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Abstract Optimal descriptors based on the simplified
molecular input line entry system (SMILES) have been uti-
lized in modeling of carcinogenicity. Carcinogenicity of 401
compounds has been modeled by means of balance of cor-
relations for the training (n = 170) and calibration (n = 170)
sets. The obtained models were evaluated with an external
test set (n = 61). Comparison of models based on the balance
of correlations and models which were obtained on the basis
of the total training set (i.e., both training and calibration sets
as the united training set) has shown that the balance of cor-
relations improves the statistical quality for the external test
set.

Keywords QSAR · SMILES · Optimal descriptor ·
Carcinogenicity · Balance of correlations · Applicability
domain

Introduction

Quantitative structure–property/activity relationships
(QSPR/QSAR) are designed to predict the physicochemi-
cal and/or biochemical behaviour of substances which have
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not been examined experimentally. This can be done by ana-
lyzing parameters related to the molecular structures.

Carcinogenicity is an extremely complex biochemical
phenomenon involving processes at the cellular level. The
carcinogenicity of a substance depends on its molecular struc-
ture and a certain number of phenomena which are only par-
tially known. Typically, the carcinogenic process involves
one or more processes, showing a relationship with the muta-
genic potential of a substance, but other processes are possi-
ble for carcinogens which are non mutagenic. Constructing
a robust quantitative model based on information about the
molecular structure is possible [1–5], and quantitative mod-
els for carcinogenicity have been reported [2–4]. However,
more typically carcinogenicity evaluations aim to classify
substances as active or inactive [5–7].

Thus, for carcinogenicity there have been both QSAR
and SAR (structure–activity relationship) studies. In some
cases the input of the models have been classical descriptors,
but most typically in SAR studies chemical fragments have
been used. Thus, in one case general features are responsi-
ble for the activity, while in the second case the toxic effect
is due by the presence of a certain fragment responsible
for the genotoxic effect. Historically the first approach is
more related to the chemical QSAR models, which were
addressing ecotoxicological endpoints such as aquatic toxic-
ity. In these cases general features such as the partition coef-
ficient between octanol and water have been more commonly
used. The second approach, based on fragments, originates
from the finding of toxicologists that some chemical resides,
such as those present in nitrosoamines and epoxides, are at
the basis of genotoxicity. Ashby et al. [8] listed a series of
these fragments. Some models are formally a codification of
fragments, such as by the programs HazardExpert [9] and
Oncologic [10]. However, other approaches, still based on
fragments, relied on software to identify fragments associated
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to genotoxicity. This is the case of MULTICASE and of
the model developed by Bursi et al. [11] for mutagenicity.
Indeed, in case of data sets of thousands of compounds, such
as in the case mutagenicity, computers may provide useful
help to manage the huge amount of possible fragments and
toxic effects. Results of models based on human expertise
codified in rules and those from automatic learning gave sim-
ilar results [12].

Some models, actually, involve a combination of tools,
based on hazard on fragments or general features, such as
with HazardExpert [9].

Our approach is somehow between the approach frag-
ments and that on general parameters. The present study
assessed optimal descriptors calculated with the simplified
molecular input line entry system (SMILES) for modeling
carcinogenic potentials by correlation balance between train-
ing and calibration sets.

Carcinogenicity data

Experimental values for carcinogenicity were taken from
Ref. [7]. Carcinogenicity is expressed as the potency dose that
induces cancer in rats (TD50, in mg/kg body weight). These
values have been converted into mmol/kg body weight. The
log(TD50) was examined as endpoint for modeling. We used
all substances for which TD50 numerical values in mg/kg
body weight for the rat have been reported and CAS numbers
are given. Substances classified as not positive (NP) were not
examined. In total 401 compounds were used.

We randomly split them into training (n = 170), calibra-
tion (n = 170) and test (n = 61) sets. The range of log(TD50)

values for these sets was very similar (about from −2 to 5).

Method

SMILES is a representation of the molecular structure by a
sequence of symbols [13–15]. These are images of chemical
elements (e.g., ‘C’, ‘Br’, ‘Cl’) and indicators of molecular
attributes such as double (‘=‘) or triple (‘#’) bonds, chiral
center (‘@’), cis- and trans-isomerism (by ‘/’ and ‘\’) and
others [16,17].

Optimal descriptors calculated with molecular graphs are
used for models of an assigned endpoint by one-variable
correlation [18–20]. Databases available from internet con-
tain SMILES [21,22] stimulated constructing SMILES based
descriptors in general [23], and SMILES-based optimal
descriptors [24,25], in particular. SMILES notations used in
this study were obtained by the ChemSketch software [17],
that generates canonical SMILES.

A SMILES-based optimal descriptors of correlation
weights (DCW) used in this study were calculated as

DCW(LimS)= CW(dC)�CW(1sk)�CW(2sk)�CW(3sk)

(1)

where 1sk,
2sk and 3sk are SMILES attributes (SAk) of one

or two or three elements. The element SMILES can be a
symbol of the SMILES notation or two symbols: list of the
SMILES elements is the following: “@@”, “Br”, “Cl”, “#”,
“(“, “+”, “−”, “/”, “1”, “2”, “3”, “4”, “5”, “=“, “@”, “C”
(capital letter), “F”, “H”, “N”, “O”, “P”, “S”, “[“, “\”, “c”
(lowercase letter), “n”, “o”, “s”. It should be noted that the
“)” is replaced by “(“ since these symbols are indicators of
the same phenomenon (branching). The SMILES attribute
of the 1sk type contains only one SMILES element; attri-
bute of the 2sk type contains two SMILES elements (e.g.,
“C___C___”, “C___N___”, etc.); the attribute of the 3sk type
contains three SMILES elements (e.g., “C___N___1___”,
“C___O___2___”, “Br__c___2___”, etc).

For instance SMILES of “O = CC” is represented by the
following SMILES attributes:

1sk type (C___________, C___________, =
___________, O___________);

2sk type (C___C_______, C___ = _______, O___ =
_______);

3sk type (C___C___ = ___, O___ = ___C___);
dC (!-02________).
CW(x) is the correlation weight for the SMILES attribute

x. CWs are calculated by the Monte Carlo method optimiza-
tion procedure [21,22] that provides CWs values which, used
in Eq. 1, give a maximum correlation coefficient between the
descriptor and carcinogenicity. There is an analogy between
the three level separation of the SMILES notation in a 1sk,

2sk

and 3sk attributes and the extended connectivity of zero-
(vertex), first- (edge), and second order (path of length 2)
defined in a molecular graph [26–28]. We used the range of
the SMILES elements according to ASCII codes of the sym-
bols. In other words, each ‘AB’ composition can only have
one representation (not both ‘AB’ and ‘BA’, and only ‘ABC’
not ‘CBA’).

Finally, the dC is the difference of the number of ‘C’ (cap-
ital letter) in the given SMILES notation minus the number
of ‘c’ (lowercase letter) in the given SMILES notation. For
example, this global SMILES attribute is denoted as ‘!001’, if
dC = N(‘c’) – N(‘C’) = 1, and as ‘!-02’ if the dC = −2. The
CW(dC) is the correlation weight of the dC. The symbol “C”
(capital letter) is the representation of a carbon atom in the sp3

configuration. The symbol “c” (lowercase letter) is the repre-
sentation of a carbon atom in sp2 configuration. Thus the dC
is a some measure of presence of rigid and flexible fragments
in molecular architecture. The examined substances contain
chlorine that gives an additional ‘C’. The chlorine is not rigid
fragment in molecular system and we have calculated the dC
taking into account the ‘C’ from chlorine atoms.
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There are 747 SMILES attributes for the 401 substances
under consideration. Some of the attributes are rare and some
are absent in the training set. Rare attributes being used in
this approach can lead to overtraining (i.e., the good statisti-
cal characteristics for the training and the calibration sets, but
poor statistical characteristics for the test set). Hence detect-
ing of rare SMILES attributes and blocking their influence
are necessary.

In Ref. [23], to define the rare attributes a special scheme
was used. The total number of SMILES attributes in the train-
ing set is the sum of all attributes from each SMILES nota-
tion of the training set. According to Ref. [23], one can use
threshold (lim) to define rare attributes. If the lim = 3, then
each SMILES attribute that takes place in the training set
less than 3 times should be defined as rare. However, in this
case two attributes which take place 3 times should be clas-
sified as not rare, even if the first takes place in the only one
SMILES notation whereas the second in three SMILES nota-
tions. Taking into account possibility of described situation,
a more adequate criterion to define rare attributes should be
defined as the number of SMILES notations (in the training
set) which contain the given attribute (SAk). In this study this
criterion was used. This number is denoted as limS. If to use
this criterion, then for the first above mentioned attribute the
limS = 1, and for the second abovementioned attribute the
limS = 3.

The optimization of the correlation weights used in Refs.
[22–26] is based on the maximization of the correlation coef-
ficient between the DCW-like descriptor and property/activ-
ity of interest. In the present study a novel target function has
been studied. The target function is defined as

Target Function = RT + RC − ABS(RT − RC) ∗ 0.1 (2)

where RT and RC are correlation coefficients between the
DCW and carcinogenicity for the training and calibration
sets, respectively. In other words an attempt to obtain cor-
relation weights which satisfy two conditions: first, RT and
RC are as large as possible, and second, RT − RC → 0 has
been accomplished. Thus, the composition of the training set
determinates the list of SAk and the calibration set controls
the balance of the correlation coefficient for the training and
calibration set.

Thus, the role of the training set is a generator of the
model (list of SMILES attributes and their optimal corre-
lation weights), whereas the role of the calibration set is a
provider of the robustness of the model (i.e., a tool to avoid
the overtraining).

An informative characteristic of the distribution of the SAk

is

dP12(SAk) = PTRN(SAk) − PCLB(SAk) (3)

dP13(SAk) = PTRN(SAk) − PTST(SAk) (4)

dP23(SAk) = PCLB(SAk) − PTST(SAk) (5)
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Fig. 1 Plot of LimS versus the A12 (circles), A13 (white squares), and
A23 (triangles) indexes

where PTRN(SAk), PCLB(SAk), and PTST(SAk) are the prob-
ability that the SMILES of the training, calibration, and test
sets contain the given SAk. The ideal situation is

dP12(SAk) = dP13(SAk) = dP23(SAk) = 0 (6)

The SMILES-based model can be characterized by the aver-
age values dP12, dP13, and dP23:

A12 = (1/Nact) ·
∑

all active SA

dP12(SAk) (7)

A13 = (1/Nact) ·
∑

all active SA

dP13(SAk) (8)

A23 = (1/Nact) ·
∑

all active SA

dP23(SAk) (9)

These values give the possibility to compare different splits
into training, calibration, and test sets: the preferable situa-
tion is when the values are close to zero. It is to be noted that
the calculation with Eqs. 2–4 convey information about the
relative prevalence of the SMILES attributes (SAk) in the
training, calibration, and test sets. For instance, if the prob-
ability of the presence of SAk in the calibration set is more
than the probability of the presence of SAk in training set,
then dP12 is less than zero. Calculations with Eqs. 7–9 are
performed over all active SMILES attributes (not blocked for
the given LimS). The blocked SAk have not been taken into
account calculating the A12, A13, and A23.

Results

The plot of LimS versus the A12, A13, and A23 (Fig. 1) indi-
cates that LimS = 7 gave a minimum value for the average
A12 and maximums for the A13 and A23. It will be seen
below, the most robust prediction takes place near LimS = 7
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Table 1 Statistical characteristics of the carcinogenicity models with LimS from 3 to 11

Training set ( n = 170) Calibration set (n = 170) Test set (n = 61)

LimS Nact r2 s F r2 s F r2 s F A12 A13 A23

3 341 0.8206 0.604 769 0.8206 0.616 769 0.5012 1.102 59 0.00573 0.00413 −0.00159

4 293 0.7861 0.660 618 0.7861 0.658 618 0.6072 0.859 93 0.00640 0.00484 −0.00157

5 261 0.7696 0.685 561 0.7689 0.680 559 0.6422 0.834 108 0.00654 0.00506 −0.00148

6 239 0.7498 0.714 504 0.7486 0.712 500 0.7348 0.676 164 0.00655 0.00562 −0.00093

7 212 0.7140 0.763 420 0.7138 0.758 419 0.7036 0.679 140 0.00633 0.00615 −0.00018

8 195 0.6922 0.792 378 0.6920 0.788 378 0.7305 0.643 161 0.00655 0.00575 −0.00080

9 176 0.6674 0.823 337 0.6673 0.821 337 0.7147 0.660 148 0.00642 0.00516 −0.00125

10 166 0.6597 0.833 326 0.6597 0.836 326 0.7068 0.679 142 0.00581 0.00471 −0.00111

11 153 0.6400 0.856 299 0.6401 0.859 299 0.6902 0.696 132 0.00581 0.00421 −0.00159

Nact, the number of active (i.e., not blocked) SMILES attributes
Bold indicates best limS values

(i.e., LimN = 6 and 8), but not in the same place. Our hypoth-
esis is the following: minimums and maximums of the A12,
A13, and A23 curves are indicators for searching robust ver-
sions of the DCW(LimS) models: in other words, the robust
model might be near to these maximum and minimum val-
ues. However, this hypothesis must be checked with other
substances and endpoints for a wider application to other
models.

These indexes A12, A13, and A23 can be used for the
definition of the applicability domain. In particular, one can
hope to obtain reasonable prediction for some additional
compounds in the test set, if their insertion does not con-
siderably decrease the A13, because a considerable decrease
of the A13 indicates that these additional compounds have
SMILES attributes which are rare or absent in the training
(see Eqs. 4, 8).

Table 1 shows the statistical quality of the models obtained
with LimS from 3 to 11. LimN = 6 gave the best prediction
for the test set. Figure 2 shows graphically the correlation
coefficients for the training, calibration, and test sets in rela-
tion to LimS from 3 to 11.

One can see from Table 2 that the statistical characteris-
tics of the DCW(6)-model are almost identical for the three
probes of the Monte Carlo optimization.

The one-variable model for carcinogenicity, obtained in
the first probe of the Monte Carlo optimization for DCW(6),
is the following:

log(TD50) = −45.2316(±0.1667)

+44.3883(±0.1588) ∗ DCW(6)

n = 170, r2 = 0.752,

s = 0.711(training set)

n = 170, r2 = 0.751,

Rpred
2 = 0.745, SDEP = 0.648(calibration set)
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Fig. 2 Statistical quality of the models for the training (circles), cali-
bration (white squares) and test (triangles) sets on different LimS Aver-
ages of three probes of the Monte Carlo optimization values of the
determination (i.e., R2) coefficients for the training, calibration, and
test sets were used

n = 61, r2 = 0.723,

Rpred
2 = 0.706, SDEP = 0.707(test set)

SDEP = L{�n
k=1(yobs[k] − ypred[k])2/n}0.5 (10)

where, the yobs[k], ypred[k] are values of the log(TD50)

observed and predicted, respectively; n is the number of cal-
ibration or test set compounds.

The experimental values and those calculated with Eq. 10
for carcinogenicity are presented in the electronic supple-
mentary material. Figure 3 shows graphically the regression
curves of the predicted versus experimental values for the
training, calibration, and test sets.

The best DCW(6) model obtained with the general train-
ing set (i.e., the set combining both the training and cali-
bration, n = 340) has the following statistical characteristics

123



Mol Divers (2009) 13:367–373 371

Table 2 Statistical
characteristics of the
carcinogenicity models with
LimS = 6 for three probes of the
Monte Carlo optimization

Training set (n = 170) Calibration set (n = 170) Test set (n = 61)

Probe r2 s F r2 s F r2 s F

1 0.7518 0.711 509 0.7505 0.709 505 0.7234 0.696 154

2 0.7457 0.720 493 0.7454 0.714 492 0.7275 0.665 157

3 0.7519 0.711 509 0.7501 0.712 504 0.7535 0.666 180

Average 0.7498 0.714 504 0.7486 0.712 500 0.7348 0.676 164

Fig. 3 Graphical representation of the model calculated with Eq. 10

n = 340, r2 = 0.772, s = 0.680, F = 1143 (training set) and
n = 61, r2 = 0.704, s = 0.720, F = 140 (test set). One can see
that the statistical characteristics for the united training set are
better, but the statistical characteristics for the external test set
are not better. Thus, the correlation balance gives an improve-
ment for the carcinogenicity prediction (i.e., improvement for
the external test set).

Discussion

The classification approach is more typically used in research
dedicated to carcinogenicity [1]. However, quantitative mod-
els have more heuristic significance. In other words, there
is a motivation to construct QSAR model carcinogenicity
[29–31] because it can be useful for a general assessment of
the chemical compounds. Indeed, the risk relative to a cer-
tain compound has to be established comparing the exposure
level and the effect. Thus, information on the carcinogenicity
expressed as a dose can be useful as it gives an indication of
the carcinogenic potential which can be compared with the
level of exposure for the human population.

The correlation coefficient for the carcinogenicity model
described in Ref. [2] is about r2 = 0.85, but the value is a
measure of 5–7 variable models for 35 compounds belong-
ing to the same chemical class of nitroso compounds. Vice
versa our model refers to a much more demanding tasks,

which is a prediction of a ten-times larger data set con-
taining chemicals belonging to a wide variety of chemical
classes, and acting through many different biochemical mech-
anisms. Artificial neural networks (ANN) approach has also
been used in QSAR analysis of the carcinogenicity [3,4].
ANN models gave statistical quality similar to quality of the
model calculated with Eq. 10. According to Ref. [4] the cor-
relation coefficient of the QSAR for carcinogenicity of 45
benzene derivatives is about r2 = 0.7. Recently suggested
QSAR models for rodent carcinogenicity nitroso compounds
obtained by multiple linear regression analysis (MLR) [31]
reported the following statistical characteristics: n = 48, r2 =
0.859, s = 0.361, F = 42 (training set) and n = 6, Q2 = 0.71,
s = 0.488 (test set). We have carried out QSAR analysis of
this data: the correlation balance for these nitroso compounds
(represented with SMILES generated by ChemSketch [17])
gave a model, characterized by the following statistical param-
eters: n = 23, r2 = 0.692, s = 0.547, SDEP = 0.587, (training
set); n = 23, r2 = 0.876, Rpred

2 = 0.831, s = 0.892, (calibra-
tion set); and n = 8, r2 = 0.791, Rpred

2 = 0.689,s = 0.389
(test set). Details of the QSAR model is presented in the
electronic supplementary material.

QSAR models of toxicity towards rats for benzene deriva-
tives built by MLR approach [32] have shown that the increase
of the number of variable increases of the statistical quality of
the toxicity model for the training set, but even three variable
model has statistical characteristics for the external test set
lower that two variable model. Cross validation criterions,
without model estimation with an external test set, are not
enough and can lead to wrong conclusions [33,34].

There are other studies in the literature reported very good
performance for the QSAR models of carcinogenicity, but
these addressed much more homogeneous data sets [35,36].

An important characteristic of our model is the attention
to the validation. We used an external test set only for the
validation purpose. The statistical quality of the model cal-
culated with Eq. 10 is satisfactory, because this model gives
results which are reasonable good for the external test set .

Thus, our model gives reasonably good results considering
that they are checked with an external test set, and the model
is based on a wide heterogeneous data set. Results with r2

close to 0.7 are not suitable to be used as substitute of exper-
imental models. However, these models can still be used for
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at least two purposes: (1) as additional information, because
they can highlight the presence of possible carcinogenic risk,
and (2) as screening tools. In both cases the use can be for pri-
ority setting, in order to identify chemicals to be evaluated
first; as a method to identify more promising compounds,
because with a lower potential toxicity. A chemical indus-
try which wants to develop some chemicals, out of a wider
series, may find this tool useful.

The probabilistic selection of the SMILES attributes (i.e.,
blocking of rare SAk) gives two important features: (1) a
robust model, calculated as an mathematical function of the
SMILES characters; (2) a list of statistically significant SAk,
that can be used as a support for mechanistic interpretation
of carcinogenicity as a chemical phenomenon. This is only
part of the overall phenomenon, since carcinogenicity is a
complex biological phenomenon.

In the electronic supplementary material we include rep-
resent a logical scheme for the estimation of different molec-
ular fragment and different dC as potential promoters of
increasing or decreasing of carcinogenicity. Results of these
probabilistic estimations depend on the splits into the train-
ing, calibration, and test sets. Total list of the SAk together
with correlation weights for the three probes of the Monte
Carlo optimization are given in the electronic supplementary
material.

Generally the analysis for all compounds indicates that
nitrogen (i.e., ‘N’ and ‘n’ symbols in the SMILES), together
with the double bonds (i.e., ‘=‘), has a maximum prevalence
in the group of attributes related to an increase of the carcin-
ogenicity. This can be understood considering the fact that
many aromatic amines and related compounds transformed
into amines shows carcinogenic activity. Nitrosoamines are
also often carcinogenic [37,38]. The presence of cycles (i.e.,
symbols of ‘1’, ‘2’, ‘3’), oxygen atoms, or halogens also
promotes higher carcinogenicity values for the substances
under consideration. There are well-known cases of carcin-
ogens such as polycyclic aromatic compounds (presence of
the ‘c’ in SMILES), epoxides, and dioxins.

While there are computer programs that encode human
knowledge on these carcinogens, such as Oncologic [10,29]
and DEREK [30], our approach automatically extracts the
molecular features responsible of the activity. Our approach
is a contribution to the QSPR/QSAR studies using an auto-
matic process which starts from a simple chemical represen-
tation [39–42].

Conclusions

We developed a predictive model for carcinogenicity of
chemical compounds based on SMILES format. The corre-
lation balance (using preliminary checking of QSAR model
with the calibration set) gave more robust prediction for car-

cinogenicity values on the external test set than a QSAR
approach based on training and test sets (without calibration
set). An important component in our SMILES-based optimal
descriptors approach is removing (blocking) rare SMILES
attributes, which, being used, can lead to the overtraining.
The list of statistically significant SMILES attributes (pro-
moters of both an increase and decrease carcinogenicity) is
an heuristically useful component of this model.

This approach gives possibility to define the applicability
domain. The applicability domain may be defined as chemi-
cals with a SMILES containing the SMILES attributes which
are not rare. To define the rare SMILES attributes, one can
use the limS criterion.
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