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Summary

Recent research has shown that using data fusion rules in fingerprint-based similarity searching can improve results over
traditional searches. Group fusion scores, which use multiple reference compounds, have in particular been shown to be quite
effective in increasing enrichment rates over single reference structure based searches. In this paper, the effectiveness of using data
fusion with multiple reference compounds to increase similarity search recall rates was investigated using 44 biological targets
and four different 2D fingerprinting systems, including a new 2D typed triangle fingerprinting system introduced here. Scaffold-
hopping abilities using data fusion rules were investigated using eight (8) different classes of scaffolds active against cGMP
phosphodiesterase isoform 5 (PDE5). An approach to using the reference group for ranking and visualizing important fingerprints
bits, or reverse fingerprinting, was presented, and used to score and visualize important pharmacophore features within sample
active molecules. Finally, similarity statistics within the reference groups were investigated and compared to recall rates.

Abbreviations: GpiDAPH, graph pi-donor-acceptor-polar-hydrophobe fingerprints; TGT, typed graph triangle fingerprints; PCH
polar-charged-hydrophobe fingerprints; MACCS, 166 public MACCS keys; n, group count (# of reference structures); ROC,
receiver operator characteristic curve; AVE, average fusion rule; MAX, maximum fusion rule; vHTS, virtual high-throughput
screening; Ck , bit coverage in the training group; Tk , bit importance; wL , pharmacophore fragment score; f i

k , bit position

Introduction

Similarity searching with molecular fingerprints is a common
virtual screening method used to mine compound libraries
for new drug-like compounds [1–4]. Similarity searching is
a relatively simple technique whose parameters include the
reference structure (typically a known active compound),
the similarity metric used to measure similarity between
molecules (e.g., Tanimoto coefficient), and the fingerprint
system (or molecular representation) used to describe the
molecules. Many similarity metrics have been proposed, the
most common being the Tanimoto coefficient S(i, j) [1], which
for two compounds i and j with fingerprints of length a and
b, respectively is given by

Tanimoto coefficient : S (i, j) = c/ [a + b − c] .

Here a is the number of bits in molecule i, b is the number of
bits in molecule j, and c is the number of bits in common be-
tween a and b. The similarity between the reference structure
and each molecule in the compound library is computed, and

the library is sorted and filtered based on decreasing similar-
ity rank. Similarity searching relies on the similarity property
principle [5], which states that similar molecules in general
exhibit similar biological behavior. Although often violated
[6, 7], the similarity property principle holds true in many
cases, with many successful results [8]. Similarity searching
is especially useful when little information is known about
the system, because it requires no crystal structure of the
biological target and a minimum one active molecule [9].

Data fusion similarity searching

Traditional similarity searching is performed with only one
compound as the reference structure. The data fusion ap-
proach outlined by Willett [10] and Ginn [11] is a recent
extension which merges multiple similarity scores into a
consensus score in order to improve performance. Consen-
sus scoring has become increasingly important in compu-
tational chemistry, having been applied to docking scoring
functions [12–15] and QSAR predictions [16–20], as well as
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similarity searching. A theoretical basis for why consensus
methods work has been advanced by Wang and Wang [21],
and extended by Feher [22]. Observations to date suggest
that consensus approaches perform well because they em-
phasize the common wisdom of the combined methods, and
suppress the weaknesses of each individual method. Consen-
sus models can, in principle, be made using results from any
type of prediction, and examples of increasing virtual high-
throughput screening (vHTS) enrichment rates by combining
dissimilar prediction types such as docking scores, QSAR
predictions, and similarity search results have been reported
[23].

There exist a number of approaches to performing data fu-
sion on similarity search results to produce a fusion similarity
score S. These include [10]:

(a) combining similarities produced using different molecu-
lar representations,

(b) combining similarities produced using different similar-
ity metrics,

(c) combining similarities produced using different refer-
ence compounds, and

(d) any combination of the above.

A recent study by Willett et al. [24] used collections of
ten active compounds to perform similarity searches over 11
different biological targets to highlight the effectiveness of
approach (c), i.e., using multiple reference structures. The
multiple reference structure, or group fusion [25] approach,
computes the score S by applying one of a number of data
fusion rules to the similarities between the test molecule t
and all of the reference molecules {Qi}. Examples of the
SUM, AVERAGE, MINIMUM and MAX fusion rules are
given below.

SUM − fusion score is a sum of the similarities

S = add {S(Qi , t)}
AVE − fusion score is an average of the similarities

S = ave {S(Qi , t)}
MIN − fusion score is the minimum of the similarities

S = min {S(Qi , t)}
MAX − fusion score is the maximum of the similarities

S = max {S(Qi , t)}

Here {S(Qi ,t)} is the set of similarities between all of the
reference group molecules Qi and the test molecule t. To fa-
cilitate discussion the set of query reference molecules {Qi}
will be referred to as the reference group (or group) and the
number of compounds (n) in the group will be referred to
as the group count, or count, n. Studies to date suggest the
MAX fusion rule is the most effective in fingerprint based
similarity searches [24, 25].
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Figure 1. Molecular fingerprints: Each bit indicates the presence/absence

(1/0) of a structural motif. The fingerprint may be a bit string indicating the

on/off state of all the bits, or a bit position vector indicating the positions of

the bits which are turned on.

Reverse fingerprinting and pharmacophore fragment
scoring

In a fingerprint each molecule is typically described as a
collection of bits, indicating the presence or absence of a
structural motif [26]. The fingerprint may be represented as
a bit string of 1’s and 0’s indicating the on/off state of each
bit, or as a bit position vector which records only the indices
of bits which are in the on state. The fingerprint bit position
vector, FPQ , of a molecule Q can be written as

F PQ = [ f x1, f x2, f x3, . . . f xn] ,

where fxi is the position of the ith bit which is turned on
in the fingerprint bit string. The number of occurrences of
each bit may be encoded by replacing the binary indicators
in the FP vector with a frequency count for each bit [27].
There exist many types of fingerprints [28–31], which can be
roughly classified based on the dimension of the molecular
structure used to derive the fingerprint (2D or 3D), and the
type of molecular fragments used to construct the bits –
functional groups [32], extended graph connectivities [33],
typed polygons [34] or descriptor value distributions [35]
(see Figure 1).

2D fingerprints are derived from the chemical graph and
may use graph distances, while 3D fingerprints usually im-
ply the use of atomic coordinates and Euclidian distances.
2D fingerprints do not require conformations, and are hence
fast and independent of force field accuracy, but they cannot
be expected to capture 3D effects. In principle 3D finger-
prints capture more information than 2D, but these methods
are slower (requiring conformations) and can be sensitive to
the conformation generation method used. In addition, the
number of bits potentially produced in 3D can be large and
may swamp the activity signal with noise bits – there is some
indication in recent literature that 3D fingerprints may not
substantially improve performance over than 2D fingerprints,
and work continues on this issue [36, 37].

One attractive feature of fingerprints is the possible ex-
traction of important fingerprint bits for substructure analysis,
or reverse fingerprinting. One fingerprint type well suited for
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this approach is the typed pharmacophore polygon, whose
bits consist of polygons constructed using phamacophore-
typed atoms or centroids as vertices. The polygons may be
distances, triangles or tetrahedra, and the polygon edge dis-
tances can be measured in either 2D (bond graph distance)
or 3D (Euclidian distance).

Given that the vertices in the typed polygon fingerprints
can be the same as the feature centers used in 3D pharma-
cophore searches, the 2D and 3D bits may be used to help
elucidate a 3D pharmacophore. 3D fingerprint bits that cor-
respond to rigid portions of molecules may be sufficiently
represented in 2D.

2D F P ↔ 3D F P

As well, in cases where the 3D pharmacophore comprises
a conformational restricted region of the active compounds,
2D fingerprints may be sufficient to elucidate a meaningful
3D pharmacophore.

2D F P ↔ 3D Pharmacophore query

The advantage of being able to use the same vertices in 2D fin-
gerprints, 3D fingerprints, and 3D pharmacophore searches
motivated the creation of the PCH fingerprint, a typed atom
triangle fingerprint based on the PCH (Polar Charged Hy-
drophobe) pharmacophore annotation scheme in the MOE
software [38]. Details of the implementation are given in
the Methods section. Typed-polygon fingerprints are not new
[39–41] and other fingerprints could have been used in the bit
importance and fragment visualization portion of this study.
The main reason for implementing the PCH fingerprint here is
simply the convenience of having the same vertices in 2D and
3D, which will help in subsequent analysis and visualization.

Fingerprint bit ranking and fragment scoring

In the context of a reference group, a bit coverage, C Q
k , is

defined as the fraction of the reference group molecules which
contain the kth structural bit:

C Q
k = 1

n

n∑
i=1

f i
k

In the above equation f i
k is either 1 or 0, indicating the pres-

ence or absence of the kth bit in the ith molecule and n is
the group count. The coverage is a partial indication of the
importance of each structural bit in the reference group and
can be used to help isolate bits which may be significant for
activity. Note that the current definition of coverage does not
take into account the possibility of multiple occurrences of
bit k in the ith molecule. Although the effect of incorporat-
ing bit frequency should be studied further (especially in the
context of bit-coverage), a recent study [24] using the CATS
[41] and Semilog [27] fingerprints showed little difference in
the recall rates produced by the binary and frequency count

versions of these fingerprints. Thus, for simplicity, the current
study was restricted to binary fingerprints only.

With conformationally-dependant fingerprints, fk may in-
clude a Boltzmann weighting factor for the bit:

f i
k =

∑
conf f conf

k ∗ e
−�Econf/kT∑

conf e−�Econf/kT

Here the summations are over all the conformations of the
ith molecule, and fkconf is a 1 or 0 indicating the presence or
absence of the kth bit in the conformation.

In addition to coverage within the reference group, a bit
importance Tk , inspired by Bayesian likelihood ratios [42]
and the Binary-QSAR method [43], is defined. The bit im-
portance Tk is computed by taking a ratio of the frequency
of the kth bit in the reference group with the frequency of the
kth bit in a larger chemical space, typically a collection of
random, inactive and/or diverse drug-like molecules.

Tk =
⎡⎣ 1

n+1

(( ∑n
i=1 f i

k

) + 1)

1
m0+1

(( ∑m0
j=1 f j

k

) + 1)

⎤⎦
In the above equation m0 is the number of random or in-
active compounds included in the analysis, and the 1’s are
introduced in the denominators to avoid division by zero.

The bit coverage and importance values can be used in
combination to score the molecular fragments from which
the fingerprint bits were made. For each pharmacophore frag-
ment L used to construct bits (and fragment here can mean
a molecular substructure, a pharmacophore triangle vertex,
an atom in an extended connectivity, etc.), a score, wL , is
computed using Ck and Tk ;

wL =
K∑
k

(Ck
∗ Tk)

Here, wL is the score of the Lth pharmacophore fragment.
The summation is over all K fingerprint bits which include
the fragment L in its specification. The relative scores of
each of the fragments can be visualized by drawing weighted
spheres around the fragments, where the radius rL for each
fragment sphere is the fragment score scaled by the maximum
fragment score as seen in the molecule:

rL = wL/ max{wL }
Scaled this way, points with large relative radii will indicate
fragments that have large relative scores.

The above definitions outline a reverse fingerprinting ap-
proach to scoring pharmacophore fragments in a molecule,
as the scores and weighted radii can be used to detect the re-
gions of the molecule which are most important for activity.
The basic procedure for scoring molecular fragments with
this method is as follows:

(1) Select a reference group of active compounds.
(2) Train Tk and Ck statistics on a test database that contains

examples of active and inactive compounds. The exact
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composition of the test database can vary depending on
the intended application (activity, selectivity, etc).

(3) For a given query molecule, compute the fingerprint bits
and use the Ck and Tk values to score the fragments used
to construct each bit.

(4) Display the absolute fragment scores and weighted
spheres on the query molecule.

The approach of using fingerprint bit frequencies to
isolate important features in compounds is not new. The
Stigmata approach [44] used a form of bit coverage to de-
termine structural commonalities within compound datasets,
and Xue et al. [29] have used statistical distributions to iso-
late bits which perform optimally for isolating active com-
pounds. The above definitions for fingerprint bit importance
and fragment scoring represent an approach to ranking molec-
ular fragment contributions to biological activity.

Reference group similarity statistics

To further characterize reference groups, the average pair-

wise similarity, SQ
AB, the maximum pair-wise similarity,

SQ
MAX, and the minimum pair-wise similarity, SQ

MIN are de-
fined;

SQ
AB = 2

n(n − 1)

n−1∑
i=1

n∑
j>i

S(i, j)

SQ
MAX = max{S(i, j)}
SQ

MIN = min{S(i, j)}
These statistics will be related to recall rates in order to de-
termine if it is possible, a priori, to predict the recall per-
formance of a given reference group. The above definitions
hold regardless of the similarity metric; in this study, we
limit ourselves to the square root of the Tanimoto coeffi-
cient,

√
[c/(a + b − c)], the default coefficient in the MOE

software. This coefficient was chosen for clarity in plotting,
since we wish to visually examine correlations between recall
and pairwise similarity statistics. The performance is identi-
cal to the Tanimoto coefficient. The advantage of the square
root is that at low similarity values, the absolute similarities
produced have more spread in the plots than with the regu-
lar Tanimoto coefficient. Other coefficients could have been
used and may be the subject of future studies.

Outline of current study

The effectiveness of using multiple structures as opposed to
a single reference structure in similarity searching prompted
the following studies into the nature of the reference group
{Qi}, its effect on the quality of the similarity search, and its
potential to help elucidate important phamacophores. This
study is divided into the following four sections:

(1) Group fusion: General behavior over multiple biological
targets: To assess the general performance of group data

fusion over many biological targets, 44 biological targets
(Table 1) were chosen for study. Fingerprint models were
made using compounds active against each of the biologi-
cal targets. Four different 2D fingerprints – the 166 public
MACCS keys [45], the MOE TGT (typed graph triangles)
scheme, the MOE GpiDAPH (graph pi-donor-acceptor-
polar-hydrophobe) fingerprint, and the newly imple-
mented PCH fingerprints – were used. Reference groups,
varying in size from n = 1–40, were constructed using
compounds active against each target. Fingerprint mod-
els were then made from the reference groups and used
to virtually screen a 10000 compound in-house dataset
of drug-like molecules. Both the AVE and MAX fusion
results were tested. The recall rates of each fingerprint
scheme and fusion rule were measured using the area
under the receiver operator characteristic curve (ROC)
[46], and reported in percent units (ROC area × 100).
On this scale, 100 is a perfect model and 50 is a random
model; areas of 90 and greater are considered excellent,
while areas of 60 or less indicate no significant model.
Gains in ROC areas as a function of group count were
examined. The performance of the newly implemented
PCH fingerprint was compared to that of the MACCS,
TGT and GpiDAPH fingerprints, and the performances
of the AVE and MAX fusion rules were discussed.

(2) Group fusion: PDE5 scaffold hopping: To test the ability
of the data fusion similarity searches to ‘scaffold-hop’ –
i.e., retrieve active compounds which do not belong to the
same chemical class as the reference group – an experi-
ment focusing only on the PDE5 inhibitors was performed.
Eight (8) PDE5 inhibitor scaffold classes (Figure 2) were
identified and used to make 8 different single class models
consisting of scaffolds from one class only. The AVE and
MAX fusion rules were tested using group counts of n = 1,
4, 7, and 10. Each single-class model was used to virtually
screen a test database containing molecules belonging to
other scaffold classes, but no active molecules belonging
to the training set class. To test how effectively new scaf-
folds were hit by single class models, the number of new
scaffolds and the total number of compounds retrieved in
the top 100 ranked compounds were examined.

(3) Reverse fingerprinting – Fragment scoring and visual-
ization: The potential of the fragment scoring method
was briefly surveyed by computing and visualizing the
fragment scores in example compounds (Figure 3) active
against biological targets 5-HT2A, CDK2/Cyclin-A, FXa,
PDE4 and PDE5. The fragment scores were compared
with known pharmacophores for the biological target. The
sensitivity of the fragment scoring was examined by com-
paring scores produced by fingerprint models trained us-
ing compounds active against different biological targets.

(4) Reference group similarity statistics: Reference group
similarity statistics were gathered from the models
created in Sections (1) and (2) and compared to recall
rates. The ability of these measures to predict recall rates
a priori was investigated.
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Table 1. Biological targets codes: The names and abbreviation codes of the 44 biological targets considered in this study

Biological target Code Biological target Code

5-HT1A serotonin 5-HT1A Faresyl tranferase FTase

5-HT1B serotonin 5-HT1B Factor X alpha FXa

5-HT2A serotonin 5-HT2A HIV protease (type-1) HIV-1-PR

5-HT2C serotonin 5-HT2C HIV reverse transcriptase HIV-1-RT

5-HT4 serotonin 5-HT4 HIV protease HIVPR

Acetylcholinesterase AChE Hydrolase (multiple targets) HLase

Adenosine A1 receptor ADORA1 Histamine Receptor H3 HRH3

Alpha-1 adreneric receptor ADRA1 K-opioid receptor KOR

Adenosine kinase AK Matrix metalloprotease-2 MMP-2

Butylcholinesterase BChE Matrix metalloprotease-3 MMP-3

Carbonic anhydrase 1 CA-1 Matrix metalloprotease-8 MMP-8

Carbonic anhydrase 1 CA-2 M-opioid receptor MOR

Cannabinoid CB1 receptor CCB1 Melatonin MT1 receptor MT1

Cholecystokinin B CCKB Neuropeptide Y receptor 5 NPY5

CDK2/cyclin-a-dependant kinase CDK2-Cyclin A cAMP phosphodiesterase 4 PDE4

Cyclooxygenase-2 COX-2 cGMP phosphodiesterarse 5 PDE5

Dopamine D2 D2 Platelet derived growth factor b receptor PDGFRB

Dihyrofolate reductase DHFR Pyruvate dehydrogenase kinase PDHK

Dimerization partner 2 DP2 Protein tyrosine phosphatase 1B PTP-1B

Epidermal growth factor receptor EGFR Streoid receptor coactivator SRC

Endothelin A ETA Tumor necrosis factor-alpha converting enzyme TACE

Factor II alpha FIIa Trypsin Trypsin

Figure 2. PDE5 inhibitor scaffold classes: Eight (8) scaffold classes identified from PDE5 active compounds in the entire dataset.

Methods

PCH typed polygon fingerprint implementation

The MOE software pharmacophore annotation points [38]
were chosen as vertices for the typed graph triangles. In
MOE, an annotation point scheme derives pharmacophore

points from a molecule based on the rules of the scheme.
These points are the same ones used by MOE 3D pharma-
cophore searching routines. Currently there are four (4) an-
notation schemes in MOE, some of which have projected
features; a detailed explanation of the annotation schemes
can be found in the MOE manual. For simplicity, only the
PCH annotation scheme was considered in the current work.
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Figure 3. Sample active compounds for bit importance and visualization: Compounds active against 5-HT2A (1, spiperone), CDK2/Cyclin A (2), PDE4

(3, rolipram), FXa (4, DX-9065A) and PDE5 (5, sildenafil) used in bit importance and visualization examples.

The PCH scheme produces atom-centered annotation points
for all features (donor, acceptors, etc.) except for aromatic
rings, (where ring center annotation points are produced), and
for large hydrophobic features, where annotation points are
placed near the hydrophobic bulk centroids. The PCH scheme
does not contain any annotation points projected from polar
atoms. For the 2D version of the fingerprints, the shortest path
graph distance is used as the distance between points. Anno-
tation points not centered on atoms are assigned to be one
bond distance from the atoms that derived the point. A final
requirement for bit specification is the setting of distance bins
for the triangle edges. All triangle edges whose distances fall
within one bin range are considered to be equal. No attempt
was made here to fine-tune the binning for better results. For
now, the bin distances are used as is, but this does not pre-
clude future efforts to optimize the binning for better 2D/3D
correspondence. The following bin distances were used for
the 2D PCH fingerprint.

1, 2, 3, 4, 5, 6, 7, 10, 12, 15

These bin distances are a compromise between the graph
distance bins used in the GpiDAPH and the TGT finger-
prints. For the 3D PCH fingerprints, the distance between the
vertices is simply the Euclidian distance; the same distance
bins used by the 3D TAT (typed-atom-triangle) fingerprints
in MOE were chosen (in Å).

1.0, 2.19, 2.64, 3.05, 3.47, 3.92, 5.15, 8.26, 14.72

Although the 3D PCH fingerprints were implemented, they
were not considered for this work, which focused entirely on
2D fingerprints.

Test and training datasets

The entire dataset used in this study consisted of 10106
unique compounds with biological measurements spanning
438 biological targets, compiled from Journal of Medicinal
Chemistry articles spanning the years 1994 to 2004. Details
of the dataset preparation are available upon request. Forty-
four (44) of the biological targets (listed in Table 1) were
chosen for this study to examine the effects of group fusion
on similarity search recall rates. It is important to note that
the data contains many congeneric series for each target, and
there are many examples of active and inactive compounds
for each target/chemical class combination. Since most of
the measurements in the dataset are continuous, consisting
mainly of pIC50 and IC50 values in different units, they were
all normalized to pIC50 (M) activity values, and a threshold
of pIC50 (M) >6 was set to separate the ‘active’ compounds
for the study. The normalization procedure was less than per-
fect (due to variation in activity experiments among different
journal articles), so this procedure introduced some noise into
the activity data. The pIC50 threshold of 6 is also somewhat
arbitrary, and other thresholds could have been chosen. By
computing the number of active compounds as a function of
different activity thresholds (Table 2), one can see that com-
pounds for each of the forty-four targets span a number of
activity ranges.

Choosing an activity threshold of pIC50 > 6 means the
resulting data set contains a substantial number of inactive
compounds which belong to the same chemical classes as
actives, and lie on the interface region of pIC50s between 4
and 6. At an activity threshold of pIC50 > 4, the sum of all the
active compounds is greater than the number of compounds
in the dataset, because many compounds are active against
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Table 2. Number of active compound for each biological target at various pIC50 Thresholds: Number of active com-

pounds in the entire database at three different activity thresholds (pIC50 = 4, 6, 8) for each of the 44 biological targets

considered in this study. The total number of actives for all targets is greater than the total number of compounds in the

entire dataset, because many compounds are active against multiple targets

Activity threshold Activity threshold

Code pIC50 > 4 pIC50 > 6 pIC50 > 8 Code pIC50 > 4 pIC50 > 6 pIC50 > 8

5-HT1A 505 480 165 FTase 327 216 55

5-HT1B 161 118 9 FXa 330 221 63

5-HT2A 214 193 58 HIV-1-PR 336 319 233

5-HT2C 145 122 23 HIV-1-RT 198 121 4

5-HT4 91 89 15 HIVPR 226 219 186

AChE 186 87 30 HLase 304 211 16

ADORA1 457 355 55 HRH3 92 88 34

ADRA1 573 522 161 KOR 320 248 106

AK 107 94 36 MMP-2 446 412 223

BChE 109 70 9 MMP-3 477 418 117

CA-1 696 483 30 MMP-8 313 279 148

CA-2 723 701 290 MOR 381 301 153

CCB1 107 98 27 MT1 170 164 102

CCKB 81 73 21 NPY5 188 158 61

CDK2-Cyclin A 123 97 42 PDE4 221 162 44

COX-2 244 112 6 PDE5 549 400 234

D2 616 535 116 PDGFRB 474 184 12

DHFR 175 132 47 PDHK 124 76 7

DP2 85 84 5 PTP-1B 210 102 0

EGFR 359 184 61 SRC 344 225 48

ETA 417 375 207 TACE 144 141 34

FIIa 376 158 58 Trypsin 281 107 1

Total (all Targets) 13005 9934 3352

a number of the targets at this threshold, and thus count for
more than one active compound when computing the total
number of active compounds in the dataset.

A training set of 1760 unique compounds was constructed
by randomly extracting from the 10106 compound entire
dataset 40 active compounds for each of the 44 targets in
Table 1. All of the training compounds were removed from
the entire dataset to create an 8346 compound external test set
which was devoid of any of the training compounds. The ex-
ternal test set was used for determining the recall rates of the
fingerprint models, and for the reverse fingerprint fragment
visualization studies.

Group fusion: general behavior over multiple biological
targets

To assess the general behavior of group fusion over many
biological targets, a fingerprint model for biological activity
against each target in Table 1 was made by using reference
groups consisting of compounds active against the target be-
ing modeled. Four different 2D fingerprinting schemes - the
MACCS, TGT, GpiDAPH and the new PCH fingerprints –
were used. Reference groups of the following sizes – 1, 2,
4, 7, 10, 15, 25, 40 – were constructed for each target. The
MOE 2005.06 Fingerprint-Model application was used to
create fingerprint models using the active compounds. The
fingerprint models were then used to virtually screen the ex-
ternal test dataset for active compounds. For reference group

counts of n = 1–25, the reference groups were chosen by
randomly selecting the appropriate size subset from the 40
training compounds for each target; this was repeated five (5)
times for each value of n, and the ROC areas averaged over
all repetitions to give the ROC area for the group count. For
the group count n = 40, all the training compounds for each
target were used to construct the model. Both the AVE and
MAX fusion rules were used.

Group fusion: PDE5 scaffold hopping

To create the training and test sets for the PDE5 scaffold
hopping study, eight (8) scaffold classes shown in Figure 2
were separated from the 549 compounds with PDE5 pIC50
values greater than 4. PDE5 active compounds which did not
belong to one of the eight classes were removed from the
dataset, leaving a total of 325 PDE5 active compounds in
the ‘pruned’ entire dataset. For each scaffold class, a single-
class training set containing only compounds belonging to
that class was created, along with a corresponding test set
that consisted of the pruned entire test set minus the PDE5
inhibitors used to make the single class model. The abil-
ity of a single-class model to hit itself was not considered.
Fingerprint models constructed with each single-class train-
ing set were used to virtually screen the corresponding test
set. The AVE and MAX fusion rules were tested. The re-
ported ROC was averaged over five (5) repetitions of each
of the tested group counts, n = 1, 4, 7, 10. The groups were
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randomly chosen from the single class training sets at each
repetition.

Reverse fingerprinting fragment scoring and visualization

An SVL program was written in the MOE to train the Ck
and Tk statistics, to calculate the fragment scores wL , and to
display the scaled spheres and scores on a sample structure.
For each example target – 5-HT2A, CDK2/Cyclin-A, PDE4,
FXa, and PDE5 – a sample active compound (Figure 3) was
chosen. The training and test databases used in this portion
of the study are the same as those used in the multiple target
study. For each target, the reference group of size 10 was
randomly chosen from the 40 active structures in the 1760
compound training dataset. The external test dataset was used
to train the Ck and Tk statistics.

Reference group similarity statistics

The reference group similarity statistics for all of the mod-
els created in the testing of fusion rules on multiple targets
were used to accumulate the reference group pair-wise simi-

larity statistics. The SQ
AVE, SQ

MIN and SQ
MAX values for each

model were computed and compared with model ROC areas
to correlate these statistics with recall rates.

Results and discussion

Group fusion: General behavior over multiple biological
targets

Over multiple biological targets both the AVE and MAX fu-
sion rules on average increased recall rates over single refer-
ence compound similarity searches, with the MAX rule and
a group count n = 40 producing the best results overall. The
ROC area averaged over all 44 targets using the AVE and
MAX fusion rules are plotted as a function of group count n
in Figures 4 and 5.

It was somewhat surprising to note that all fingerprint sys-
tems using the AVE fusion rule showed a leveling off in the
ROC area gain when n exceeds 10. At the maximum group
count of 40, the MAX fusion rule ROC gains seem to still be
increasing, albeit slowly, suggesting they could continue to
improve as the group count increases beyond 40. The largest
improvements were exhibited by the MAX rule, with ROC
area gains of 15–20 produced at n = 40. The average ROC
area gains using the AVE fusion rule ranged from ∼5 for the
GpiDAPH fingerprint to 10–12 for MACCS and PCH finger-
prints. The newly implemented PCH fingerprints performed
at least as well as the other fingerprints, indicating they are
reasonable for use in the fingerprint bit analysis and fragment
visualization sections of the study.

To better compare the performance of data fusion across
targets, a plot of the average ROC area for each target using
the MAX and AVE fusion rules and group count n = 10 was

Figure 4. AVE model ROC area vs. group count: The ROC area using the

AVE rule as a function of group count n as averaged over all the biological

targets.

Figure 5. MAX model ROC area vs. group count: The ROC area using the

MAX rule as a function of group count n as averaged over all the biological

targets.

constructed. In both cases the plots are sorted in descend-
ing order based on the PCH ROC model value for n = 10.
The AVE fusion rule ROC area plot in Figure 6 shows that
for targets where the PCH ROC area at is greater than 85,
the MACCS and GpiDAPH fingerprints ROC area values are
also quite good, lying in the 80–100 range. Except for the
AK target, the TGT fingerprint also performs well for these
targets, with ROC areas in the 80–100 range. As the PCH n
= 10 model ROC area decreases, the variation in ROC area
between fingerprinting systems becomes more pronounced.
Similar trends are observed for the MAX fusion rule (Fig-
ure 7).

For all of the 44 targets studied, a group count of 10 and
either the MAX or AVE fusion rules produced an ROC area
of greater than 60 with at least one of the fingerprints. All
fingerprint systems produced an ROC area of 50 or less for
at least one target, suggesting a worse than random model.
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Figure 6. AVE models (n = 10) over biological targets: The ROC area for each biological target using a group count of 10. Plotted by descending order of the

PCH fingerprint ROC area. Results for the PCH, MACCS, TGT and GpiDAPH fingerprints are shown.

Figure 7. MAX models (n = 10) over biological targets: The ROC area for each biological target using a group count of 10. Plotted by descending PCH

fingerprint ROC area. Results for the PCH, MACCS, TGT and GpiDAPH fingerprints are shown.

Some targets (such as CDK2/Cyclin-A and CCKB) were well
modeled by all fingerprints, possibly indicating chemotype
biases in the training sets and/or an activity class amiable to
this type of analysis. Other targets such as the HLase and
NPY5 were poorly modeled by all fingerprints and fusion
rules, suggestion either the fusion rule, the fingerprints, or
both, were inappropriate for modeling these activities. Some
targets (notably COX-2 and MMP-8) were well modeled by
some fingerprints and poorly by others, possibly highlight-
ing the strengths and weakness of the different fingerprint
systems.

In many cases when an ROC area of 50 or less was pro-
duced for a target using a particular fingerprint, a higher ROC

area was obtained for the same target using another finger-
print, suggesting that combining similarity fusion scores from
different fingerprinting systems could smooth out inconsis-
tencies and improve overall performance.

For many of the biological targets, the results obtained
using the PCH fingerprints and group counts of 10 and 40
were quite acceptable, using either the AVE or MAX fu-
sion rules. It should be noted that the averaged ROC area
gains do not reflect the variation between targets. Some
systems experienced no ROC area gains, while others ex-
perienced dramatic gains in ROC area. Some targets even
experienced a loss of predictive ability upon increasing
n.
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The MAX and AVE fusion rules at n = 10 and n = 40 were
compared directly using the PCH fingerprints. In Figure 8
the PCH ROC areas over all targets using the MAX and AVE
fusion rules and group counts of n = 10 and n = 40 are
plotted, sorted by descending ROC area as obtained using
the AVE rule and n = 10.

The AVE rule outperforms the MAX rule in some cases
when n =10, but the MAX rule is always either comparable
or better than the AVE rule at n =40. There are many targets
where the MAX and AVE rules give similar results for both
group counts. The plot in Figure 8 also shows how perfor-
mance improves for many targets with the MAX rule, while
performance remains relatively unchanged with the AVE rule.
The MAX fusion rule ROC area gains from n = 10 to n = 40
are dramatic for a few targets, but there is little change with
other targets. The MAX ROC area surprisingly decreases for
a few targets as n increases from 10 to 40 – these cases should
be the subject of future studies.

Group fusion: PDE5 scaffold hopping

The recall rates achieved when filtering for other scaffold
classes using single class models are plotted in Figure 9. The
percents of the database filtered before all of the other classes
are hit were also computed. Interestingly, the AVE models
performed somewhat better than the MAX models, but not
by much. With the AVE rule, increasing the group count
from 1 to 10 resulted in ROC gains for 4 of the models, with
a decrease in ROC gain exhibited by one model. In contrast,
the MAX fusion rule resulted in increased ROC gains for
only 3 models, with 3 other models exhibiting a net decrease
in ROC with increasing n.

To more deeply examine new scaffold retrieval, the per-
centage of the test database filtered when each single class
model hits another scaffolds for the first time was exam-
ined (Table 3). This percentage gives some indication of
how quickly a given single class models can retrieve other
scaffolds, and how much better the model is than random
selection. A group count of n = 10 and the AVE fusion
rule was used in all cases. The ROC area of the model
is listed in Table 3, along with the total number of com-
pounds within each training scaffold class. The total number
of hits and the number of new scaffolds hit in the top 100
ranked compounds was also recorded for each class model
(Table 4). Since 100 compounds correspond to roughly 1%
of each class test database, a ‘random’ model would be ex-
pected to hit 1% of the PDE5 active compounds, or 3 hits.
Models which hit more than 3 compounds are better than
random.

The drawings in Figures 10a–10c show the first examples
of new scaffolds hit in the top 100 ranked compounds, along
with the rank in hit list (1 = first hit, 100 = last hit), the
class membership, and the PDE5 activity (pIC50 M) of each
compound. The number of scaffolds hit, the total number of
compounds hits, and the relative rankings of the compounds
all vary greatly between class models.
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Figure 8. AVE vs MAX models (n = 10/n = 40) over all biological targets: PCH fingerprint ROC area for all biological targets using the MAX and AVE fusion

rules. Group counts of n = 10 and n = 40 are shown. Data is plotted by descending n = 10 PCH AVE ROC area.

Figure 9. ROC Area vs. Group Count for PDE5 Single Class Models: The AVE and MAX fusion rule ROC areas obtained with PCH fingerprint single

scaffold-class models (classes 1–8) plotted vs. group count n.

At one extreme, the Class 1 and Class 3 models both hit a
number of different scaffolds (5 and 4 respectively – Table 4),
but overall picked up a relatively small number of hits (15
and 12) within the top 100 compounds. This hit rate is still
much better than random. The Class 2 and 7 models were
the poorest at retrieving new scaffolds, each hitting only a

small number of compounds from one scaffold class in the
top 100 compounds. The class 4, 5 and 6 models all retrieved
a substantial amount of compounds (>10) from one scaffold
in particular.

The relative ranking of hits also varies between class mod-
els. Most of the 1, 2, 3, 7, and 8 class model hits spread out
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Table 4. Single-class model hits in the top 100 compounds: Number of hits (by class) retrieved in the top 100 ranked compounds

by each single class model

Class Models

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

model model model model model model model model

Class 1 hits – 0 0 0 0 0 0 0

Class 2 hit 6 – 7 0 0 0 0 0

Class 3 hits 4 8 – 3 4 4 0 0

Class 4 hits 2 0 2 – 0 14 0 1

Class 5 hits 2 0 0 0 – 0 11 0

Class 6 hits 0 0 3 43 0 – 0 20

Class 7 hits 1 0 0 0 26 0 – 0

Class 8 hits 0 0 0 0 0 10 0 –

Total hits in top 100 ranked compounds 15 8 12 46 30 28 11 21

Figure 10.a. Sample hits in Top 100 ranked compounds using single class models – class models 1 and 2: The first hit compound from other scaffold classes

using single class models 1 and 2. The list position (in bold, from 1–100)), class (in italics) and PDE5 IC50 (in uM) are given.

across the top 100 compounds (as demonstrated by the ranks
of the 5 different scaffold hits of the class 1 model), while hits
obtained with class models 4, 5 and 6 clustered at the top of
the list. The class 4, 5 and 6 models all retrieve 18 or more hits
in the top 25 compounds; the class models 4 and 5 retrieved
only one new scaffold in the top 25 compounds, while the
class 6 model retrieved three new scaffolds in the top 25. The

class 1 and class 8 scaffolds seemed to be the most difficult
to detect by the other classes – no class detected a class 1 hit
in the top 1% of compounds, while only the class 6 model
detected a class 8 compound in the top 100.

Overlap between classes and variation in class retrieval
was examined using the percentage of the database filtered at
which each single class model retrieved all of the compounds
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Figure 10b. Sample hits in top 100 ranked compounds using single class models – class models 3, 4, and 5: The first hit compound from other scaffold classes

using single class models 3,4 and 5. The list position (in bold, from 1–100)), class (in italics) and PDE5 IC50 (in uM) are given.

from each of the other classes (Table 3). This percentage gives
an idea of how spread out one class is relative to another.
For the purpose of discussion, class hopping from class A to
class B was considered to be ‘solid’ only if the class A model
retrieved all of the class B compounds in the top 20% of the
database filtered. The scaffolds were arranged in a diagram
(see Figure 11) to visualize the data.

The solid arrows in Figure 11 are drawn from one class
to another to indicate that a single class models retrieved all
compounds from the other class in the top 20% of the test
database. Dashed arrows show selected weaker hops, where
more than 20% of the test database was filtered before all
compounds of the other class were retrieved. Some interesting
results become apparent when the data is arranged in this
fashion. In all cases the most successful PDE5 inhibitor class
hops occurred between scaffolds with minor differences. This
result is to be expected from similarity search based methods.
Classes devoid of exocyclic carbonyl groups (Classes 5, 7
and 8) successfully hopped only to scaffolds classes with one
exocyclic carbonyl group or less. Class 7 picked up all of
class 5 in the top 3.4% of filtered compounds, which is not
surprising because this scaffold change involves only the shift

in position of a heterocyclic nitrogen atom. Classes 5 and 7
both hopped with moderate success to class 4. Class 4 and
Class 6 are the only pair of classes that mutually retrieved each
other in the top 20% of filtered compounds. In addition, three
(3) other classes hop to class 4 (5, 7 and 8) and class 8 hops
to class 6. The results indicate that, at least for this dataset,
classes 4 and 6 are quite close to each other, and lie in a
central location of the chemical activity space defined by this
dataset. Not one class hopped to class 3 very convincingly,
the best result being class 8, which required filtering >50% of
the database to hit all the class 3 compounds. Despite the low
overall recall rates, five classes (1, 2, 4, 5 and 6) managed to
retrieve examples of class 3 compounds in the top 100 scoring
compounds (Figure 10), suggesting that class 3 compounds
occupy a region of chemical space located somewhere in-
between these classes.

Class 1 is interesting case that merits further discussion;
single class models made with class 1 compounds show
mediocre recall rates for all other classes, requiring filter-
ing of 25%–60% of the test database in order to completely
retrieve all other classes. In addition, no single class model
retrieves a class 1 molecule in the top 100 ranked compounds.
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Figure 10.c. Sample hits in Top 100 ranked compounds using single class models - class models 6, 7, and 8: The first hit compound from other scaffold classes

using single class models 6, 7 and 8. The list position (in bold, from 1–100)), class (in italics) and PDE5 IC50 (in uM) are given.

Figure 11. Complete class retrieval by single class models: Arrows drawn from one class to another indicate the percentage (%) of the database filtered when

all members of the other class are retrieved. The arrow is drawn from the class used in the model to the class retrieved by the model. Solid arrows are drawn

when the percentage of the database filtered is below 20%. Dashed arrows show selected weaker relationships.
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Figure 12. Fragment Scores for 5-HT2A active compound spipernone: The

line drawing of spipernone along with the fragments scores and weighted

spheres produced by the 5-HT2A model.

However, despite the low overall recall rates produced with
the class 1 group, the class 1 model does find five (5) new
classes (classes 2, 3, 4, 5, 7 – Figure 10a) in the top 100 ranked
compounds, making it the most successful single class model
by this measure. A possible explanation for this behavior is
that class 1 compounds occupy a distinct region of chemi-
cal space somewhere in-between and equidistant to the other
classes. Most of the other classes are sufficiently close to
other classes that the majority of hits retrieved come from
proximal classes, and do not include class 1 compounds in
the top ranks. Class 1 compounds, on the other hand, are not
close to any one class in particular, but are close enough to
a number of other classes that active compounds can be re-
trieved from each. As a result, class 1 shows little preference
for one class, and instead retrieves examples (albeit few) from
a number of the other classes.

Overall the results of the scaffold-hopping experiment
suggest that successful class hops can occur between dissim-
ilar compounds by going through intermediate classes – for
example, class 7 could eventually lead to class 2 via classes
4 and 6.

Reverse fingerprinting – fragment scoring and visualization

The bit importance and fragment visualization portion of the
study was restricted to the PCH fingerprints only. A sample
compound was chosen for each of five biological targets –
spiperone for 5-HT2A (1) [47], an oxindole-based inhibitor
for CDK2/CyclinA (2) [48], rolipram for PDE4 (3) [49], com-
pound DX-9065A (from the 1FAX x-ray PDB structure) (4)
[50] for FXa and sildenafil [51] (5) for PDE5 (Figure 2). For
each target, a reference group of size n = 10 was used to train
the Ck and Tk data on the external dataset. Examination of
the resulting Ck and Tk values showed that typically only a
few bits have high coverage values, but these bits also tended

to have high Tk values. In the 5-HT2A, CDK2/Cyclin-A and
PDE4 cases, all bits with coverage values above 0.3 had Tk
values greater than 1. As the bit coverage values fall below
0.3, the number of bits with Tk < 1 increases. The Tk values
split evenly between values greater than 1 and less than 1
when the bit coverage approaches 0.1.

5-HT2A fragment scoring
The n = 10 5-HT2A model fragment scores are displayed on
spipernone in Figure 12 The line drawing of spipernone is
shown along with the weights of the fragments (bold score
numbers) and fragment spheres of radius rL . The point scores
and weighted spheres show that the fragment scoring clearly
picked a basic nitrogen center as the most important point,
with proximal aliphatic groups having nearly the same impor-
tance. An aromatic center was also identified in the four top
scoring points. These features correspond well with experi-
mental 5-HT2A structure-activity relationships, which sug-
gest the main 5-HT2A pharmacophore consists of two pla-
nar aromatic or heterocyclic systems, connected through an
aliphatic group containing a basic nitrogen [52, 53]. Although
this is not identical to the complete 3D pharmacophore for
5-HT2A reported in reference [47], the method convincingly
located two of the important phamacophore centers.

CDK2 inhibitor fragment scoring
The n = 10 CDK2/Cyclin-A model fragment scores and
weighted spheres are displayed on compound 2 (compound
16 from reference [48]) in Figure 13. The fragment scor-
ing clearly picked out the oxindole ring system central to
the CDK2 activity of this chemotype. Three of the top five
scoring points (scores of 930, 603 and 479) corresponded to
atoms from x-ray structures [48] known to form hydrogen
bonds with the backbone residues in the CDK2 receptor. The
hydrogen bond locations are indicated schematically in Fig-
ure 13. In contrast with the spipernone fragment scores, all
of which were below 100, the fragment scores in compound
2 were all quite high, with many points having scores >200.
This may have been anticipated from the Ck /log10 Tk plots,
which for 5-HT2A show many reference group bits with Tk
< 1, while CDK2 Ck / log10 Tk plots show only few group
bits with Tk < 1.

PDE4 inhibitor fragment scoring
The n = 10 PDE4 model fragment scores and weighted
spheres are displayed on the PDE4 inhibitor rolipram in Fig-
ure 14. The catechol fragment, by far the most important
fragment in many known PDE4 inhibitors [49], is isolated
well by the scores. The catechol unit is known from x-ray
crystal results to form hydrogen-bond interactions with the
‘Q-switch’ residue GLN 443 [54] in PDE4 – the location of
which are given schematically in Figure 14.

FXa inhibitor fragment scoring
The n = 10 FXa model fragment scores and weighted spheres
for the FXa inhibitor DX-9065A are shown in Figure 15. Im-
portant H-bond interactions as determined from the 1FAX
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Figure 13. Fragment scores for CDK2/cyclin a active compound 2: The line drawing of 2 along with fragments scores and weighted spheres produced by the

CDK2/Cyclin A model. H-bond interactions with the receptor known from x-ray structures are shown schematically.

Figure 14. Fragment scores for PDE4 active compound rolipram: The line

drawing of rolipram along with the fragments scores and weighted spheres

produced by the PDE4 model. H-bond interactions with the receptor known

from x-ray structures are shown schematically.

crystal structure [50] are also indicated. The scores high-
lighted points where the DX-9065A inhibitor forms H-bonds
with the receptor. The highest scores were assigned to the
cationic centers in the benzamidine ring, reflecting the im-
portance of binding to the ASP residues in the S pocket of
many proteases [55], including FXa. Surprisingly, the next
highest scored point is the imine nitrogen, know from the
crystal structure to form an H bond with residue E97 [50].

FXa inhibitor: Scoring fragments with other activity models
To test the effect of using inappropriate, or ‘random’, models
on a query compound, the fingerprint models of 5-HT2A,
PDE4 and PDE5 activity were used to score the FXa inhibitor
DX-9065A. The results are given in Figure 16 along with the
scores from the ‘real’ FXa fingerprint model for comparison.

The results of using incorrect activity models on DX-
9065A suggest that a combination of the score magnitudes

and the relative score spreads may help distinguish active
from inactive compounds. The first striking difference be-
tween the scores produced by the real and random models is
overall magnitude. None of the random models produced a
fragment score >100, while the real FXa model produced
scores >200. The 5-HT2A model produced low absolute
scores which range from 2–9, much smaller than the 30+
scores produced for a true 5-HT2A active compound like
spipernone.

The spread of point scores was often less pronounced
with random models than with real models. With 5-HT2A
and PDE5 ‘random’ models, ratios of the largest and small-
est point scores in DX-9065A were ∼2.5, and ∼3 respec-
tively. For the real model, this ratio was >10. A smaller point
score ratio is not always produced by random models on DX-
9065A, as is shown by the PDE4 example. The PDE4 model
produced low overall scores for DX-9064A, but the score ra-
tio is comparable to that produced by the real FXa model.
Interestingly, the portion of the DX-9065A molecule which
was best scored by the PDE4 activity model is the portion
that most looks like rolipram.

PDE5 inhibitor (sildenafil)- fragment scoring with PDE5,
5-HT2A and PDE4 models
As a final comparison of ‘real’ and ‘random’ models, three
activity models – PDE5, 5HT2A and PDE4 – were used to
score the fragments in sildenafil. The PDE5 model, or ‘cor-
rect’ activity model fragment scores are given for sildenafil in
Figure 17. When the ‘real’ PDE5 activity model was applied
to sildenafil, the resulting score magnitudes were relatively
large (> 100), with the largest scores assigned to the guani-
dine mimic central to the active core of the molecule. The
carbonyl oxygen, which forms a hydrogen bond with GLN-
817 in the 1TBF [56] x-ray structure, received the largest
score.

Unlike the clear separation between the high and low scor-
ing fragments in the FXa fragment scoring example, many
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Figure 15. Fragment scores for FXa active compound DX-9065A: DX-9065A is shown along with the fragments scores and weighted spheres produced by the

FXa model. H-bond interactions with the receptor known from x-ray structures are shown schematically.

Figure 16. DX-9065A Fragment scoring using FXa, 5-HT2A, PDE4 and PDE5 Activity Models: Only the ‘correct’ FXa model produces both high scores

(>100) and significant spread in point scores.

Figure 17. Fragment scores for PDE5 active compound sildenafil: The line drawing sildenafil along with fragment scores and weighted fragment spheres

produced with the PDE5 activity model.

peripheral fragments in sildenafil not directly responsible for
core activity also received high scores, notably the sulphone
oxygen atoms (192) and one of the pipyridyl ring nitro-

gens. These high scores may reflect genuine contributions
to activity or biases within the substituent sets used to func-
tionalize the core scaffold. Despite the lack of unequivocal
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fragment separation in the sildenafil scores, the high scores
were not randomly distributed across the molecule, and
for the most part centered around important regions of the
molecule.

The 5-HT2A and PDE4 scores for sildenafil are drawn
in Figure 18. The 5-HT2A model scores for sildenafil dis-
play a similar trend as was observed for ‘incorrect’ 5-HT2A,
PDE4 and PDE5 model scores for DX-9065A – ‘incorrect’
activity models produced small absolute point scores and a
small range of values within the scores. Sildenafil is not active
against 5-HT2A, so the 5-HT2A model scores were expected
to be small. The largest 5-HT2A model fragment score for
sildenafil was 35, compared with a maximum score of 354
produced by the PDE5 model.

The PDE4 activity model is not exactly an incorrect ac-
tivity model for sildenafil, which has moderate PDE4 activ-
ity (pIC50 = 4.6 vs pIC50 > 8 for PDE5). The moderate
overlap in chemical activity space between sildenafil and the
PDE4 active compounds used to train the model was reflected
in the absolute PDE4 model fragment scores for sildenafil.
The scores were moderate in magnitude - the top five PDE4
scores for sildenafil ranged from 104 to 148 and centered
on one half of the recognition portion of the structure. The
absolute PDE4 fragment scores for sildenafil were all gener-
ally lower than the PDE5 scores, but higher than the 5-HT2A
scores. As was observed in the PDE4 model scores produced
for DX-9065A, the sildenafil fragments assigned the high-
est scores by the PDE4 model (the ethoxy-phenyl ring) were
those which resemble rolipram. This may be a reflection of
the high bias towards rolipram-like molecules in the PDE4
activity training set.

Reference group similarity statistics

For all fingerprinting systems studied here, over all targets,
there is little correlation between the ROC area and the Sab,
Smax, and Smin values of the fusion group. Sample plots for the
PCH fingerprint system (Figure 19) show no correlation be-
tween the ROC area and any of the group similarity statistics,
Sab, Smax, and Smin. Similar lack of correlation was observed
for all the other fingerprints as well (results not shown).

For each group count value n the Sab, Smin, and Smax

values were averaged over all models and the results plot-
ted vs. n in Figure 20. The Sab, Smin, and Smax plots reveal
interesting trends as a function of group count n. For all fin-
gerprinting systems the average Sab quickly levels off to a
constant value; the constant is dependent on the fingerprint-
ing system and reflects the probability of coincident bits in
random chemical space. Fingerprinting systems which define
only a small number of possible bits will in many cases, by
chance, have a number of bits in common between any two
molecules. As a result, the similarity between any two random
molecules will on average be high. This trend can be seen in
the MACCS and TGT Sab plots, which level off to similarity
values higher than PCH of GpiDAPH. The MACCS keys are
restricted 166 bits and level off to the highest Sab value. The

TGT fingerprints level off at Sab values higher than PCH or
GpiDAPH because the TGT system has fewer possible bits.
The PCH and GpiDAPH fingerprints both produce relatively
large numbers of bits for any given molecule, only a small
percentage of which are turned on in any given molecule.
This results in low similarity scores between random pairs of
molecules. This is reflected further in the plot of Smin vs. n,
which shows the MACCS key and TGT Smin values leveling
off at values much higher than PCH or GpiDAPH.

The plots of Smax vs group count n show that by a count of
n = 40, all systems have on average a group with at least one
pair of molecules having similarity of ∼1. This is probably a
result of having many large congeneric series in the dataset. It
is interesting to note that Smax approaches 1 more rapidly with
small bit systems such as MACCS and TGT, again reflecting
the higher probability of having bits in common between any
pair of molecules.

Conclusions

Group fusion: General behavior over multiple biological
targets

The results of the group fusion experiments over multiple
targets show that on average, using multiple reference struc-
tures with both the AVE and MAX fusion rules increases
recall performance over single reference structure searches.
Overall the MAX rule produces better results than the AVE
rule, confirming results of others which suggest the MAX
rule is superior [25]. Increases in recall rates level off at a
group count of 10 with the AVE rule, while recall rate gains
using the MAX rule continue to increase as n approaches
40, suggesting they could continue to increase beyond n =
40, the maximum group count considered in this study. Re-
call rates with groups of n > 40 will be the subject of future
investigations.

Comparisons of the AVE and MAX rules and groups sizes
of n = 10 and n = 40 highlight the variability in results be-
tween biological targets. Averaged over all targets the fusion
rules increase recall rates, but each target is different; some
targets show little improvement while others show dramatic
improvement as the group count increases. Few targets show
any change in ROC area with the AVE rule as n increases
form 10 to 40, but there are many examples of recall gains
using the MAX rule when n increases to 40.

The results over multiple targets also show that no one
fingerprint of the four studied here is superior to all oth-
ers in every case. The PCH and the MACCS fingerprints
have comparable performance, and on average outperform
the GpiDAPH fingerprints, with the TGT fingerprints pro-
ducing the worst results. However, there is at least one bio-
logical target where one fingerprint outperforms all others.
All fingerprints produce worse than random models (ROC
area <50) for at least one target/fusion rule combination.
The variability in recall performance between fingerprints



329

Figure 18. Sildenafil fragment scores using 5-HT2A and PDE4 activity models: The 5-HT2A and PDE4 model fragment scores for sildenafil. Sildenfil is

moderately active against PDE4, with a pIC50 of 4.6 vs. a pIC50 of 8.6 against PDE5.

Figure 19. Plots of Sab, Smin and Smax vs ROC Area: PCH fingerprint model Sab, Smax and Smin values correlated with ROC area for all values of n.

Figure 20. Sab, Smin and Smax vs Group Count: The Sab, Smax, and Smin values averaged over all models at each group count value n.
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across biological targets seen here has been noted by oth-
ers [36, 37], and suggests that no one fingerprint can be
expected to outperform all others in all cases. Further stud-
ies into improving existing fingerprints and applying con-
sensus scoring over multiple fingerprint schemes should be
performed.

The training set groups were chosen randomly in the
current study and we restricted ourselves to the Tanimoto
coefficient, but the effects of using different training set selec-
tion techniques (such as diverse subset selection, clustering,
etc) and different similarity coefficients should be investi-
gated.

The study was also a first step in validating the newly
implemented PCH fingerprint. The results showed the PCH
fingerprint to be at least as good as the other three tested
here, validating its use for the scaffold-hopping and fragment
scoring portion of this study.

Group fusion: PDE5 scaffold hopping

The PDE5 inhibitor scaffold hopping experiment demon-
strated, at least within the current data, scaffold hopping
ability with the group fusion approach and the PCH finger-
prints. The most reliable scaffold hops were shown to occur
between chemotypes with minor scaffold modifications, as
is to be expected with graph based similarity search. Major
scaffold changes can only be achieved by hopping through
intermediate modifications, a result congruent with the com-
monly held view of activity space that suggests islands of
activity are separated by compounds with intermediate or no
activity [57]. Hopping from one active chemotype to a signif-
icantly different chemotype requires traveling through many
intermediate forms.

Reverse fingerprinting – fragment scoring and visualization

The reverse fingerprint fragment scores produced for the ex-
ample compounds are encouraging. The scoring method for
the most part isolated known important pharmacophore frag-
ments in the query molecules. Fragment scores produced for
DX-9065A and sildenafil using ‘incorrect’ activity models
were for the most part small and spread more evenly over
the molecule than scores produced by correct activity mod-
els. The range in sildenafil fragment scores produced by the
three different target models – inactive (5-HT2A), poorly
active (PDE4) and active (PDE5) – suggested the method
may be sufficiently sensitive to distinguish between strongly
and weakly active molecules, and possibly used in selectivity
studies. Trends in the current results suggest that score mag-
nitudes and relative score spreads may reflect the strength
of the activity signal, and incorporating this information into
scoring may improve fragment highlighting and lead to a
method for activity scoring of the entire molecule. The cur-
rent definitions of bit importance and fragment scoring can
undoubtedly be improved upon for better results. These pre-

liminary results suggest the fragment scoring approach has
some merit, and should be investigated further.

Reference group similarity statistics

The lack of correlation between the Sab, Smax, and Smin group
statistics and the corresponding ROC areas was somewhat
unfortunate, as it suggests these measures cannot be used a
priori to predict the potential recall performance of a refer-
ence group. Although more work needs to be done on this,
including assessing the performance of other similarity mea-
sures and other approaches to measuring reference group sim-
ilarity statistics, it appears that at least in a general sense over
all biological targets, the group similarity measures defined
here are of little use in selecting reference group sets, or in
predicting recall rates.

Acknowledgements

I would like to thank everyone with whom I have had discus-
sions with on this subject. In particular I would like to thank
Dr. Miklos Feher of Neurocrine, San Diego, Drs. Morten
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