with tetramethylsilane (TMS) as internal standard. Mass spectra were recorded on a FINNIGAN-MAT 8430 mass spectrometer operating at 70 eV. Melting points were determined in open capillary tubes in a Barnstead Electrothermal 9100 BZ circulating oil melting point apparatus and uncorrected. Reactions were monitored by TLC using silica gel Poly Gram SILG/UV254 plates. All the products were characterized by IR, NMR, Mass spectra, and known compounds and compared to those reported in the literature [10–13]. Solid silica-supported bases such as silica-bonded N-propylpiperazine sodium Npropionate (1) [14], silica-bonded N-propylpiperazine (2) [15, 16], silica-bonded N-propylmorpholine (3) [17], and silica-bonded N-propyl-triethylenetetramine (4) [18]; and solid silica-supported acids such as silica-bonded N-propyltriethylenetetramine sulfamic acid (5) [19], silica-bonded S-sulfonic acid (6) [20], and silica-bonded N-propyl sulfamic acid (7) [21], were prepared according to our reported procedures.

General procedure for the synthesis of 1,5-diaryl-3-(arylamino)-1H -pyrrol-2(5H)-ones

A mixture of aldehyde (1 mmol), aromatic amine (2 mmol), and ethyl pyruvate (1 mmol) was heated with stirring in an oil bath at 80 °C under catalyst-free and solvent-free conditions. The progress of the reaction was monitored by TLC. After completion of the reaction, the crude products were purified by recrystallization from ethanol (95 %).

1,5-Diphenyl-3-phenylamino)-1,5-dihydro-1H-pyrrol-2 (5H)-one (Table 3, entry 1)

White solid; 0.29 g, 90 % yield; mp 227–229 °C. IR (KBr): 3,330 (N–H), 1,679 (cm⁻¹) (N–C=O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.72 (1H, d, J = 2.4 Hz, CH), 6.12 (1H, d, J = 2.4 Hz, = CH), 6.69 (1H, s, NH), 6.97 (1H, t, J = 8.4 Hz, Ar), 7.09–7.13 (3H, m, Ar), 7.23–7.28 (3H, m, Ar), 7.30–7.36 (6H, m, Ar), 7.56–7.58 (2H, m, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 64.2, 108.3, 116.7, 121.3, 121.6, 124.9, 126.7, 128.9, 129.0, 129.4, 131.9, 137.3, 137.5, 141.3, 167.3. Anal. Calcd for C₂₂H₁₈N₂O: C, 80.96; H, 5.56; N, 8.58; found: C, 80.69; H, 5.62; N, 8.36.

MS (EI, 70 eV): m/z (%) = 326 (M⁺, base peak), 297 (28.7), 206 (97.5), 77 (85).

1-(4-Methoxyphenyl)-3-(4-methoxyphenyl-amino)-5-(3chlorophenyl)-1H-pyrrol-2(5H)-one (Table 3, entry 2)

White cream solid; 0.41 g, 93 % yield; mp 192–194 °C, (Lit.: [13] 164–166 °C). IR (KBr): 3,313 (N–H), 1,672 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.78 (3H, s, OCH₃), 3.81 (3H, s, OCH₃), 5.57 (1H, d, J = 2.4 Hz, CH), 5.92 (1H, d, J = 2.4 Hz, = CH), 6.49 (1H, s, NH), 6.85-6.90 (4H, m, Ar), 7.05–7.10 (3H, m, Ar), 7.21–7.23 (3H, m, Ar), 7.36–7.39 (2H, m, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 55.4, 55.6, 64.2, 105.3, 114.1, 114.7, 118.6, 123.8, 125.1, 127.1, 128.4, 129.9, 130.2, 133.3, 134.6, 134.7, 140.0, 154.6, 157.1, 167.1.

MS (EI, 70 eV): m/z (%) = 422 (M⁺², 22), 420 (M⁺, 54), 298 (21), 270 (base peak), 259 (22), 122 (27), 92 (20), 77 (25).

1-(4-Methoxyphenyl)-3-(4-methoxyphenyl-amino)-5-(4chlorophenyl)-1H-pyrrol-2(5H)-one (Table 3, entry 3)

White cream solid; 0.29 g, 67 % yield; mp 195–197 °C, (Lit.: [13] 153–155 °C). IR (KBr): 3,313 (N–H), 1,674 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.78 (3H, s, OCH₃), 3.81 (3H, s, OCH₃), 5.57 (1H, d, J = 2.4 Hz, CH), 5.92 (1H, d, J = 2.4 Hz, = CH), 6.49 (1H, s, NH), 6.84-6.91 (4H, m, Ar), 7.05-7.07 (2H, m, Ar), 7.14–7.17 (2H, m, Ar), 7.25–7.28 (2H, m, Ar), 7.34–7.36 (2H, m, Ar). ¹³C

NMR (100 MHz, CDCl₃) δ(ppm): 55.4, 55.6, 64.1, 105.5, 114.3, 114.7, 118.6, 123.9, 128.4, 129.1, 129.9, 133.3, 133.9, 134.7, 136.3, 154.5, 157.1, 167.0.

MS (EI, 70 eV): m/z (%) = 422 (M⁺², 0.8), 420 (M⁺, 1.6), 264 (8), 122 (7.1), 97 (14.2), 69 (25.4), 57 (base peak).

1-(4-Methoxyphenyl)-3-(4-methoxyphenyl-amino)-5-(4bromophenyl)-1H-pyrrol-2(5H)-one (Table 3, entry 4)

White solid; 0.16g, 35% yield; mp 213–215°C. IR (KBr): 3,309 (N–H), 1,672 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.78 (3H, s, OCH₃), 3.81 (3H, s, OCH₃), 5.56 (1H, d, J = 2.4 Hz, CH), 5.92 (1H, d, J = 2.4 Hz, E), 6.47 (1H, s, NH), 6.84–6.90 (4H, m, Ar), 7.02–7.10 (4H, m, Ar), 7.34–7.36 (2H, m, Ar), 7.41–7.50 (3H, m, Ar). ¹³C NMR (100 MHz; CDCl₃) δ (ppm): 55.4, 55.6, 64.1, 105.4, 114.3, 114.7, 118.6, 121.9, 123.9, 128.7, 129.9, 132.1, 133.3, 134.7, 136.9, 154.6, 157.1, 167.0. Anal. Calcd for C₂₄H₂₁BrN₂O₃: C, 61.95; H, 4.55; Br, 17.17; N, 6.02; found: C, 61.73; H, 4.61; N, 5.84.

MS (EI, 70 eV): m/z (%) = 466 (M⁺+2, 36.8), 464 (M⁺, 37.5), 323 (base peak), 77 (49.3).

5-Phenyl-1-p-tolyl-3-p-tolylamino-1,5-dihydro-1H-pyrrol-2 (5H)-one (Table 3, entry 5)

White cream solid; 0.32 g, 91 % yield; mp 215–217 °C, (Lit.: [10] 215–217 °C). IR (KBr): 3,311 (N–H), 1,675 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.28 (3H, s, CH₃), 2.32 (3H, s, CH₃), 5.66 (1H, d, J = 2.8 Hz, CH), 6.04 (1H, d, J = 2.8 Hz, = CH), 6.59 (1H, s, NH), 7.00 (2H, d, J = 8.4 Hz, Ar), 7.09–7.13 (4H, m, Ar), 7.22–7.7.32 (5H, m, Ar), 7.44 (2H, d, J = 7.6 Hz, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 20.7, 20.9, 64.4, 107.4, 116.8, 121.7, 126.8, 128.1, 128.9, 129.5, 129.9, 130.7, 132.4, 134.7, 134.7, 137.7, 138.9, 167.3.

MS (EI, 70 eV): m/z (%) = 354 (M⁺, 3), 281 (8), 207 (16), 109 (16.5), 91 (69), 69 (56), 57 (92), 55 (base peak).

5-(4-Methoxy-phenyl)-1-p-tolyl-3-p-tolylamino-1,5dihydro-1H-pyrrol-2(5H)-one (Table 3, entry 6)

White cream solid; 0.25 g, 65 % yield; mp 214–216 °C. IR (KBr): 3,313 (N–H), 1,672 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.29 (3H, s, CH₃), 2.32 (3H, s, CH₃), 3.77 (3H, s, OCH₃), 5.61 (1H, d, J = 2.4 Hz, CH), 6.02 (1H, d, J = 2.4 Hz, = CH), 6.58 (1H, s, NH), 6.81–6.84 (2H, m, Ar), 6.99–7.02 (2H, m, Ar), 7.10–7.16 (6H, m, Ar), 7.37–7.41 (2H, m, Ar). ¹³C NMR (100 MHz; CDCl₃) δ (ppm): 20.7, 20.9, 55.2, 63.9, 107.6, 114.3, 116.8, 122.0, 128.1, 129.4, 129.5, 129.9, 130.6, 132.3, 134.7, 134.7, 138.9, 159.4, 167.2. Anal. Calcd for C₂₅H₂₄N₂O₂: C, 78.10; H, 6.29; N, 7.29; found: C, 77.84; H, 6.32; N, 7.10.

MS (EI, 70 eV): m/z (%) = 384 (M⁺, 25.0), 291 (23.3), 250 (75.0), 91 (98.3), 77 (56.7), 57 (base peak).

5-(4-Nitro-phenyl)-1-p-tolyl-3-p-tolylamino-1,5-dihydro-1 H-pyrrol-2(5H)-one (Table 3, entry 7)

Yellow solid; 0.28 g, 70 % yield; mp 231–233 °C. IR (KBr): 3,313 (N–H), 1,682 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.29 (3H, s, CH₃), 2.32 (3H, s, CH₃), 5.78 (1H, d, J = 2.4 Hz, CH), 5.99 (1H, d, J = 2.4 Hz, = CH), 6.63 (1H, s, NH), 7.00 (2H, t, J = 8.4 Hz, Ar), 7.12–7.15 (4H, m, Ar), 7.31–7.42 (4H, m, Ar), 8.16 (2H, dd, J₁ = 6.8, J₂ = 1.6 Hz, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 20.7, 20.9, 63.5, 105.3, 117.1, 121.6, 124.3, 127.7, 129.8, 129.9, 131.3, 133.2, 134.1, 135.3, 138.4, 145.5, 147.7, 166.9. Anal. Calcd for C₂₄H₂₁N₃O₃: C, 72.16; H, 5.30; N, 10.52; found: C, 71.89; H, 5.34; N, 10.34.

MS (EI, 70 eV): m/z (%) = 399 (M⁺, 2.2), 314 (15.5), 295 (26.7), 91 (86.7), 77 (55.6), 55 (base peak).

1-(3-Chloro-phenyl)-3-(3-chloro-phenylamino)-5-phenyl-1, 5-dihydro-1H-pyrrol-2(5H)-one (Table 3, entry 8)

White cream solid; 0.36 g, 90 % yield; mp 203–205 °C, (Lit.: [10] 207–209 °C). IR (KBr): 3,320 (N–H), 1,679 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.69 (1H, d, J = 2.4 Hz, CH), 6.14 (1H, d, J = 2.8 Hz, = CH), 6.72 (1H, s, NH), 6.94–6.97 (2H, m, Ar), 7.07–7.10 (2H, m, Ar), 7.20–7.26 (3H, m, Ar), 7.31–7.41 (5H, m, Ar), 7.73 (1H, t, J = 2.2 Hz, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 64.2, 109.5, 115.0, 116.4, 119.1, 121.4, 121.4, 125.0, 126.6, 128.5, 129.3, 129.9, 130.4, 131.4, 134.7, 135.1, 136.6, 138.3, 142.3, 167.

MS (EI, 70 eV): m/z (%) = 396 (M⁺², 50), 394 (M⁺, 75), 268 (87), 240 (base peak), 229 (80), 204 (34), 75 (29).

1-(4-Chloro-phenyl)-3-(4-chloro-phenylamino)-5-phenyl-1, 5-dihydro-1H-pyrrol-2(5H)-one (Table 3, entry 9)

White solid; 0.37 g, 93 % yield; mp 208–210 °C, (Lit.: [10] 217–219 °C). IR (KBr): 3328 (N–H), 1,672 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.67 (1H, d, J = 2.8 Hz, CH), 6.08 (1H, d, J = 2.4 Hz, = CH), 6.68 (1H, s, NH), 7.00–7.04 (2H, m, Ar), 7.19–7.22 (2H, m, Ar), 7.28–7.37 (7H, m, Ar), 7.51–7.55 (2H, m, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 64.2, 108.6, 117.9, 122.5, 126.2, 126.7, 128.5, 129.1, 129.2, 129.4, 130.3, 131.8, 135.7, 136.8, 139.7, 167.0.

MS (EI, 70 eV): m/z (%) = 396 (M⁺², 31.5), 394 (M⁺, 49), 268 (49), 240 (base peak), 229 (40), 204 (24), 75 (22.5).

1-(4-Bromo-phenyl)-3-(4-bromo-phenylamino)-5-phenyl-1, 5-dihydro-1H-pyrrol-2(5H)-one (Table 3, entry 10)

Cream solid; 0.46 g, 95 % yield; mp 226–228 °C, (Lit.: [12]). IR (KBr): 3,327 (N–H), 1,672 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.66 (1H, d, J = 2.4 Hz, CH), 6.08 (1H, d, J = 2.4 Hz, CH=), 6.68 (1H, s, NH), 6.95–7.01 (2H, m, Ar), 7.19–7.22 (2H, m, Ar), 7.30–7.35 (3H, m, Ar), 7.39–7.43 (4H, m, Ar), 7.46–7.49 (2H, m, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 64.1, 108.9, 113.5, 118.0, 118.3, 122.8, 126.6, 128.5, 129.2, 131.7, 132.0, 132.3, 136.2, 136.8, 140.2, 167.0.

MS (EI, 70 eV): m/z (%) = 486 (M⁺⁴, 19), 484 (M⁺², 39), 480 (M⁺, 20), 314 (43), 312 (45), 286 (88), 284 (base peak), 204 (79), 76 (28).

5-(4-Methoxy-phenyl)-1-(3-nitrophenyl)-3-(3-nitrophenylamino)-1,5-dihydro-1H-pyrrol-2(5H)-one (Table 3, entry 11)

Yellow solid; 0.20 g, 45 % yield; mp 184–186 °C. IR (KBr): 3,375 (N–H), 1,697 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.78 (3H, s, OCH₃), 5.80 (1H, s, CH), 6.30 (1H, s, = CH), 6.87 (2H, d, J = 8.4 Hz, Ar), 7.05 (1H, s, NH), 7.20 (2H, d, J = 8.4 Hz, Ar), 7.38–7.40 (1H, m, Ar), 7.46–7.51 (2H, m, Ar), 7.84 (1H, d, J = 7.6 Hz, Ar), 7.96–8.03 (3H, m, Ar), 8.49 (1H, s, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 55.3, 63.8, 110.4, 111.1, 114.9, 115.8, 116.1, 119.5, 122.7, 126.6, 127.1, 128.1, 129.8, 130.2, 130.9, 138.0, 142.1, 148.5, 149.2, 160.0, 166.9. Anal. Calcd for C₂₃H₁₈N₄O₆: C, 61.88; H, 4.06; N, 12.55; found: C, 61.69; H, 4.13; N, 12.39.

MS (EI, 70 eV): m/z (%) = 446 (M⁺, 8.3), 382 (37.2), 262 (33.3), 234 (base peak), 77 (88.9), 57 (95.5).

1-(4-Methoxyphenyl)-3-(4-methoxyphenylamino)-5-propyl-1,5-dihydro-pyrrole-2(5H)-one (Table 3, entry 12)

Pale yellow solid; 0.32 g, 90 % yield; mp 201–203 °C. IR (KBr): 3,311 (N–H), 1,673 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 0.87 (3H, t, J = 7.2 Hz, CH₃), 1.26–1.46 (4H, m, 2 × CH₂), 3.83 (3H, s, OCH₃), 3.86 (3H, s, OCH₃), 4.65–4.68 (1H, m, CH), 5.98 (1H, d, J = 2.4 Hz, = CH), 6.40 (1H, s, NH), 6.90–6.94 (2H, m, Ar), 6.97–7.09 (4H, m, Ar), 7.37–7.41 (2H, m, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.1, 17.4, 34.1, 55.5, 55.6, 60.1, 104.4, 114.4, 114.7, 118.4, 124.8, 129.7, 133.9, 135.2, 154.3, 157.3, 166.3. Anal. Calcd for C₂₁H₂₄N₂O₃: C, 71.57; H, 6.86; N, 7.95; found: C, 71.38; H, 6.91; N, 7.79.

MS (EI, 70 eV): m/z (%) = 352 (M⁺, 33.6), 309 (59.1), 202 (45.5), 77 (63.6), 69 (base peak), 55 (89.1).

1-(4-Methoxyphenyl)-3-(4-methoxyphenylamino)-5pyridin-3-yl-1,5-dihydro-pyrrole-2(5H)-one (Table 3, entry 13)

Cream solid; 0.35 g, 90 % yield; mp 204–206 °C. IR (KBr): 3,310 (N–H), 1,665 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.77 (3H, s, OCH₃), 3.81 (3H, s, OCH₃), 5.68 (1H, s, CH), 5.93 (1H, s, =CH), 6.53 (1H, s, NH), 6.85–6.91 (4H, m, Ar), 7.07 (2H, d, J = 8.4 Hz, Ar), 7.29–7.35 (3H, m, Ar), 7.59 (1H, d, J = 8.0 Hz, Ar), 8.54 (1H, d, J = 4.4 Hz, Ar), 8.59 (1H, s, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 55.4, 55.6, 62.2, 104.6, 114.4, 114.8, 118.7, 124.1, 129.5, 133.8, 133.8, 134.5, 134.7, 148.6, 149.4, 154.7, 157.3, 166.9. Anal. Calcd for C₂₃H₂₁N₃O₃: C, 71.30; H, 5.46; N, 10.85; found: C, 71.12; H, 5.51; N, 10.67. MS (EI, 70 eV): *m/z* (%) = 387 (M⁺, 10.0), 323 (7.7), 237 (24.6), 77 (35.4), 69 (70.8), 57 (base peak).

1-(3,4-Dimethylphenyl)-3-(3,4-dimethylphenylamino)-5phenyl-1,5-dihydro-pyrrole-2(5H)-one (Table 3, entry 14)

White solid; 0.27 g, 70 % yield; mp 226 – 228 °C; (Lit.: [13] 220–222 °C). IR (KBr): 3,317 (N–H), 1,675 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.18 (3H, s, CH₃), 2.22 (6H, s, 2 × CH₃), 2.29 (3H, s, CH₃), 5.64 (1H, d, J = 2.8 Hz, CH), 6.03 (1H, d, J = 2.8 Hz, =CH), 6.54 (1H, s, NH), 6.84–6.89 (2H, m, Ar), 7.02–7.09 (2H, m, Ar), 7.13–7.16 (1H, m, Ar), 7.20–7.28 (3H, m, Ar), 7.30–7.38 (3H, m, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 19.0, 19.2, 20.1, 64.4, 107.2, 114.1, 118.3, 119.4, 123.4, 126.9, 128.1, 128.9, 129.4, 129.9, 130.3, 132.4, 133.6, 134.9, 137.2, 137.6, 137.8, 139.3, 167.3.

MS (EI, 70 eV): m/z (%) = 382 (M⁺, 30), 262 (31), 234 (base peak), 222 (29), 105 (43), 77 (72).

1-(3,4-Dimethylphenyl)-3-(3,4-dimethylphenylamino)-5-(4methoxyphenyl)-1,5-dihydro-pyrrole-2(5H)-one (Table 3, entry 15)

White solid; 0.28 g, 68 % yield; mp 212–214 °C. IR (KBr): 3,317 (N–H), 1,651 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.19 (3H, s, CH₃), 2.23 (6H, s, 2 × CH₃), 2.26 (3H, s, CH₃), 3.77 (3H, s, CH₃), 5.60 (1H, d, J = 2.8 Hz, CH), 6.01 (1H, d, J = 2.8 Hz, =CH), 6.55 (1H, s, NH), 6.81–6.90 (4H, m, Ar), 7.03–7.08 (2H, m, Ar), 7.12–7.17 (3H, m, Ar), 7.35 (1H, d, J = 2.0 Hz, Ar). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 19.0, 19.3, 20.1, 55.2, 63.9, 107.4, 114.1, 114.3, 118.3, 119.7, 123.7, 128.2, 129.3, 129.5, 129.9, 130.3, 132.3, 133.6, 134.8, 137.1, 137.6, 139.3, 159.3, 167.2. Anal. Calcd for C₂₇H₂₈N₂O₂: C, 78.61; H, 6.84; N, 6.79; found C, 78.39 H, 6.90; N, 6.62.

MS (EI, 70 eV): m/z (%) = 412 (M⁺, 25.8), 292 (30.8), 264 (base peak), 77 (40.4).

5-(4-hydroxyl-3-nitrophenyl)-1-(4-methoxyphenyl)-3-(4methoxyphenylamino)-1,5-dihydro-pyrrol-2-one

Orange solid; 0.18 g, 40 % yield; mp 196–202 °C. IR (KBr): 3,310 (OH), 3,304 (N–H), 1,683 (cm⁻¹) (N–C = O). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.78 (3H, s, OCH₃), 3.81 (3H, s, OCH₃), 5.61 (1H, s, CH), 5.90 (1H, s, =CH), 6.52 (1H, s, NH), 6.85–6.91 (4H, m, Ar), 7.03–7.10 (3H, m, Ar), 7.29-7.39 (3H, m, Ar), 8.00 (1H, s, Ar), 10.57 (1H, s, OH). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 55.4, 55.6, 63.5, 114.5, 114.8, 118.8, 121.0, 123.8, 124.1, 124.3, 130.4, 135.8, 155.0, 157.7. Anal. Calcd for C₂₄H₂₁N₃O₆: C, 64.42; H, 4.73; N, 9.39; found C, 64.12; H, 4.77; N, 9.12.

MS (EI, 70 eV): m/z (%) = 447 (M⁺, 1.1), 384 (8.4), 250 (23.2), 147 (17.9), 119 (40.0), 105 (13.2), 91 (37.9), 70 (53.7), 57 (72.6), 55 (base peak).

Acknowledgments The authors are thankful to the Persian Gulf University Research Council for partial support of this study.

References

- Morin RB, Gorman M (1982) Chemistry and biology of β-lactam antibiotics. Academic Press, New York
- Trofimov BA, Sobenina LN, Demenev AP, Mikhaleva AI (2004) C-vinylpyrroles as pyrrole building blocks. Chem Rev 104:2481– 2506. doi:10.1021/cr020100i
- Gein VL, Popov AV, Kolla VE, Popova NA, Potemkin KD (1993) Synthesis and biological activity of 1,5-diaryl-3-arylamino-4-carboxymethyl-2,5-dihydro-2-pyrrolones and 1,5-diaryl-4carboxymethyltetrahydropyrrole-2,3-diones. Pharm Chem J 27:343–346
- Gein VL, Popov AV, Kolla VE, Popova NA (1993) Synthesis and biological activity of 1,5-diaryl-3-alkylamino-4-carboxymethyl-2,5-dihydropyrrol-2-ones and 1,5-diaryl-4carboxymethyltetrahydro-pyrrol-2,3-diones. Pharmazie 48:107– 109
- Becker I (2004) Preparation of pyrrole and pyrrolidine derivatives of pyrimidine. 1-(2- pyrimidinyl)pyrrole-an inhibitor of X. Phaseoli and X. Malvacearum. J Heterocyclic Chem 41:343–348. doi:10.1002/jhet.5570410306
- Khalaf AI, Waigh RD, Drummond AJ, Pringle B, McGroarty I, Skellern GG, Suckling CJ (2004) Distamycin analogues with enhanced lipophilicity: synthesis and antimicrobial activity. J Med Chem 47:2133–2156. doi:10.1021/jm031089x
- Toja E, Gorini C, Zirotti C, Barzaghi F, Galliani G (1991) Amnesia-reversal activity of a seris of 5-alkoxy-1-arylcarbonyl-2pyrrolidinones and 5-alkoxy-1-arylmethyl-2-pyrrolidinones. Eur J Med Chem 26:415–422. doi:10.1016/0223-5234(91)90102-S
- Kocharyan, S.T.; Churkina, N. P.; Razina, T. L.; Karapetyan, V. E.; Ogandzhanyan, S. M.; Voskanyan, V. S.; Babayan, A. T. Khim Geterotsikl (1994) Soedin 1345. doi:10.1007/s11164-012-0749-9
- Vaughan WR, Tripp RC (1960) 1,5-Diary1-2,3-pyrrolidinediones. XII. Enamines and the pseudo-pyrrolidinediones. J Am Chem Soc 82:4370–4376. doi:10.1021/ja01501a064
- Wu YC, Liu L, Wang D, Chen YJ (2006) Efficient synthesis of 3-arylaminopyrroline-2-ones by the tandem reaction of anilines and β, γ-unsaturated α-ketoesters. J Heterocycl Chem 34:949– 955. doi:10.1002/jhet.5570430421

- Palacios F, Vicario J, Aparicio D (2006) An efficient synthesis of achiral and chiral cyclic dehydro-α-amino acid derivatives through nucleophilic addition of amines to β, γ-unsaturatedα-keto esters. Eur J Org Chem 2843–2850: doi:10.1002/ejoc.200600092
- Li X, Deng H, Luo S, Cheng JP (2008) NAP ether mediated intramolecular aglycon delivery: a unified strategy for 1,2-cisglycosylation. Eur J Org Chem 4350–4356. doi:10.1002/ejoc. 200800249
- Ghashang M, Shaterian HR (2011) A convenient method for the preparation of 1,5-diaryl-3-(arylamino)-1H-pyrrol-2(5H)-ones. Chin J Chem 29:1851–1855. doi:10.1002/cjoc.201180323
- Niknam K, Jamali A (2012) Silica-bonded N-propylpiperazine sodium n-propionate as recyclable basic catalyst for synthesis of 3,4-dihydropyrano[c]chromene derivatives and biscoumarins. Chin J Catal 33:1840–1849. doi:10.1016/S1872-2067(11)60457-9
- Niknam K, Deris A, Panahi F (2013) Silica-functionalized N-propylpiperazine for immobilization of palladium nanoparticles as efficient heterogeneous catalyst for cyanation reactions. Chin J Catal 34:718–722. doi:10.1016/S1872-2067(12)60532-4
- Niknam K, Deris A, Naeimi F, Majleci F (2011) Synthesis of 1,2,4,5-tetrasubstituted imidazoles using silica-bonded propylpiperazine N-sulfamic acid as a recyclable solid acid catalyst. Tetrahedron Lett 52:4642–4645. doi:10.1016/j.tetlet.2011.06.105

- Niknam K, Gharavi A, Hormozi-Nezhad MR, Panahi F, Sharbati MT (2011) Synthesis of 1,2,4,5-tetrasubstituted imidazoles using silica-bonded propylpiperazine N-sulfamic acid as a recyclable solid acid catalyst. Synthesis 1609–1615. doi:10.1055/ s0030-1259996
- Niknam K, Sadeghi Habibabad M, Deris A, Aeinjamshid N (2013) Preparation of silica-bonded N- propyltriethylenetetramine as a recyclable solid base catalyst for the synthesis of 4,4[']-(arylmethylene)bis(1H-pyrazol-5-ols). Monatsh Chem 144:987– 992. doi:10.1007/s00706-012-0910-6
- Niknam K, Jamali A, Tajaddod M, Deris A (2012) Synthesis of 2-amino-4,6-diarylnicotinonitriles using silica-bound N-propyl triethylenetetramine sulfamic acid as a recyclable solid acid catalyst. Chin J Catal 33:1312–1317. doi:10.1016/ S1872-2067(11)60421-X
- Niknam K, Saberi D, Nouri Sefat M (2009) Silica-bonded S-sulfonic acid as a recyclable catalyst for chemoselective synthesis of 1,1-diacetates. Tetrahedron Lett 50:4058–4062. doi:10. 1016/j.tetlet.2009.04.096
- Niknam K, Saberi D (2009) Silica-bonded N-propyl sulfamic acid as an efficient catalyst for the formylation and acetylation of alcohols and amines under heterogeneous conditions. Tetrahedron Lett 50:5210–5214. doi:10.1016/j.tetlet.2009.06.140