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Abstract Electrochemically induced catalytic multicompo-
nent transformation of isatins, 3-methyl-2-pyrazolin-5-ones
and malononitrile in ethanol in an undivided cell in the
presence of sodium bromide as an electrolyte results in the
formation of spirooxindoles with fused functionalized pyr-
ano[2,3-c]pyrazole system in 78–99% yields. The developed
efficient electrocatalytic approach to medicinally relevant
spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazoles] is beneficial
from the viewpoint of diversity-oriented large-scale processes
and represents a novel example of facile environmentally
benign synthetic concept for electrocatalytic multicompo-
nent reaction strategy.

Keywords Electrocatalysis · Multicomponent reactions ·
Pyranopyrazole · Spirooxindole · Isatin · C–H acids

Introduction

The discovery of novel synthetic methodologies to facili-
tate the preparation of compound libraries is a pivotal focal
point of research activity in the field of modern medicinal and
combinatorial chemistry [1,2]. One approach to address this
challenge involves the development of multicomponent reac-
tions (MCRs), in which three or more reactants are combined
together in a single reaction flask to generate a product incor-
porating most of the atoms contained in the starting materi-
als [3,4]. The rapid assembly of molecular diversity utilizing
MCRs has received a great deal of attention in the search for
novel lead structures, especially for the design and construc-
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tion of elaborate small-molecule heterocyclic frameworks
possessing enhanced “drug-like” properties [5–7]. Thus, the
success of combinatorial chemistry in the drug discovery
process is considerably dependent on further advances in
heterocyclic MCR methodology and, according to current
synthetic requirements, environmentally benign multicom-
ponent procedures are particularly welcome.

The heterocyclic spirooxindole ring system is a widely
distributed structural framework present in a number of
pharmaceuticals and natural products [8], including cyto-
static alkaloids such as spirotryprostatins A, B, and strychn-
ophylline [9,10]. The unique structural array and the highly
pronounced pharmacological activity displayed by the class
of spirooxindole compounds have made them attractive syn-
thetic targets [11]. Among different heterocycles fused with
spirooxindole ring system, pyrano[2,3-c]pyrazoles are of par-
ticular interest due to their anticancer activity through the
selective inhibition of human Chk 1 kinase, which plays an
essential role in the regulation of the cell cycle G2/M check-
point [12]. The modification of the selective Chk 1 inhibitors
with pharmacopeial spirooxindole fragment should prove
useful to study the regulation of G2/M checkpoint from a
medicinal and biological point of view [9,12]. Furthermore,
the corresponding 6′-amino-3′-methyl-2-oxo-1,2-dihydro-1′
H-spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitriles
appear to be effective antibacterial and antifungal agents
[13].

The general approach to fuse spirooxindoles and a 6-
amino-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbo-
nitrile system utilizes linear two-step synthesis including
preliminary Knoevenagel condensation of isatin and malon-
onitrile with further addition of pyrazolone and cyclization
under basic conditions [14–17]. The application of stepwise
reaction sequence avoids low selectivity in concurrent con-
densation of isatin with the two reactive C–H acids and
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provides the target spirooxindoles in good yields, but requires
the separation and purification of desired compounds after
each stage. To the best of our knowledge, there is only a single
report of an effective multicomponent entry to the synthesis
of 6′-amino-3′-methyl-2-oxo-1,2-dihydro-1′H-spiro[indole-
3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitriles. In 2007 Shan-
thi et al. reported a three-component condensation of isatins,
3-methyl-2-pyrazolin-5-ones and malononitrile catalyzed by
20 mol% of indium(III) chloride [18]. Although this cata-
lytic MCR leads to a number of spiro[indole-3,4′-pyrano[2,3-
c]pyrazoles] in 70–90% yields, it requires either reflux in
acetonitrile for 1.5–2 h or microwave irradiation. Further-
more, column chromatography is needed for purification of
desired products. Thus, the known multicomponent proce-
dure for the synthesis of corresponding spirocyclic [indole-
3,4′-pyrano[2,3-c]pyrazole] system has its merits, but the
essence of facile and convenient MCR methodology deserves
further development.

The advances in electrosynthesis in the last few decades
have provided organic chemists with a new versatile synthetic
device of great promise [19]. Despite the significant syn-
thetic potential and ecological advantages of electrochemical
methods, the practical usage of electrochemical procedures
is often limited due to technical complexities and generally
long processing times. In the course of our study on the
electrochemical transformation of organic compounds, we
have found a new type of electrochemical transformation,
namely the electrocatalytic chain transformation of organic
compounds induced by a catalytic amount of an electrogen-
erated base in an undivided cell [20]. Recently, we have suc-
cessfully applied this electrocatalytic procedure, developed
by us, for the synthesis of a number of medicinally relevant
4H -chromene derivatives bearing nitrile functionality [21–
23]. These unique electrochemical procedures utilize a sim-
ple undivided cell and are amenable for large-scale processes
because of their catalytic nature and the use of a cheap and
environmentally responsible chemical reagent—electricity.
The use of the described electrocatalytic methodology in
base-activated MCRs is highly promising as it allows for
the combination of the synthetic virtues of the conventional
MCR strategy with the ecological benefits and convenience
of the facile electrocatalytic procedure.

Considering our preliminary results on the electrocata-
lytic chain transformation of C–H acids and aryl aldehydes as
well as the certain biomedical applications of spiro
[indole-3,4′-pyrano[2,3-c]pyrazole] derivatives mentioned
above, we were prompted to design a convenient and
facile electrocatalytic MCR methodology for the efficient
synthesis of functionalized spiro[indole-3,4′-pyrano[2,3-c]
pyrazole] system based on electrochemically induced reac-
tion of isatins, 3-methyl-2-pyrazolin-5-ones and malononit-
rile.

Experimental

General remarks

All melting points were measured with a Gallenkamp melt-
ing point apparatus and are uncorrected. 1H- and 13C NMR
spectra were recorded on a Bruker AC-300 spectrometer
at ambient temperature. Chemical shifts values are relative
to Me4Si. Mass-spectra (EI=70 eV) were obtained directly
with a Finningan MAT INCOS 50 spectrometer. All starting
materials were obtained from commercial sources and used
without further purification.

Typical electrolysis procedure

A solution of isatin (10 mmol), 3-methyl-2-pyrazolin-5-one
(10 mmol), malononitrile (0.66 g, 10 mmol), and sodium bro-
mide (0.1 g, 1 mmol) in ethanol (20 mL) was electrolyzed in
an undivided cell equipped with a magnetic stirrer, a graphite
anode, and an iron cathode at ambient temperature under a
constant current density indicated in Tables 2 and 3 (elec-
trodes square 5 cm2) until the catalytic quantity of 0.04 F/mol
of electricity was passed. After the electrolysis was finished,
the solution was filtered to isolate the solid product, which
was then rinsed with an ice-cold ethanol/water solution (9:1,
2 mL) and dried under reduced pressure.

6′-amino-3′-methyl-2-oxo-1′-phenyl-1,2-dihydro-1′H-
spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile
(3a)

White powder, yield 95%, 3.51 g; mp 236–237 ◦C (lit [16] mp
237 ◦C). 1H NMR (300 MHz, [D6]DMSO), δH 1.54 (s, 3H,
CH3), 6.94 (d, 3 JH,H =7.7 Hz, 1H, Ar), 7.03 (t, 3 JH,H =
7.4 Hz, 1H, Ar), 7.18 (d, 3 JH,H =7.3 Hz, 1H, Ar), 7.28 (t,
3 JH,H =7.6 Hz, 1H, Ar), 7.35 (t, 3 JH,H = 7.9 Hz, 1H, Ph),

7.52 (t, 3 JH,H =7.9 Hz, 2H, Ph), 7.57 (s, 2H, NH2), 7.78 (d,
3 JH,H =7.9 Hz, 2H, Ph), 10.74 (s, 1H, NH) ppm.

6′-amino-1,3′-dimethyl-2-oxo-1′-phenyl-1,2-dihydro-1′H-
spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile
(3b)

White powder, yield 89%, 3.41 g; mp 226–227 ◦C (lit [16]
mp 227 ◦C). 1H NMR (300 MHz, [D6]DMSO), δH 1.46 (s,
3H, CH3), 3.25 (s, 3H, NCH3), 7.06–7.20 (m, 2H, Ar), 7.24
(d, 3 J H,H =7.5 Hz, 1H, Ar), 7.30–7.45 (m, 2H, Ar, Ph),

7.52 (t, 3 JH,H =7.9 Hz, 2H, Ph), 7.61 (s, 2H, NH2), 7.79 (d,
3 JH,H =7.9 Hz, 2H, Ph) ppm.
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6′-amino-1-benzyl-3′-methyl-2-oxo-1′-phenyl-1,2-dihydro-
1′H-spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-
carbonitrile (3c)

Brown powder, yield 85%, 3.90 g; mp 214−215 ◦C. MS, m/z
(%)=459 (M+, 5), 393 (17), 368 (24), 302 (14), 285 (23),
174 (42), 91 (100), 77 (67). Anal. Calcd. for C28H21N5O2

(459.5): C, 73.19%; H, 4.61%; N, 15.24%, Found C, 73.11%;
H, 4.66%; N, 15.08%. 1H NMR (300 MHz, [D6]DMSO), δH

1.35 (s, 3H, CH3), 4.93 (d, 2 JH,H =15.9 Hz, 1H, CH2Ph),

5.06 (d, 2 JH,H =15.9 Hz, 1H, CH2Ph), 7.03–7.14 (m, 2H,
Ar), 7.23–7.38 (m, 6H, Ar), 7.39–7.47 (m, 2H, Ar), 7.49–7.57
(m, 2H, Ar), 7.65 (s, 2H, NH2), 7.79 (d, 3 JH,H =7.7 Hz, 2H,

Ar) ppm. 13C NMR (75 MHz, [D6]DMSO), δC 12.2, 43.8,
48.0, 56.4, 96.6, 110.0, 118.4, 120.6 (2C), 123.9, 125.3,
127.1, 128.0 (3C), 129.0 (2C), 129.8, 129.9 (2C), 131.8,
136.5, 137.7, 142.6, 144.3, 145.5, 161.6, 176.6 ppm.

6′-amino-5-chloro-3′-methyl-2-oxo-1′-phenyl-1,2-dihydro-
1′H-spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-
carbonitrile (3d)

White powder, yield 83%, 3.35 g; mp 232–234 ◦C (lit [24] mp
230 − 232 ◦C. 1H NMR (300 MHz, [D6]DMSO), δH 1.59 (s,
3H, CH3), 6.96 (d, 3 JH,H =8.1 Hz, 1H, Ar), 7.30–7.41 (m,

3H, Ar, Ph), 7.52 (t, 3 JH,H =7.9 Hz, 2H, Ph), 7.63 (s, 2H,

NH2), 7.79 (d, 3 JHH =7.8 Hz, 2H, Ph), 10.88 (s, 1H, NH)
ppm.

6′-amino-3′,5-dimethyl-2-oxo-1′-phenyl-1,2-dihydro-1′H-
spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile
(3e)

White powder, yield 98%, 3.76 g; mp 288–289 ◦C. MS, m/z
(%)=383 (M+, 0.5), 371 (9), 289 (10), 288 (10), 222 (11),
209 (100), 208 (22), 174 (69). Anal. Calcd. for C22H17N5O2

(383.4): C, 68.92%; H, 4.47%; N, 18.27%, Found C, 68.79%;
H, 4.52%; N, 18.13%. 1H NMR (300 MHz, [D6]DMSO),
δH 1.56 (s, 3H, CH3), 2.24 (s, 3H, CH3), 6.83 (d, 3 JH,H =7.7

Hz, 1H, Ar), 7.00 (s, 1H, Ar), 7.08 (d, 3 JH,H =7.7 Hz,

1H, Ar), 7.35 (t, 3 JH,H =7.9 Hz, 1H, Ph), 7.51 (d, 3 JH,H =
8.0 Hz, 2H, Ph), 7.55 (s, 2H, NH2), 7.78 (d, 3 JH,H =8.1 Hz,

2H, Ph), 10.63 (s, 1H, NH) ppm. 13C NMR (75 MHz, [D6]
DMSO), δC 11.8, 20.6, 47.9, 56.4, 96.5, 109.6, 118.1, 120.2
(2C), 125.4, 126.6, 129.5 (2C), 129.6, 131.7, 132.3, 137.3,
139.2, 144.1, 145.0, 161.0, 177.5 ppm.

6′-amino-3′-methyl-2-oxo-1,2-dihydro-1′H-spiro[indole-
3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile (3f)

White powder, yield 85%, 2.49 g; mp 278–280 ◦C (decomp)
(lit [14] mp 275 ◦C). 1H NMR (300 MHz, [D6]DMSO), δH

1.52 (s, 3H, CH3), 6.90 (d, 3 JH,H =7.8 Hz, 1H, Ar), 6.95–
7.05 (m, 2H, Ar), 7.17–7.27 (m, 3H, Ar, NH2), 10.58 (s, 1H,
NH), 12.28 (s, 1H, NH) ppm.

6′-amino-1,3′-dimethyl-2-oxo-1,2-dihydro-1′H-
spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile
(3g)

White powder, yield 99%, 3.04 g; mp >320 ◦C. MS, m/z (%)=
307 (M+, 30), 281 (45), 279 (46), 278 (100), 222 (30), 154
(12), 140 (15). Anal. Calcd. for C16H13N5O2 (307.3): C,
62.53%; H, 4.26%; N, 22.79%, Found C, 62.46%; H, 4.32%;
N, 22.64%. 1H NMR (300 MHz, [D6]DMSO), δH 1.45 (s, 3H,
CH3), 3.20 (s, 3H, CH3), 7.06–7.14 (m, 3H, Ar), 7.25 (s, 2H,
NH2), 7.31–7.41 (m, 1H, Ar), 12.29 (s, 1H, NH) ppm. 13C
NMR (75 MHz, [D6]DMSO), δC 9.0, 26.4, 47.0, 54.8, 95.3,
108.7, 118.7, 123.3, 124.2, 129.1, 132.0, 134.8, 143.0, 155.3,
162.7, 176.4 ppm.

6′-amino-1-benzyl-3′-methyl-2-oxo-1,2-dihydro-1′H-
spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile
(3h)

White powder, yield 83%, 3.18 g; mp 263–265 ◦C. MS, m/z
(%)=383 (M+, 5), 354 (6), 293 (15), 292 (76), 92 (8), 91
(100), 65 (24). Anal. Calcd. for C22H17N5O2 (383.4): C,
68.92%; H, 4.47%; N, 18.27%, Found C, 68.85%; H, 4.53%;
N, 18.13%. 1H NMR (300 MHz, [D6]DMSO), δH 1.35 (s,
3H, CH3), 4.91 (d, 2 JH,H =15.6 Hz, 1H, CH2Ph), 5.00 (d,
2 JH,H =15.6 Hz, 1H, CH2Ph), 7.00–7.14 (m, 3H, Ar), 7.23–
7.36 (m, 6H. Ar, NH2), 7.37–7.44 (m, 2H, Ar), 12.30 (s, 1H,
NH) ppm. 13C NMR (75 MHz, [D6]DMSO), δC 9.0, 43.2,
47.1, 55.0, 95.3, 109.4, 118.8, 123.4, 124.5, 127.6 (3C), 128.6
(2C), 129.0, 131.9, 134.9, 136.2, 142.1, 155.4, 162.7, 176.7
ppm.

6′-amino-5-chloro-3′-methyl-2-oxo-1,2-dihydro-1′H-
spiro[indole-3,4′-pyrano[2,3-c]pyrazole]-5′-carbonitrile
(3i)

Off-white powder, yield 78%, 2.56 g; mp 306–307 ◦C. MS,
m/z (%)=327 (M+, 5), 298 (62), 66 (100), 39 (90). Anal.
Calcd. for C15H10ClN5O2 (327.7): C, 54.97%; H, 3.08%; Cl
10.82%; N, 21.37%, Found C, 54.83%; H, 3.10%; Cl 10.78%;
N, 21.22%. 1H NMR (300 MHz, [D6]DMSO), δH 1.58 (s,
3H, CH3), 6.92 (d, 3 JH,H =8.2 Hz, 1H, Ar), 7.12 (s, 1H,
Ar), 7.24–7.33 (m, 3H, NH2, Ar), 10.73 (s, 1H, NH), 12.33
(s, 1H, NH) ppm. 13C NMR (75 MHz, [D6]DMSO), δC 9.1,
47.7, 54.6, 94.8, 111.3, 118.7, 124.7, 126.6, 129.0, 134.8,
134.9, 140.4, 155.2, 162.6, 178.1 ppm.
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Scheme 1 Electrocatalytic transformation of isatins, 3-methyl-l-phenyl-2-pyrazolin-5-ones and malononitrile into spiro[indole-3,4′-pyrano[2,3-
c]pyrazoles]

Results and discussion

In the present study we report our results on electrocatalytic
multicomponent chain transformation of isatins 1, 3-methyl-
2-pyrazolin-5-ones 2 and malononitrile into corresponding
spiro[indole-3,4′-pyrano[2,3-c]pyrazoles] 3 under mild con-
ditions by the combined electrolysis in an undivided cell. The
reaction is performed in ethanol in the presence of sodium
bromide as an electrolyte (Scheme 1).

First, to evaluate the synthetic potential of the procedure
proposed and to optimize the electrolysis conditions, the
electrocatalytic multicomponent transformation of isatin 1a,
3-methyl-1-phenyl-2-pyrazolin-5-one 2a and malononitrile
into spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazoles] 3a was
studied (Table 1).

Excellent conversions of the starting materials were
obtained under all current densities studied after 0.04 F/mol
of electricity had been passed. The current density 2 mA/cm2

(I = 10 mA, electrodes surface 5 cm2) was found to be opti-
mal for the electrochemically induced chain process and
allowed for the highest yield of spiro[indole-3,4′-pyrano[2,3-
c]pyrazoles] 3a. An increase in the current density up to
10 mA/cm2 (I = 50 mA) resulted in significant decrease in
the reaction yield, and may be a result of the activation of
the undesired direct electrochemical processes that lead to
oligomerization of the starting material.

Under the optimal conditions (current density 2 mA/cm2,
0.04 F/mol passed) the electrolysis of isatins 1a–e, 3-methyl-
2-pyrazolin-5-ones 2a,b and malononitrile in an undivided
cell in ethanol affords corresponding spiro[indole-3,4′-pyr-
ano[2,3-c]pyrazoles] 3a–e and 3g–i in yields of 78–99% at
ambient temperature over 64 min reaction period (Table 2). It
should be mentioned that the yield of spiro[indole-3,4′-pyr-
ano[2,3-c]pyrazole] 3f under electrolysis conditions reported
in Table 2 surprisingly comprised only 51%. Nevertheless,

Table 1 Electrocatalytic transformation of isatin 1a, 3-methyl-1-
phenyl-2-pyrazolin-5-one 2a and malononitrile into spiro[indole-3,4′-
pyrano[2,3-c]pyrazole] 3aa

I Current density Time Electricity passed Yield of 3a
(mA) (mA/cm2) (min) (F/mol) (%)b

50 10 13 0.04 51

25 5 26 0.04 57

10 2 64 0.04 95

5 1 128 0.04 89

a 1a (10 mmol), 2a (10 mmol), malononitrile (10 mmol), NaBr (1 mmol),
EtOH (20 mL), iron cathode (5 cm2), graphite anode (5 cm2), 20 ◦C
b Yield of isolated product obtained by filtration of reaction mixture

the additional current density variation experiments in this
case allowed to obtain spiro[indole-3,4′-pyrano[2,3-c]pyra-
zole] 3f in 85% yield by increasing the electrolysis current
density from 2 mA/cm2 to 5 mA/cm2 (Table 3).

In all performed multicomponent electrocatalytic proc-
esses spiro[indole-3,4′-pyrano[2,3-c]pyrazoles] 3a–i were
directly crystallized from the reaction mixture after electrol-
ysis and did not require any further purification.

With the above results taken into consideration and the
mechanistic data on the electrocatalytic chain cyclizations
previously performed by us [21–23], the following mecha-
nism for the electrocatalytic chain transformation of isatins 1,
3-methyl-2-pyrazolin-5-ones 2 and malononitrile into substi-
tuted spiro[indole-3,4′-pyrano[2,3-c]pyrazole] 3 is proposed.
The catalytic cycle begins with the deprotonation of a mole-
cule of alcohol at the cathode, which leads to the formation of
an ethoxide anion. The subsequent reaction between the eth-
oxide anion and malononitrile gives rise to the malononitrile
anion (Scheme 2).

The following process in the solution represents a typical
cascade reaction. Knoevenagel condensation of the malono-
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Table 2 Electrocatalytic transformation of isatins 1a–e, 3-methyl-
2-pyrazolin-5-ones 2a, b and malononitrile into spiro[indole-3,4′-
pyrano[2,3-c]pyrazoles] 3a–ia

Isatin Pirazolin-5-one Time Electricity Product Yield of 3
(min) passed (F/mol) (%)b

1a 2a 64 0.04 3a 95

1b 2a 64 0.04 3b 89

1c 2a 64 0.04 3c 85

1d 2a 64 0.04 3d 83

1e 2a 64 0.04 3e 98

1a 2b 64 0.04 3f 51

1b 2b 64 0.04 3g 99

1c 2b 64 0.04 3h 83

1d 2b 64 0.04 3i 78

a 1 (10 mmol), 2 (10 mmol), malononitrile (10 mmol), NaBr (1 mmol),
EtOH (20 mL), iron cathode (5 cm2), graphite anode (5 cm2), current
density 2 mA/cm2, 20 ◦C
b Yield of isolated product obtained by filtration of reaction mixture

Table 3 Electrocatalytic transformation of isatin 1a, 3-methyl-2-
pyrazolin-5-one 2b, and malononitrile into spiro[indole-3,4′-
pyrano[2,3-c]pyrazole] 3fa

I Current density Time Electricity passed Yield of 3f
(mA) (mA/cm2) (min) (F/mol) (%)b

100 20 6 0.04 57

50 10 13 0.04 68

25 5 26 0.04 85

10 2 64 0.04 51

5 1 128 0.04 43

a 1a (10 mmol), 2b (10 mmol), malononitrile (10 mmol), NaBr (1 mmol),
EtOH (20 mL), iron cathode (5 cm2), graphite anode (5 cm2), 20 ◦C
b Yield of isolated product obtained by filtration of reaction mixture

cathode:   EtOH  +  1e                  EtO   +  1/2 H2

in solution:   CH2(CN)2  +  EtO                     CH(CN)2   +  EtOH

_

_ _

Scheme 2 Initiation step

nitrile anion with isatin 1 takes place with the elimination of
a hydroxide anion and formation of isatylidenemalononitrile
4 [25]. The subsequent hydroxide-promoted Michael addi-
tion of 3-methyl-2-pyrazolin-5-ones 2 to electron deficient
Knoevenagel adduct 4 followed by intramolecular cycliza-
tion leads to corresponding spiro[indole-3,4′-pyrano[2,3-c]
pyrazole] 3 with the regeneration of the ethoxide anion as
the last step. The catalytic chain process then continues by
the interaction of the ethoxide with the next molecule of mal-
ononitrile (Scheme 3).

Conclusion

In conclusion, the simple electrocatalytic system can
produce, under neutral and mild conditions, a fast and selec-
tive multicomponent transformaton of isatins, 3-methyl-2-
pyrazolin-5-ones and malononitrile into corresponding spiro
[indole-3,4′-pyrano[2,3-c]pyrazoles] in excellent yields. This
novel electrocatalytic chain process offers an efficient and
convenient way to create diverse spirocyclic oxindole sys-
tems with fused functionalized pyrano[2,3-c]pyrazole frag-
ment—the promising hybridized ‘privileged drug scaffold’
for human cancer therapy and other biomedical applications.
The developed electrocatalytic multicomponent procedure
utilizes facile equipment, an undivided cell, and requires sim-
ple and reasonable starting materials. It is easily carried out,
and the reaction products are directly crystallized from the
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reaction mixture. This efficient electrocatalytic approach to
spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazole] ring system
represents a novel example of synthetic concept for mul-
ticomponent reactions, and allows for the combination of
the synthetic virtues of conventional MCRs with ecological
benefits and convenience of facile electrocatalytic procedure.
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