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Abstract A facile and green synthesis of 1,4-disubsti-
tuted-1H-1,2,3-triazoles is reported. The reaction of α-azido
ketones and terminal alkynes in the presence of [CuSO4

(H2O)5/sodium ascorbate] in a mixture of H2O/polyethylene
glycol 400 as solvent afforded the corresponding 1,4-disub-
stituted triazoles at ambient temperature with short reaction
times and at high yields. The corresponding α-azido ketones
were directly prepared in situ from various substituted sty-
renes using the oxidant cerium ammonium nitrate and sodium
azide in oxygen-saturated methanol.

Keywords Click chemistry · Styrene · Regioselective ·
Sodium azide · Triazole

Introduction

1,3-Dipolar cycloadditions between organic azides and a
variety of terminal alkynes provide a fulfilling method for
the direct synthesis of substituted triazoles [1–3]. How-
ever, because of the high activation energy involved, these
cycloadditions are often very slow even at elevated tem-
peratures (80–120 ◦C for 12–24 h) and produced mixtures
of regioisomers until Sharpless introduced Cu(I) as cat-
alyst for this cyclization [4]. Copper(I)-catalyzed azide-
alkyne cycloaddition is best known as “click” reaction
and has been termed the “cream of the crop” of click
reactions. This cycloaddition has been applied in various
ways in drug discovery, chemical biology and medicinal
chemistry [4–8]. Heteroaromatic 1,2,3-triazoles have sev-
eral biological traits giving them, for example, anti-allergic,
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anti-microbial, and anti-HIV properties [7–11]. Many 1,2,3-
triazoles are also used as dyes, agrochemicals, optical
brighteners, corrosion inhibitors, and photographic mate-
rials [12–16]. The synthesis of substituted 1,2,3-triazoles
by the direct alkylation of 1,2,3-triazoles is generally not
preferred because of poor regioselectivity. The click reac-
tion between α-azido ketones and terminal alkynes in the
presence of Cu(I) catalyst can be used in the synthesis
of 1,4-disubstituted triazoles. Since α-azido ketones are
often unstable to heat and light, their in situ prepara-
tion offers a great alternative to their use and handling.
α-Azido ketones can be prepared in situ directly or indi-
rectly. The indirect approach to α-azido ketones involves the
reaction of α-halo ketones [17,18] and α-tosyloxy ketones
(obtained from enolizable ketones using Koser’s reagent,
[hydroxy(tosyloxy)iodo]benzene) [19] with sodium azide.
The direct preparation of α-azido ketones can be achieved
by the reaction of various styrene derivatives with sodium
azide and cerium ammonium nitrate (CAN) in oxygen-satu-
rated methanol [20]. Only two methods have been reported
for the preparation of 1,4-disubstituted 1,2,3-triazoles from
α-azido ketones: multi-component reactions of α-tosyloxy
ketones or α-halo ketones with sodium azide and terminal
alkynes [21,22]. These two methods are based on the indi-
rect preparation of α-azido ketones using enolizable ketones
where the first step converts the enolizable ketones into
α-tosyloxy or α-halo ketones.

Although it is reported that the multi-component reaction
of α-halo ketones with sodium azide and terminal alkynes
produce 1,4-disubstituted triazoles [22], this method is prob-
lematic because the reaction is often not complete and the
α-halo ketones are highly eye-irritant [23,24]. A new and
shorter procedure is hereby reported for the synthesis of 1,4-
disubstituted 1,2,3-triazoles from the click reaction of termi-
nal alkynes and directly prepared phenacyl azides.
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Scheme 1 Direct preparation of phenacyl azides from styrenes

Experimental

All of the triazole derivatives were prepared by our proce-
dure; their spectroscopic and physical data were compared
with those of authentic samples. NMR spectra were recorded
in DMSO-d6 or CDCl3 on a Bruker Advanced DPX 500 and
400 MHz instrument spectrometers using TMS as internal
standard. IR spectra were recorded on a BOMEMMB-Series
1998 FT-IR spectrometer.

General procedure for the preparation of phenacyl azides

Oxygen was purged into a two-neck round-bottom flask con-
taining a solution of methanol (10 mL), styrene (Table 1,
1a–12a, 1.3 mmol) and sodium azide (2 mmol). After 5 min,
a methanol solution of CAN (1.26 g, 2.3 mmol of CAN dis-
solved in 15 mL of methanol) was added drop-wise to the
flask at ice-cold temperature, while the reaction mixture was
continuously being purged with oxygen. After 45 min, the
reaction mixture was diluted with distilled water (50 mL),
extracted with dichloromethane (2 × 25 mL), washed with
saturated brine, and dried over anhydrous sodium sulfate.
Evaporation of solvent afforded corresponding phenacyl
azides which were purified by column chromatography (ethyl
acetate/n-hexane, 5:1 as eluting solvent). Their structures
were confirmed by infra-red (IR) and 1H-NMR spectroscopy,
(Scheme 1).

General procedure for the synthesis
of 1,4-disubstituted-1H-1,2,3-triazoles (1c–12c)

Sodium ascorbate (0.050 g) and CuSO4(H2O)5 (0.050 g)
were added to a mixture of phenacyl azide (1 mmol), alkeyne
(Table 1, 1b–12b, 1.1 mmol) in H2O/PEG (1:1) as solvent.
The mixture was stirred for 15 min. The organic phase was
extracted with ethyl acetate (20 mL), dried over sodium sul-
fate, and filtered. The resulting solid residue was washed with
diethyl ether and dissolved in minimum amount of ethyl ace-
tate. N -hexane was added drop-wise to give pure crystal,
(Scheme 2) and (Table 1 1c–12c).

1c: IR (KBr): 1697 (CO) cm−1. 1H NMR(400 MHz,
DMSO-d6): 8.53(1 H, s), 8.12–8.10(2 H, d; j = 8.15), 7.89–
7.87(2H, d; j = 8.15), 78–7.74 (1 H, m), 7.65– 7.61 (2 H, t;
j = 7.7), 7.49–7.45 (2 H, t; j = 7.7 Hz), 7.37–7.33 (1 H, m),

6.27 (2 H, s). 13C NMR(100 MHz, DMSO-d6): δ = 195.0
(CO), 152.4, 139.0, 138.2, 134.5, 133.5, 133.2, 132.7, 132.5,
130.1, 126.4, 59.9.

2c: IR (KBr): 1709(CO) cm−1. 1H NMR(400 MHz,
DMSO-d6): 8.19(1H, s), 8.08–8.06 (2H, m), 7.88–7.86 (2H,
m), 7.71–7.68 (1H, m), 7.61–7.57 (2H, m), 7.46–7.42 (m,
2H), 7.31–7.38 (m, 1H), 6.08(s, 2H). 13C NMR(100 MHz,
DMSO-d6): δ = 192.1 (CO), 146.7, 133.58, 132.57, 131.1,
130.7, 129.4, 128.9, 128.3, 125.6, 123.5, 56.4.

3c: IR (KBr): 1697(CO) cm−1. 1H-NMR(500 MHz,
DMSO-d6): δ = 8.52 ppm (1H, s), 8.09–8.08 (2H, d; j = 8.4
Hz), 7.89–7.87 (2H, d; j = 8.4 Hz), 7.49–7.46 (2H, t;
j = 7.6 Hz), 7.37–7.34 (1H, t; j = 7 Hz), 7.15–7.146 (2H,
d; j = 8.5 Hz), 6.19 ppm (s; 2H), 3.9 (s, 3H). 13C-NMR
(125 MHz, DMSO-d6): δ = 194.95, 162.12, 141.9, 134.5,
131.66, 131.51, 129.82, 128.71, 126, 123.96, 115.13, 56.58,
56.49.

4c:IR (KBr): 1698(CO) cm−1.1H-NMR(500 MHz, DM
SO-d6): δ = 8.53 ppm (1H, s), 8.02–8 (2H, d; j = 8.29 Hz),
7.89–7.87 (2H, d; j = 8.29 Hz), 7.49–7.43 (4H, m), 7.37–
7.34 (1H, t; j = 7.5 Hz), 6.22 (2H, s), 2.43 (3H, s). 13C-
NMR(125 MHz, DMSO-d6): δ = 192.5, 147.14, 145.78,
139.4, 132.5, 131.6, 129.8, 129.2, 128.7, 126, 123.9, 56.7,
22.1.

5c: IR (KBr): 3420 and 3338(NH2)cm−1, 1701(CO)
cm−1. 1H-NMR(500 MHz, DMSO-d6): δ = 8.35 ppm (1H,
s), 8.11–8.10 (2H, d; j = 7.46 Hz), 7.75–7.74 (1H, t; j = 7
Hz), 7.64–7.61 (2H, t; j = 7.32 Hz), 7.15 (1H, s), 7.10–7.08
(1H, t; j = 7.6 Hz), 6.98–6.97 (1H, d; j = 7.5 Hz), 6.56–
6.55 (1H, d; j = 7.5 Hz), 6.22 (2H, s), 5.22 (2H, s). 13C-
NMR(125 MHz, DMSO-d6): δ = 193.1(CO), 149.9, 147.85,
135.13, 135.02, 132.09, 130.27, 129.88, 129.8, 123.46,
114.48, 113.9, 111.38, 56.78.

7c: IR (KBr): 3424 and 3332(NH2)cm−1, 1695(CO)
cm−1.1H-NMR(500 MHz, DMSO-d6): δ = 8.34 ppm
(s, 1H), 8.09–8.07 (d; j = 8.9, 2H), 7.15–7.13 (d; j = 8.9,
3H), 7.13(s, 1H), 7.10–7.07 (t; j = 7.74, 1H), 6.97–6.95 (1H,
m), 6.55–6.53 (1H, m), 6.14 (2H, s), 5.18 (2H, s), 3.89 (3H, s).
13C-NMR(125 MHz, DMSO-d6): δ = 191.3, 164.8, 149.9,
147.78, 132.12, 131.48, 130.24, 127.89, 123.48, 115.12,
114.42, 113.85, 111.34, 56.57, 56.40.

8c: IR (KBr): 3420 and 3336(NH2)cm−1, 1690(CO)
cm−1. 1H-NMR(500 MHz, DMSO-d6): δ = 8.53 ppm (1H,
s), 8.02–8 (2H, d; j = 8.26), 7.89–7.87 (2H, d; j = 8.26),
7.15 (1H, s), 7.10–7.08 (1H, t; j = 7.6 Hz), 6.98–6.97 (1H,
d; j = 7.5 Hz), 6.56–6.55 (1H, d; j = 7.5 Hz), 6.12 (2H,
s), 5.19(2H, s), 2.45 (3H, s).13C-NMR(125 MHz, DMSO-
d6): δ = 191.5, 148.5, 147.1, 145.78, 132.5, 139.4, 131.6,
129.8, 129.2, 128.7, 126, 115.1, 114.2, 56.7, 22.1.

9c: 1696(CO) cm−1.1H-NMR(500 MHz, DMSO-d6):
δ = 8.64 ppm (2H, s), 8.43 (1H, s), 8.11–8.13 (4H, d; j = 8.3
Hz), 7.8 (1H, d; j = 1.6), 7.86 (1H, d; j = 1.6 Hz), 7.76 (2H,
t; j = 7.7 Hz), 7.6 (4H, t; j = 8.3 Hz), 7.58 (1H, t; j = 7.7
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Table 1 Synthesis of 1,4-disubstituted-1H-1,2,3-triazoles

Entry Styrene(a) Alkyne(b) Product(c) Yield(%)d
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dYield refer to pure and isolated products
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Scheme 2 Synthesis of 1,4-
disubstituted-1H-1,2,3-triazoles
from directly prepared phenacyl
azide and terminal alkyne using
click cyclization
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Scheme 3 Synthesis of symmetrical substituted triazoles using phenacyl azides and 1,3-diethynylbenzene

Hz), 6.29 (2H, s), 6.28 (2H, s). 13C-NMR(125 MHz, DMSO-
d6): δ = 193, 146.97, 135.17, 135, 132.29, 130.55, 129.9,
129.1, 125.5, 124.26, 122.7, 56.91.

12c: IR (KBr): 1697(CO) cm−1.1H-NMR(500 MHz,
DMSO-d6): δ = 8.5 ppm (2H, s), 8.41 (1H, s), 8.11–8.10
(4H, d; j = 8.4 Hz), 7.90–7.89 (4H, d; j = 8.4 Hz), 7.79–
7.76 (2H, t; j = 7.6 Hz), 7.60–7.57 (1H, t; j = 7.6 Hz), 7.15–
7.146 (2H, d; j = 8.5 Hz), 6.19 ppm (s; 4H), 3.85 (s, 6H).
13C-NMR(125 MHz, DMSO-d6): δ = 194.9, 163.1, 141.9,
133.2, 131.66, 129.82, 128.4, 126, 123.96, 115.2, 56.58,
56.49.

Results and discussion

The similar methods used previously to synthesize triazoles
[21,22] exploited α-halo ketones and α-tosyloxy ketones,
which themselves were prepared from their corresponding
ketones. These methods applied the indirect preparation of
α-azido ketones which was a long process and resulted in
incomplete conversion. Moreover, a phase transfer catalyst
was necessary in this step. α-Halo ketones suffer from tear-
inducing properties, and ketones are more expensive than
styrene precursors. Thus, a shorter route using cheaper pre-
cursors that do not have any tear-inducing properties would
save time and money. The new method proposed herein uti-
lizes a direct and shorter way to prepare α-azido ketones for
synthesis of 1,4-disubstituted 1,2,3-triazoles with less expen-
sive styrene precursors. In fact, in this method, CAN oxidant
dissolved in methanol was added drop-wise to an ice-cold
temperature stirring methanol solution of styrene and sodium
azide, while the reaction mixture was continuously being
purged with oxygen. The phenacyl azide was produced after
45 min in high yield (Scheme 1).

Various phenacyl azides prepared by this direct prepa-
ration method were treated to click cyclization with ter-
minal alkynes in a mixture of H2O/PEG as solvent. Using

of H2O/PEG mixture as a green solvent for cyclization is
in line with click reaction characteristics [1–3]. The phase
transfer catalytic properties of PEG work in a similar fash-
ion to those of crown ethers and these properties signifi-
cantly reduce cyclization times, as compared to other solvents
[25–27]. It is worth noting that the solvent mixture can
be reused up to three times without any loss of activity
(Scheme 2).

The preparation of α-azido ketones was checked by thin
layer chromatography and indentified by IR spectroscopy
by signals at about 1680–1705cm−1, for carbonyl groups,
and 2100–2115cm−1, for azide groups. Click condensations
were confirmed by the appearance of a singlet in the region
of 8–8.5 ppm in 1H-NMR spectra, which corresponds to the
hydrogen on 5-position of triazole ring. These results are
consistent with the disappearance of the azide signal in the
IR spectra. This characteristic singlet confirms the regiose-
lective synthesis of 1,4-disubstituted triazole regioisomers
(Schemes 2 and 3). The using of 1,3-diethynylbenzene in
click cyclizations led to the synthesis of some interesting
symmetrical triazoles (Table 1, entry 9c–12c and Scheme 3).
A simple purification technique is one of the key characteris-
tics of click reactions [1–3]. It should be noted that, although
all the products were solid, it was fortunate that the products
were insoluble in diethyl ether while the starting materials
were soluble. Therefore, the products were easily purified by
washing with diethyl ether and ethanol (for better purification
solid products were dissolved in a minimum amount of ethyl
acetate, then n-hexane was added drop-wise to precipitate
pure products). All the products were obtained during short
time interval in high yields. Styrenes with electron releas-
ing and electron withdrawing groups gave good results. It
seemed that the ring substituent had not a significant effect
on reaction time and product yields (Table 1 and Scheme 2).

The proposed mechanism for this cyclization is shown
in Scheme 4. In the presence of CAN, the azide anion
is converted to an azide radical, which after attacking the
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Scheme 4 Proposed
mechanism for CAN/N3
mediated
1,4-disubstituted-1H-1,2,3-
triazole synthesis
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β-position of styrene produces a benzyl radical. In the fol-
lowing step, azido peroxide is obtained in the presence of
molecular oxygen. Finally, CAN converts the azido perox-
ide group to an azido ketone moiety, which in turn reacts with
the terminal alkyne to produce 1,4-disubstituted triazole in
the next step.

Conclusions

A new and facile approach to the synthesis of 1,4-disubsti-
tuted-1H-triazoles was reported. This method significantly
reduced cyclization times, required a simple purification
technique, utilized an environmentally benign green solvent
mixture, and afforded products quickly in high yields.
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