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Abstract The study of prediction of toxicity is

very important and necessary because measure-

ment of toxicity is typically time-consuming and

expensive. In this paper, Recursive Partitioning

(RP) method was used to select descriptors. RP

and Support Vector Machines (SVM) were used

to construct structure–toxicity relationship mod-

els, RP model and SVM model, respectively. The

performances of the two models are different.

The prediction accuracies of the RP model are

80.2% for mutagenic compounds in MDL’s tox-

icity database, 83.4% for compounds in CMC and

84.9% for agrochemicals in in-house database

respectively. Those of SVM model are 81.4%,

87.0% and 87.3% respectively.
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Introduction

Mutagenic toxicity, as the capacity of a substance

to cause genetic mutations, is of high public

concern because it has a close relationship with

carcinogenicity and other health problems [1]. In

experiments, mutagenic toxicity can be assessed

by varied test systems [2]. In drug/pesticide

discovery, people hope to know compounds which

cannot be candidates because of their carcinoge-

nicity or mutagenicity as early as possible, even

before they are synthesized. Many computational

models based on structure–mutagenicity relation-

ships had been developed [3–12]. Some of them

had been incorporated into commercial programs,

such as DEREK [5] and TOPKAT [7].

This paper introduces the work about predic-

tion of mutagenic toxicity, which was based on

public data [10–12], substructure descriptors [13,

14], and reliable machine learning methods:

Recursive Partitioning (RP) [15, 16] and combi-

nation of RP and Support Vector Machines

(SVM) [17–19].

Materials and methods

Data sets

A training set and three test sets were used in this

work.
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Training set

In the training set, there were 4,734 chemicals

(2,079 non-mutagens and 2,655 mutagens) derived

from the three recently published references

authored by Kazius et al. [10] (4,337 compounds),

Feng et al. [11] (1,863 compounds) and Helma

et al. [12] (684 compounds). All these data were

assessed by Ames test system. In this study, only

organic chemicals containing no elements other

than C, H, N, O, F, S, P, Cl, Br and I were used.

Duplicates, ionic chemicals, mixtures, enantio-

mers and diastereoisomers were not included in

the set.

Test sets

The test sets were consisted of compounds from:

(1) MDL Toxicity Database [20] (version 2003.3),

2,199 mutagens; (2) MDL Comprehensive Medic-

inal Chemistry (CMC) database (version 2003.1)

[21], 3,789 oral drugs (considered as non-muta-

gen) and (3) Agricultural Chemicals Database

(in-house), 497 agrochemicals (considered as non-

mutagen). All compounds in these sets are

neither same, nor ionic chemicals, mixtures,

enantiomers and diastereoisomers.

Generation of substructural descriptor

All substructural descriptors were generated by

the methods described in our former publications

[13, 14]. In brief, four kinds of descriptors were

generated according to the definition of descrip-

tors for every compound in the training set:

Atom: Every single atom was considered as an

Atom.

Star: Each atom with connectivity more than

two was considered as the center of a star,

starting from this atom, a substructure with one

layer acted as a Star.

Path: Each atom was selected as the starting

atom. Any paths with 1~4 bonds (2~5 atoms)

was generated as a Path.

Ring: Every ring was picked out as a Ring.

Recursive Partitioning (RP)

Classification and regression trees [15] are mod-

ern statistical techniques ideally suited for both

exploring and prediction. Recursive Partitioning

(RP) is a process in classification trees. Now it is

usually employed in identifying complex struc-

ture–activity relationships (SAR) in large sets

[22]. Many algorithms of RP and their applica-

tions have been published [23–28].

In a RP process, the entire data set is firstly put

into one root node, and then split into two subsets

(as two nodes here) by a single descriptor. The

splitting procedure is recursively repeated for each

new stage. The best descriptor for splitting a node is

selected from all potential descriptors by all exam-

ining results. When a node t is split by a substructural

descriptor v, the chemicals without descriptor v are

put into its left-child-node l, and the chemicals with

descriptor v are put into its right-child-node r. The

performance of the split is judged by a reduction of

impurity function [15] (DI) (Eq. 1)

DI ¼ It �
Nl

Nt
Il �

Nr

Nt
Ir ð1Þ

where the Nt, Nl and Nr are the number of

chemicals in node t, l and r, respectively, the It, Il

and Ir are the impurity function of node t, l and

r, respectively. The descriptor with the maximal

DI was selected. The Gini impurity index [15]

(Eq. 2)was used as the impurity function in this

study:

Ii ¼
X

a2S

X

b2S;a6¼b

PaiPbi ð2Þ

where S is the set of all classes, a and b are

different classes of S, Pai and Pbi are the

proportion of class a and b in node i. Herein,

only two classes were involved: mutagens and

non-mutagens. So the Gini index was expressed

as Eq. (3):

Ii ¼ 2PMi � PNi ð3Þ

where PMi is the proportion of mutagens at the

node i and PNi is the proportion of non-mutagens

at the node i.
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To decrease possibility of overfitting of the

tree, two approaches, pre-pruning (to stop devel-

oping subtrees during the tree building process)

or post-pruning (to prune sub-trees after a whole

tree grown) are often used [29]. In this work, pre-

pruning method was employed. The ‘‘stopping

criteria’’ used were set as: (1) A node wouldn’t be

further split if the DI reached minimum (0); (2)

the number of chemicals in any of its children

nodes was less than a predefined value which was

6 in this work.

Support Vector Machines (SVM)

SVM is a very promising machine learning

method developed by Vapnik et al. [17–19]. It

has several advantages, such as global optimum,

reducing over-fitting and dimension indepen-

dence. Several works published [30–35] have

proved its effectivity in classification and regres-

sion.

In this work, the program LibSVM 2.6 [36] was

employed to construct the SVM model and ran on

a Pentium IV PC with 512M RAM. Classification

model was obtained by the C-SVC method in

LibSVM. Following steps were included: (1)

Preparing the data; (2) Using 10-fold cross-vali-

dation to find best parameters (the capacity

parameter C, kernel function type and its corre-

sponding parameters), and employing the mean

correct classification rate (CC%) of mutagens and

non-mutagens as cost function; (3) Using the best

parameters to train the whole training set; (4)

testing.

Results and discussion

Substructural descriptors

7,444 unique descriptors were generated based on

4,734 chemicals in the training set. Some of the

substructures were listed in Table 1. The most

frequent descriptor was ‘‘H’’, an Atom-type,

denoted for hydrogen. The 2,924 descriptors

whose occurrences were more than 5 were used

as the initial descriptors.

Classification tree by RP (RP Model)

The procedure of recursive partitioning is shown

in Fig. 1. At the beginning, all chemicals in the

Table 1 Examples of descriptors derived from the training set

Type Descriptor Occurrence Type Descriptor Occurrence

Atom H 4,697 Atom Br 177

Ring 3,041 Path H
O

N 76

Path O 1,939 Path N
S

O
H 40

Star H
H

H

1,160 Atom I 15

Path OO 885 Ring 7

Star

H
O

H

741 Star
N

O N
4

Path H
H 462 Path Cl O F 1

Ring O 219
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training set were put in the root node. When

splitting was finished, they were moved into

corresponding leaf nodes. There were 133 nodes

in the classification tree, 67 leaf nodes and 66

non-leaf nodes. Table 2 listed the information of

all the nodes. The PM value of the root node

was 0.561. If a leaf node’s PM value was greater

than that of the root node (0.561), all chemicals

in this node were classified as mutagenic,

otherwise as non-mutagenic. In this tree (RP

model), there were 40 mutagenic leaf nodes and

27 non-mutagenic leaf nodes. For the training

set, the 85.2% mutagenic chemicals and 83.0%

non-mutagenic chemicals were correctly classi-

fied by RP model.

The 66 non-leaf nodes were split by the 66

descriptors listed in Table 3. The DPMiv calcu-

lated by Eq. (4) was employed to validate the

effect of a descriptor on mutagenicity:

DPMiv ¼ PMir � PMil ð4Þ

where PMir is the proportion of mutagenic

chemicals in right-child-node r (including descrip-

tor v) of node i, and PMil is the proportion of

mutagenic chemicals in left-child-node l (exclud-

ing descriptor v) of node i. DPMiv was used to

detect whether the descriptor v acted on mutage-

nicity or not at node i. If DPMiv was greater than

zero, the descriptor v had greater effectivity on

N

O

N
O

O

O

N

O

N

O

OO

H

NC1

O

O

C1

a

b

Node=1
N=4734
PM=0.561

Node=4
N=3244
PM=0.435

Node=2
N=3742
PM=0.488

Node=3
N=992
PM=0.837

Node=5
N=498
PM=0.833

Node=10
N=261
PM=0.728

Node=11
N=237
PM=0.949

yesno

no yes

yesno

stop (N<6)

continue

continue

continue

No.1

No.2

No.5

c

Fig. 1 Part of the
classification tree derived
from the training set.
(Structure a, b and c are
examples which contain
descriptor 1, 2 and 5,
respectively. In a
descriptor, C1expresses a
sp2 carbon, double dashed
lines express aromatic
bonds)
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mutagenicity than that on non-mutagenicity at

the node i.

All descriptors in Table 3 were compared with

the ‘‘toxicophores’’ published [10] and the results

showed that some of the front, such as aromatic

nitro (no. 2 and 33), aromatic amine (no. 8, 9, 11,

28, 31 and 37), three-membered heterocycles

(no. 12 and 54), nitroso (no. 4), unsubstituted

heteroatom-bonded heteroatom (no. 42, 56 59,

63, and 65), azo-type (no. 53), aliphatic halide

(no. 34, 38, 40 and 55) and polycyclic aromatic

system (no. 1 and 7), tally with the later.

Table 2 All 133 nodes in the classification tree derived from the training set

Node Na PMb Node Na PMb Node Na PMb

1 4734 0.561 46 1992 0.288 91# 7 0.286
2 3742 0.488 47 190 0.6 92* 7 0.714
3 992 0.837 48 44 0.318 93# 12 0.25
4 3244 0.435 49\ast 7 1 94# 141 0.128
5 498 0.833 50 261 0.785 95 65 0.431
6 827 0.886 51# 10 0 96# 11 0.545
7 165 0.588 52 257 0.335 97* 6 1
8 3063 0.405 53* 30 0.867 98 1788 0.231
9 181 0.939 54 120 0.825 99* 35 0.743
10 261 0.728 55# 7 0.286 100# 46 0.304
11* 237 0.949 56 1963 0.278 101* 19 0.737
12* 817 0.892 57* 29 0.966 102 1770 0.224
13# 10 0.4 58 170 0.659 103* 18 0.889
14 119 0.454 59# 20 0.1 104 1757 0.219
15* 46 0.935 60 35 0.4 105* 13 1
16 2412 0.359 61# 9 0 106 1741 0.213
17 651 0.573 62 247 0.81 107* 16 0.875
18* 174 0.96 63# 14 0.357 108 1731 0.208
19# 7 0.429 64 237 0.295 109* 10 1
20 207 0.676 65* 20 0.8 110 1706 0.202
21 54 0.926 66* 112 0.857 111* 25 0.64
22 93 0.366 67# 8 0.375 112 1694 0.197
23* 26 0.769 68 1890 0.262 113* 12 0.833
24 2266 0.334 69 73 0.685 114 1687 0.194
25 146 0.753 70* 159 0.698 115* 7 1
26 300 0.703 71# 11 0.091 116 1627 0.184
27 351 0.462 72 23 0.261 117 60 0.467
28 135 0.763 73* 12 0.667 118 1620 0.18
29 72 0.514 74* 62 0.629 119* 7 1
30* 42 1 75* 185 0.87 120 32 0.75
31* 12 0.667 76 223 0.26 121# 28 0.143
32# 37 0.135 77* 14 0.857 122 1605 0.175
33# 56 0.518 78 1849 0.25 123* 15 0.733
34 2182 0.315 79 41 0.805 124* 22 0.909
35* 84 0.821 80 54 0.778 125# 10 0.4
36* 95 0.937 81 19 0.421 126 1589 0.17
37 51 0.412 82# 11 0.545 127 16 0.688
38 271 0.756 83# 12 0 128# 1547 0.162
39# 29 0.207 84 206 0.223 129 42 0.476
40 287 0.39 85 17 0.706 130# 7 0.429
41* 64 0.781 86 1823 0.241 131* 9 0.889
42 127 0.795 87* 26 0.923 132# 33 0.364
43# 8 0.25 88# 12 0.333 133* 9 0.889
44# 15 0.267 89* 29 1
45* 57 0.579 90 47 0.851

* Mutagenic leaf nodes; # Non-mutagenic leaf nodes; a Total of molecules; b Proportion of mutagens at a node
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Table 3 Descriptors used in splitting

No Type Descriptora Nodeb DPM N+
c N-d

1 Star 1 0.349 830 162

2 Star NC1

O

O
2 0.399 603 87

3 Path C1
O

H 3 –0.298 348 500

4 Path N O 4 0.534 187 12

5 Path C1 5 0.221 854 460

6 Path H
O

N 6 –0.492 74 70

7 Ring 7 0.481 386 27

8 Path N 8 0.214 673 315

9 Path N 9 –0.531 154 89

10 Star C1 N
H

H
10 0.25 439 179

11 Path N
H 14 0.404 553 228

12 Ring O 16 0.419 180 39

13 Atom O1 17 –0.242 1593 1227

14 Star 20 –0.249 803 504

15 Path O H 21 –0.333 702 772

16 Path H
O

H 22 0.383 212 205

17 Path
C1 C1

C1 24 0.506 142 26

18 Path 25 –0.525 166 403

19 Path C1 N
C1 26 –0.55 232 216

20 Star
O

C1 C1
27 0.391 220 112
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Table 3 continued

No Type Descriptora Nodeb DPM N+
c N-d

21 Path C1 C1 28 –0.545 17 86

22 Path H H 29 0.312 678 432

23 Path C1 34 0.312 184 84

24 Path O
O 37 0.682 27 11

25 Path C1 N 38 –0.785 135 138

26 Path 40 0.532 295 62

27 Path C1 S
O 42 –0.539 44 87

28 Path N N
H 46 0.687 42 3

29 Path C1 Cl 47 –0.559 2 19

30 Path 48 –0.4 49 119

31 Path Cl N 50 –0.453 12 25

32 Star N1 52 0.505 133 49

33 Path O
N2 54 –0.482 8 11

34 Path Br 56 0.422 78 33

35 Atom F 58 –0.607 53 70

36 Path O O 60 0.406 158 104

37 Path N
HH 62 0.241 463 201

38 Path Cl H 64 0.597 164 65

39 Path 68 0.554 106 14

40 Star H
H

Br
C1 69 –0.357 18 15
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Table 3 continued

No Type Descriptora Nodeb DPM N+
c N-d

41 Star H
H

H

72 –0.545 425 735

42 Path N
O 76 0.483 58 8

43 Path
O

C1

H
78 0.682 29 2

44 Path 79 0.667 334 222

45 Star H
H

80 –0.565 322 548

46 Ring 81 –0.464 1885 1156

47 Path C1

N
H 84 0.303 130 116

48 Path C1 O 85 0.455 789 914

49 Path
C1 C1

Cl
86 0.512 42 11

50 Path H
N

H 95 0.432 506 259

51 Path H O
S 98 0.665 23 3

52 Path N N 102 0.781 21 0

53 Path N N 104 0.662 96 32

54 Ring N 106 0.792 34 0

55 Path Cl 108 0.438 52 26

56 Path C1 N
O 110 0.636 70 11

57 Star

H
N N

H

112 0.806 7 1

58 Star
O

C1 H
114 0.283 49 35

59 Path O
O

H 116 0.82 8 0
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SVM model

SVM model was constructed based on the 66

descriptors (selected by RP and used in the RP

model) listed in Table 3. It is known that SVM

can model very complex decision boundaries by

mapping the input descriptors into a higher-

dimension feature space using a kernel function.

It is very important to select a suitable kernel

function. In LibSVM, four kernels (linear, poly-

nomial, radial basis function (RBF) and sigmoid)

were included and the RBF kernel was sug-

gested as a reasonable first choice [37]. We firstly

tried RBF kernel and used grid search method

Table 3 continued

No Type Descriptora Nodeb DPM N+
c N-d

60 Path C1H 117 –0.607 196 93

61 Ring

C1

O
118 0.558 21 5

62 Path H 120 –0.509 46 114

63 Star

H
N

H
N 122 0.518 18 6

64 Path N2 O 126 0.315 641 114

65 Path H
N

N
H 127 0.46 22 11

66 Path O 129 0.525 942 997

a In a descriptor, C1: sp2 carbon, N1: sp2 nitrogen, N2: nitrogen other than sp3 and sp2 nitrogen, O1: sp2 oxygen, double
dashed line: aromatic bonds; b Number of a node (same as that in Table 2); c Occurrence in mutagens in the training set;
d Occurrence in non-mutagens in the training set

Fig. 2 Mean CC% of
cross-validation versus
different C and c values
(RBF kernel); the
optimized subregion was
drawn in dashed line.
When CC% values are
similar, the smaller C
values are preferred in
order to reduce over-
fitting
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Table 4 Comparison of 10-fold cross-validation results for
the four kernels

Kernela Optimal
parameters

Mutagen
CC%

Non-
mutagen
CC%

Mean
CC%

RBF C = 1, c = 0.3 84.7 82.9 83.8
Linear C = 100 84.1 76.2 80.2
Polynomial C = 100,

c = 0.03,
r = 0.2, d = 2

84.5 82.9 83.7

Sigmoid C = 300,
c = 0.001,
r = 0.1

84.7 76.0 80.4

aRBF: Kðxi; xjÞ ¼ exp �ckxi�xjk2
� �

; Linear: K(xi ,xj) = xi
T

xj; Polynomial: K(xi, xj) = (c xi
T xj + r)d; Sigmoid: Kðxi; xjÞ ¼

tanh cxT
i xj þ r

� �

Table 5 Performance of prediction by RP and SVM
models for the three sets

Model Mutagens
(2,199)a

Drugs
(3,789)b

AC
(497)c

RPcorrect 80.2% 83.4% 84.9%
SVMcorrect 81.4% 87.0% 87.3%
Bothcorrect 77.2% 81.4% 81.7%
Bothincorrect 15.6% 11.0% 9.5%
SVMcorrect &

RPincorrect

4.2% 5.6% 5.6%

RPcorrect &
SVMincorrect

3.0% 2.0% 3.2%

a 2,199 mutagenic compounds from MDL Toxicity
Database; b 3,789 non-mutagenic compounds from MDL
CMC Database; c 497 non-mutagenic compounds from
Agricultural chemicals database (in-house)

Table 6 Test examples (compounds in MDL Toxicity database)

No. Structure No. of descriptorsa Node (PM)b RPc SVMd

1

N N

O

N
O

4, 13, 41, 66 18 (0.96) + +

2 O
S

O

O
13, 41, 45, 51 103 (0.889) + +

3 O

O
O

O

O

12, 14, 15, 36, 41, 44, 46, 48 36 (0.937) + +

4 O2N 2, 5, 13, 14, 41, 44, 46, 60, 64 11 (0.949) + –

5 OO

O Cl

O

O

Cl

O

5, 13, 14, 23, 29, 38, 44, 46, 48, 66 59 (0.1) – +

6e O

OO

S

O

O

O
O

O 5, 13, 22, 48, 66 128 (0.162) – –

a Same as that in Table 3; b Same as that in Table 2; c Prediction results by RP model; d Prediction results by SVM model;
e This compound was predicted incorrectly by the two models; +: For mutagenic; –: For non-mutagenic
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to find the optimal parameters C and c, with C

varies from 100 to 103, and c varies from 100 to

10–3. As shown in Fig. 2, the optimized sub-

region (in dashed line) was found and further

search was performed in this sub-region. The

best mean CC% of cross-validation was 83.8%

(84.7% for positive and 82.9% for negative)

when optimal parameters were found: C = 1 and

c = 0.3.

Similarly, other three kernels were also

checked. The comparison of them was listed

in Table 4. The performance of RBF kernel is

similar with Polynomial kernel, and signifi-

cantly better than linear and sigmoid kernels.

We use the RBF kernel to build the final

SVM model, which has a mean CC% of

88.0% (88.3% for mutagens and 87.7% for

non-mutagens).

Table 7 Test examples (compounds in CMC)

No. Structure No. of descriptorsa Node (PM)b RPc SVMd

1

N

18, 41, 45 128(0.162) – –

2 Cl
O

F
O

OO
O

H

H

H

H

H
H

13, 15, 20, 23, 35, 41, 45, 48, 66 59(0.1) – –

3

N
F

F
F

O

F

F

F

N

1, 6, 14, 15, 18, 22, 35, 44, 45, 46 13(0.4) – –

4

O

N

Br

O

O
O

3, 5, 8, 9, 13, 15, 19, 41, 46, 48, 66 94(0.128) – –

5 N
N

O

O
6, 8, 9, 15, 46 74(0.629) + –

6e

Cl
Cl

Cl
O

O
O

O

15, 23, 36 70(0.698) + +

a Same as that in Table 3; b Same as that in Table 2; c Prediction results by RP model; d Prediction results by SVM model;
e This compound was predicted incorrectly by the two models; +: For mutagenic, –: For non-mutagenic
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Test

The two models, RP model and SVM model,

were tested by the three test sets: 2,199 mutagenic

compounds from MDL Toxicity Database, 3,789

and 497 non-mutagens from CMC and agricul-

tural chemicals database (in-house) respectively.

The performance of the two models for the

three sets were listed in Table 5 in detailed.

The correct predictions of the two models were

greater than 80% for all the three sets, and the

SVM model was more robust than RP model.

Their prediction performances were also

compared in Table 5. For most of the tests,

the results predicted by them are the same.

However, a little part of the tests was incon-

sistently predicted by two models. Although

SVM model was better than RP model, there

were still 3.0% (for MDL ToxDB), 2.0% (for

MDL CMC) and 3.2%(for in-house DB) of the

three test sets that were correctly predicted by

RP but not by SVM. The information indicated

that two models complemented each other.

Table 6, 7 and 8 showed some examples of

consistent and inconsistent prediction of the

two models.

Table 8 Test examples (compounds in agricultural chemicals database (in-house))

No. Structure No. of descriptorsa Node (PM)b RPc SVMd

1 O

O
O

O

O

3, 13, 15, 41, 45, 48, 66 128(0.162) – –

2

NO2

O

F

F

F Cl

O
2, 13, 14, 35, 41, 46, 48, 64 44(0.267) – –

3 N
S

N

N N
N

O

O
O

O

FO

Cl

5, 8, 11, 13, 27, 35, 41, 46, 48, 66 94(0.128) – –

4

O2N

N
NS

N

N

Cl

13, 22, 25, 64 132(0.364) – +

5
N

N N
N

N

O
Cl Cl

F
5, 8, 13, 19, 21, 32, 35, 46, 66 65(0.8) + –

6e
O

N

O

1, 13, 41, 46, 48, 66 12(0.892) + +

a Same as that in Table 3; b Same as that in Table 2; c Prediction results by RP model; d Prediction results by SVM model;
e This compound was predicted incorrectly by the two models; +: For mutagenic, –: For non-mutagenic
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Conclusion

In this paper, we presented the work about

prediction of mutagenic toxicity by Recursive

Partitioning (RP), Support Vector Machines

(SVM) and substructural descriptors published

[13, 14]. Two models, RP model and SVM

model, were constructed and compared. From

these computational experiments, we ob-

served:

(1) Performances of the two models are greater

than 80%.

(2) Performance of SVM model based on the

descriptors selected by RP method and

SVM is better than that of RP model.

The test result indicates that this SVM model

has satisfied performance in prediction of muta-

genic toxicity.
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