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Summary

lazar is a new tool for the prediction of toxic properties of chemical structures. It derives predictions for query structures from
a database with experimentally determined toxicity data. lazar generates predictions by searching the database for compounds
that are similar with respect to a given toxic activity and calculating the prediction from their activities. Apart form the prediction,
lazar provides the rationales (structural features and similar compounds) for the prediction and a reliable condence index that
indicates, if a query structure falls within the applicability domain of the training database.

Leave-one-out (LOO) crossvalidation experiments were carried out for 10 carcinogenicity endpoints ({female | male}
{hamster | mouse | rat} carcinogenicity and aggregate endpoints {hamster | mouse | rat} carcinogenicity and rodent carcino-
genicity) and Salmonella mutagenicity from the Carcinogenic Potency Database (CPDB). An external validation of Salmonella
mutagenicity predictions was performed with a dataset of 3895 structures. Leave-one-out and external validation experiments
indicate that Salmonella mutagenicity can be predicted with 85% accuracy for compounds within the applicability domain of
the CPDB. The LOO accuracy of lazar predictions of rodent carcinogenicity is 86%, the accuracies for other carcinogenicity
endpoints vary between 78 and 95% for structures within the applicability domain.

Abbreviations: CCRIS, chemical carcinogenesis research information system; CPDB, carcinogenic potency database; DSSTox,
distributed structure-searchable toxicity project;lazar lazy structure-activity relationships; LOO, leave-one-out crossvalidation;
k-nn, k-nearest-neighbours; (Q)SAR, (quantitative) structure-activity relationships

Background

Chemical and pharmaceutical industries, regulatory agencies
and research institutions need techniques that are capable of
identifying adverse effects at a very early stage of product
development and provide reasonable toxicity estimates for
the huge number of untested compounds. This information
comes traditionally from in vivo testing, but the public pres-
sure to reduce animal experiments and the lack of important
toxicity information for many old compounds has led to an
increased acceptance of alternative (in vitro and in silico)
methods. Computer based (in silico) techniques are particu-
larly appealing for this purpose, because they are extremely
fast and cost efficient and can be applied even when a com-
pound is not physically available.

The problem of predicting toxic activities from chem-

ical structures can be approached from different direc-
tions [1], e.g. with statistical (Quantitative)Structure-Activity
Relationships ((Q)SAR) techniques [2], by developing ex-
pert systems [3] or with the application of data mining and
machine learning techniques [4]. This paper presents a new
approach for this purpose that uses an Inductive Database
[5, 6]. Inductive Databases can be queried not only for
data (as traditional databases), but also for regularities and
patterns within the data. lazar (Lazy Structure Activity
Relationships) is a special-purpose extension of this con-
cept, because it allows to specify a chemical structure and
to query for its potential biological activities. This paper
presents the algorithms that are used by the lazar engine to
solve queries for toxic activities and presents an exemplary
validation study for rodent carcinogenicity and Salmonella
mutagenicity.



148

Improving predictive accuracy (as determined by cross-
validation or validation with an external test set) has been for
long the main driving force for the development of new in
silico prediction techniques. The quest for higher and higher
predictive accuracies leads however frequently to overfitted
models that perform well on cross-validation or on a particu-
lar test set but fail completely on unknown compounds [7–9].
The working hypothesis during lazar development was that
inaccurate predictions are frequently not the result of poor al-
gorithms, but of insufficient information in the database or of
inaccurate experimental measurements. The main goal was
to develop a system that is capable of:

• working with databases of structurally diverse (non-
congeneric) compounds (that do not act by a common bio-
chemical mechanism)

and of providing for each prediction

• the rationales that led to the prediction and
• an indication of the reliability of the prediction.

These features shall prohibit the naive trust in every pre-
diction and ensure that predictions are amenable to criti-

Figure 1. lazar screenshot of the prediction of rodent carcinogenicity for 3-Methylbutanal methylformylhydrazone. The query structure and the first neighbour

are depicted in the right frame. Fragments can be highlighted in both structures. Note the difference between neighbours and fragments for Salmonella
mutagenicity (Figure 2), this is the result of activity specific similarities.

cal evaluations from toxicological experts. Please note that
the algorithm presented in this article differs substantially
from previous versions of lazar [10, 11] that were based on
Bayesian classification/regression.

Methods

The lazar algorithm

Overview
lazar does not create a global (Q)SAR model that is valid
for all instances, but it derives its prediction specifically for
a query structure with a modified k-nearest-neighbour (k-
nn) algorithm. For this purpose lazar searches a database
with chemical structures and experimental data (training set)
for compounds that are similar to the query structure (neigh-
bours) and calculates a prediction from the experimental mea-
surements of the neighbours. In contrast to traditional k-nn
techniques lazar considers chemical similarities not as ab-
solute values, but as values that have to be determined with
respect to a given biological activity (Figures 1 and 2). The
prediction of the toxicity of a query compound requires four
steps that will be described in detail in the next sections:

1. Determination of features that characterise the structures
of the query compound and the compounds in the training
set

2. Selection of features that are relevant for the toxic end-
point under investigation
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Figure 2. lazar screenshot of the prediction of Salmonella mutagenicity for 3-Methylbutanal methylformylhydrazone. This prediction is unreliable, because

the query structure falls beyond the applicability domain of the training set (Confidence < 0.05). The query structure and the first neighbour are depicted in the

right frame. Fragments can be highlighted in red in both structures. Note the difference between neighbours and fragments for rodent carcinogenicity (Figure 1),

this is the result of activity specific similarities.

3. Identification of neighbours in the training set
4. Calculation of qualitative (classification) or quantitative

(regression) predictions1

A formal representation of the complete algorithm is sum-
marised in Figures 3 and 4 and a screenshot of the web inter-
face can be found in Figures 1 and 2.

Toxicity related chemical similarity

Similarity searching in chemical databases is an important
topic in chemoinformatics research, an excellent review of
this subject can be found in an article by Willett et al. [12].
Most of these techniques do not work directly with chemical
graphs, but with a limited number of predefined substruc-
tures (fragments). Most similarity indices rely on the number
of fragments that are shared between the structures and the
number of fragments that occur only in a single structure.
These numbers are summarised into a single index value,
e.g. the Tanimoto index Equation (1).

For the determination of toxicity related chemical simi-
larities it is important to consider only those fragments, that
are relevant for the toxic endpoint under investigation (i.e.
only those parts of the chemical structures that are involved

in chemical reactions and transport processes that lead to
toxicity or to detoxification). The crucial task is therefore to
identify these fragments in an efficient and reliable manner.

The classical strategy to derive toxicity related substruc-
tures is to consult the literature and domain experts for the
biochemical mechanisms that lead to a particular toxic effect
and to define structural alerts for a particular endpoint. It
is however likely that a predefined set of structural alerts is
incomplete (or maybe wrong), because many toxicity mecha-
nism are still poorly understood or even unknown. This work
introduces an alternative approach for the determination of
toxicity related chemical similarities that relies on fragment
languages (e.g. linear fragments, trees, subgraphs). With the
help of Data Mining algorithms it is possible identify rele-
vant fragments from a given language automatically from the
training data. This procedure saves error prone and expensive
human work and some algorithms can even guarantee that no
relevant feature of the given language can be missed.

Determination of features. lazar uses at present predom-
inantly the language of linear fragments for the identifica-
tion of toxifying and detoxifying substructures [13]. Linear
fragments are defined as chains of heavy (non-hydrogen)
atoms with connecting bonds, without branches or cycles.
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Figure 3. The main lazar algorithm for classification and regression.

Figure 4. Determination of activity specific chemical similarities.

All linear fragments that are present in the query structure
or in one of the training structures are determined exhaus-
tively by a simplified version of the MOLFEA algorithm [13].
This step does not consider biological activities, the relevant
features are identified by the feature selection process de-
scribed below. As all possible linear fragments are evaluated,
no relevant linear fragment can been missed.

Although linear fragments seem to be limited at a first
glance (no explicit consideration of branches or cycles),
they perform remarkably well on a variety of toxicity
endpoints. A possible reason is that a lot of chemical
information is implicitly contained in these fragments2 and
the “chemical context” is considered by the neighbour-
hood based prediction algorithm. lazar has furthermore
the possibility to derive linear fragments not only from
the table of elements, but also from arbitrary SMARTS
(http://www.daylight.com/dayhtml/doc/theory/
theory.smarts.html) expressions. With such an alphabet
we have the facility to consider chemically relevant concepts
like local chemical properties (e.g. H-bond donor/acceptor),
branching, presence in rings, rotable bonds or even
stereochemistry.

We have also explored extensions of the fragment lan-
guage towards 3D fragments [14] and arbitrary subgraphs
[15]. Up to now, the authors experience with various public
toxicity datasets did not require the necessity to implement

such a computationally expensive framework. It is however
important to note that the feature selection and prediction al-
gorithms presented below are independent of the fragments
that characterise the chemical structures. lazar may use
therefore also other chemical features like multiple neigh-
borhoods of atoms [16]/augmented atoms [17], spectra or
results from short term assays. An extension towards quan-
titative molecular descriptors (e.g. HOMO, LUMO, logP) is
also relatively straightforward.

Linear fragments and structural alerts (both are presently
implemented inlazar) can be used in conjunction. Statistical
criteria (see below) can be used to decide if a fragment is
relevant in regard to toxicity or not. This is a valuable tool
for hypothesis testing.

Feature selection. The goal of the feature selection step is
the identification of fragments that are relevant for the toxic
activity under investigation.

The relevance of fragments for a given toxic activity
can be determined with simple statistical tests. lazar uses
the chi-square test to identify fragments that occur signifi-
cantly more frequent in toxic compounds than in non-toxic
compounds (or vice versa) and to calculate their statistical
significance p f . Very significant features have a higher im-
pact on chemical similarities than features with low signifi-
cance Equation (1). For efficiency reasons fragments below a
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predefined threshold (p f < 0.953) are discarded from further
calculations.

As it may happen that a query structure has to be removed
from the training structures (e.g. for validation purposes),
activity information in the training database may change
when multiple compounds are predicted. It is therefore es-
sential that relevant features are identified for each query
compound separately. Precomputing relevant fragments in a
single preprocessing step can lead to overly optimistic vali-
dation results.

Calculation of activity related similarity . As soon as all rel-
evant (i.e. statistically significant) fragments have been iden-
tified for the training set D and the query structure sq , it
is possible to determine the similarities between the query
structure sq and all training structures st ∈ D. If sq and st
contain the same set of fragments, they will be considered as
equal (with respect to the given activity) with a similarity of
1, if they share no common fragment, they will be consid-
ered as unequal with a similarity of 0. Taking into account
the statistical significances p f of the significant fragments
F we can define a similarity index sim(sq , st , D) (weighted
Tanimoto index) for structures sq and st with respect to the
training database D as:

sim(sq , st , D) =
∑

f ∈F
{

p4
f

∣∣ f ⊆ sq ∧ f ⊆ st
}∑

f ∈F
{

p4
f

∣∣ f ⊆ sq ∨ f ⊆ st
} (1)

with p f | f ⊆ sq ∧ f ⊆ st . . . significance of fragment f that
occurs in sq and st ; p f | f ⊆ sq ∨ f ⊆ st . . . significance of

fragment f that occurs in sq or st
4; F . . . set of significant

features.

Prediction

To obtain the prediction for a query structure, toxicity related
similarities are computed for each compound in the training
set. For efficiency reasons only instances of the training set
with a similarity above a predefined threshold (sim > 0.3 5)
are considered as neighbours to the query structure. Predic-
tions are derived from all neighbours (N) of a query structure.

Classification. To classify a query structure lazar uses a
weighted majority vote from all neighbours. For this purpose
we can define a confidence measure conf that indicates the
expected class and the reliability of the prediction as

conf =
∑

n∈N {simn | tn = “active”}4

|N |

−
∑

n∈N {simn | tn = “inactive”}4

|N | (2)

with simn | tn = active. . . similarity of “active” neighbour n;
simn | tn = “inactive”. . . similarity of inactive neighbour n
6; N . . . set of neighbours; |N |. . . number of neighbours

A query structure is classified as active, if conf > 0 and
as inactive, if conf < 0. This confidence measure considers
contradictory examples in the training set as well as the simi-
larities of these instances to the query structure. It is therefore
a parameter that indicates the applicability domain of the test
set.

Implementation

lazar was implemented in C++ using the Openbabel
(http://openbabel.sourceforge.net/) and Gnu Sci-
entific (GSL) (http://www.gnu.org/software/gsl/)
Libraries. InChI codes (main layer) [18], an unique identi-
fier for the connectivity of chemical structures, were used
for the identification if identical structures. lazar was com-
piled withgcc on various Linux distributions, porting to other
platforms should be possible, but has not been tested so far.
lazar is available on request from the author, a web inter-
face for lazar can be found at http://www.predictive-
toxicology.org/lazar/. Figures 1 and 2 show a screen-
shots of the web interface.

Carcinogenic potency database (CPDB)

The Carcinogenic Potency Database (CPDB) http://
potency.berkeley.edu/cpdb.html contains detailed re-
sults and analyses of more than 5000 chronic, long
term carcinogenesis bioassays reported in over 1200 pa-
pers in the general literature and more than 400 Tech-
nical Reports of the National Cancer Institute/National
Toxicology Program. For the purpose of this investi-
gation the latest CPDB Summary Table provided by
the Distributed Structure-Searchable Toxicity (DSSTox)
project http://www.epa.gov/nheerl/dsstox/was used
(CPDBAS v2a 1451 1Mar05.sdf). It contains data for
1447 compounds with variable fractions of missing values
for each endpoint.

Definition of endpoints

For the purpose of this study the following toxicity endpoints
have been evaluated.

• Rodent Carcinogenicity,
• {Hamster | Mouse | Rat} Carcinogenicity,
• {Male | Female} {Hamster | Mouse | Rat}Carcinogenicity

and
• Salmonella Mutagenicity

An insufficient number of experimental results prevented
reliable predictions for the remaining species in the CPDB
(Cynomolgus, Dog, Rhesus) as well as the prediction of or-
gan specific effects. Classifications for rodent carcinogenicity
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endpoints were obtained from the source data by applying the
following criteria:

{Hamster | Mouse | Rat} Carcinogenicity Positive classifica-
tion (1) if a TD50 value is available, negative classification
(0) if no positive results are available (NP), inadequate
studies have been excluded.

Rodent Carcinogenicity Positive classification (1) if com-
pound is carcinogenic in at least one rodent species (see
before), negative (0) if compound has at least one negative
carcinogenicity classification (see before) and no positive
classification.

{Male | Female}{Hamster | Mouse | Rat} Carcinogenicity
Positive classification (1) if the given sex/species has
at least one target site, negative classification (0) if no
target sites have been identified (NP), inadequate studies
have been excluded.

Salmonella Mutagenicity CPDB mutagenicity classifications
(pos/neg) were used without further modifications.

Validation

Leave-one-out crossvalidation

Leave-one-out (LOO) crossvalidation was used for all ex-
periments. This means that all compounds from the training
set are sequentially used as a query structure to determine the
concordance between the prediction and the database activity.
To enable an unbiased performance estimate the query com-
pound (and all identical structures) are completely removed
from the trainingset before its prediction is calculated. This
implies of course that feature significances have to be reeval-
uated for each query structure. After a prediction has been
obtained, the query structure and all identical structures are
returned to the training set. The process is repeated, until all
compounds from the training set have served as query struc-
tures once [19]. For all validation experiments sensitivities,
specificities, positive/negative predictivity and predictive ac-
curacies are summarised in Tables 1–11.

Validation with an external testset

As almost all public carcinogenicity data of sufficient quality
has been integrated into the CPDB it is at present impossi-
ble to find an external testset of sufficient size and quality
to assess carcinogenicity predictions. Fortunately the situa-
tion has improved recently for Salmonella mutagenicity as
a new dataset with 4337 compounds [20] was published in
2005. 3895 structures from this dataset have no mutagenicity
information in the CPDB and were therefore used as an exter-
nal testset (Kazius/Bursi testset). The results of this external
validation experiment are summarised in Table 12.

Table 1. Leave-one-out crossvalidation of rodent carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 513 209

True negative predictions tn 457 139

False positive predictions fp 190 26

False negative predictions fn 197 31

True positive rate tp/(tp + fn) 0.7225 0.8708

(Sensitivity)

True negative rate tn/(tn + fp) 0.7063 0.8424

(Specificity)

Positive predictivity tp/(tp + fp) 0.7297 0.8894

Negative predictivity tn/(tn + fn) 0.6988 0.8176

Accuracy (Concordance) (tp + tn)/ 0.7148 0.8593

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 2. Leave-one-out crossvalidation of Salmonella mutagenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 283 147

True negative predictions tn 287 109

False positive predictions fp 85 20

False negative predictions fn 74 19

True positive rate tp/(tp + fn) 0.7927 0.8855

(Sensitivity)

True negative rate tn/(tn + fp) 0.7715 0.8450

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.7690 0.8802

Negative predictivity tn/(tn + fn) 0.7950 0.8516

Accuracy (Concordance) (tp + tn)/ 0.7819 0.8678

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 3. Leave-one-out crossvalidation of hamster carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 30 26

True negative predictions tn 22 11

False positive predictions fp 4 1

False negative predictions fn 7 1

True positive rate tp/(tp + fn) 0.8108 0.9630

(Sensitivity)

True negative rate tn/(tn + fp) 0.8462 0.9167

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.8824 0.9630

Negative predictivity tn/(tn + fn) 0.7586 0.9167

Accuracy (Concordance) (tp + tn)/ 0.8254 0.9487

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.
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Table 4. Leave-one-out crossvalidation of mouse carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 220 94

True negative predictions tn 388 137

False positive predictions fp 97 14

False negative predictions fn 153 23

True positive rate tp/(tp + fn) 0.5898 0.8034

(Sensitivity)

True negative rate tn/(tn + fp) 0.8000 0.9073

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.6940 0.8704

Negative predictivity tn/(tn + fn) 0.7172 0.8562

Accuracy (Concordance) (tp + tn)/ 0.7086 0.8619

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 5. Leave-one-out crossvalidation of rat carcinogenicity predictions.

Confidence ≥0a >0.05b

True positive predictions tp 317 164

True negative predictions tn 412 106

False positive predictions fp 149 18

False negative predictions fn 212 24

True positive rate tp/(tp + fn) 0.5992 0.8723

(Sensitivity)

True negative rate tn/(tn + fp) 0.7344 0.8548

(Specificity)

Positive predictivity tp/(tp + fp) 0.6803 0.9011

Negative predictivity tn/(tn + fn) 0.6603 0.8154

Accuracy (Concordance) (tp + tn)/ 0.6688 0.8654

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 6. Leave-one-out crossvalidation of female hamster carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 21 18

True negative predictions tn 18 16

False positive predictions fp 6 3

False negative predictions fn 4 1

True positive rate tp/(tp + fn) 0.8400 0.9474

(Sensitivity)

True negative rate tn/(tn + fp) 0.7500 0.8421

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.7778 0.8571

Negative predictivity tn/(tn + fn) 0.8182 0.9412

Accuracy (Concordance) (tp + tn) 0.7959 0.8947

/(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 7. Leave-one-out crossvalidation of male hamster carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 24 20

True negative predictions tn 20 13

False positive predictions fp 3 2

False negative predictions fn 4 1

True positive rate tp/(tp + fn) 0.8571 0.9524

(Sensitivity)

True negative rate tn/(tn + fp) 0.8696 0.8667

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.8889 0.9091

Negative predictivity tn/(tn + fn) 0.8333 0.9286

Accuracy (Concordance) (tp + tn)/ 0.8627 0.9167

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 8. Leave-one-out crossvalidation of female mouse carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 158 83

True negative predictions tn 451 157

False positive predictions fp 57 13

False negative predictions fn 150 21

True positive rate tp/(tp + fn) 0.5130 0.7981

(Sensitivity)

True negative rate tn/(tn + fp) 0.8878 0.9235

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.7349 0.8646

Negative predictivity tn/(tn + fn) 0.7504 0.8820

Accuracy (Concordance) (tp + tn)/ 0.7463 0.8759

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 9. Leave-one-out crossvalidation of male mouse carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 135 71

True negative predictions tn 431 153

False positive predictions fp 60 16

False negative predictions fn 145 30

True positive rate tp/(tp + fn) 0.4821 0.7030

(Sensitivity)

True negative rate tn/(tn + fp) 0.8778 0.9053

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.6923 0.8161

Negative predictivity tn/(tn + fn) 0.7483 0.8361

Accuracy (Concordance) (tp + tn)/ 0.7341 0.8296

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.
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Table 10. Leave-one-out crossvalidation of female rat carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 183 93

True negative predictions tn 448 132

False positive predictions fp 72 26

False negative predictions fn 151 38

True positive rate tp/(tp + fn) 0.5479 0.7099

(Sensitivity)

True negative rate tn/(tn + fp) 0.8615 0.8354

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.7176 0.7815

Negative predictivity tn/(tn + fn) 0.7479 0.7765

Accuracy (Concordance) (tp + tn)/ 0.7389 0.7785

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 11. Leave-one-out crossvalidation of male rat carcinogenicity

predictions.

Confidence ≥0a >0.05b

True positive predictions tp 203 123

True negative predictions tn 440 132

False positive predictions fp 86 21

False negative predictions fn 166 28

True positive rate tp/(tp + fn) 0.5501 0.8146

(Sensitivity)

True negative rate tn/(tn + fp) 0.8365 0.8627

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.7024 0.8542

Negative predictivity tn/(tn + fn) 0.7261 0.8250

Accuracy (Concordance) (tp + tn)/ 0.7184 0.8388

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Table 12. Validation of Salmonella mutagenicity predictions for an external

testset.

Confidence ≥0a >0.05b

True positive predictions tp 1467 546

True negative predictions tn 1183 282

False positive predictions fp 492 103

False negative predictions fn 676 39

True positive rate tp/(tp + fn) 0.6846 0.9333

(Sensitivity)

True negative rate tn/(tn + fp) 0.7063 0.7325

(Sensitivity)

Positive predictivity tp/(tp + fp) 0.7489 0.8413

Negative predictivity tn/(tn + fn) 0.6364 0.8785

Accuracy (Concordance) (tp + tn)/ 0.6941 0.8536

(tp + tn + fp + fn)

aWithout consideration of the applicability domain.
bPredictions within applicability domain.

Results

Leave-one-out crossvalidation

Tables 1–11 summarise the results of LOO validation. The
first column contains the results that have been obtained
without a consideration of the applicability domain (i.e. all
predictions are accepted). The predictive accuracies can vary
between 67% (Rat Carcinogenicity) and 86% (Male Hamster
Carcinogenicity).

Unknown fragments (i.e. fragments that occur in the query
structure, but not in the training set) have been identified
in a substantial number of predictions (e.g. 43% of Rodent
Carcinogenicity predictions, 50% of Salmonella Mutagenic-
ity predictions). As no information about these fragments is
available from the training set, it is up to the expert user to
determine their toxicological relevance. The accuracy of pre-
dictions with/without unknown fragments is 67/72% for Ro-
dent Carcinogenicity and 76/80% for Salmonella mutagenic-
ity. This indicates that a subset of the unknown fragments
has indeed toxicological relevance and can be responsible
for misclassifications.

Another reason for misclassifications is harder to de-
tect: These are structures that are too dissimilar to the
training structures to make reliable predictions, although
they share all their fragments with the training set (i.e.
they fall beyond the applicability domain of the training
set). As the lazar confidence index incorporates the dis-
tances to similar training set structures (neighbours) as
well as contradictory results within the training set it can
be used as an indicator of the training sets applicability
domain.

The second column in Tables 1–11 contains the results for
structures within the applicability domain of the training set.
For the purpose of this investigation a cutoff value of 0.05
was selected for the confidence index 7. Predictions with a
confidence index below this threshold were not accepted, be-
cause they fall beyond the applicability domain of the training
set. As expected, the predictive accuracies rise to 78% (Fe-
male Rat Carcinogenicity) −95% (Hamster Carcinogenic-
ity) and the majority of crossvalidation results is better than
85%.

Figures 5 and 6 provide a more detailed picture of the
relationship between predictive accuracy and prediction con-
fidence. Predictions are sorted according to their (absolute)
confidence and cumulative prediction accuracies are plot-
ted against the confidence index in a procedure similarly to
lift charts [21]. These figures indicate also a good correla-
tion between predictive accuracies and the lazar confidence
index 8.

Validation with an external testset

Table 12 summarises the results of Salmonella mutagenic-
ity predictions for the external testset. The accuracy of pre-
dictions without consideration of the applicability domain is
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Figure 5. Confidence vs. predictive accuracy for rodent carcinogenicity.

Figure 6. Confidence vs. predictive accuracy for Salmonella mutagenicity.

considerably lower (69%) than the LOO estimate for the same
endpoint (78%). The results for structures within the appli-
cability domain of the training set is however much more ho-
mogeneous (external validation: 85%, LOO: 87%) and show
no signs of statistical significance as determined with the chi-
square test (chi-square = 0.2647, p-value = 0.61). A plot of
confidence indices vs. cumulative accuracies shows again a
good correlation between both values (Figure 7).

Figure 7. Confidence vs. predictive accuracy for external predictions of

Salmonella mutagenicity.

Discussion

Performance of the lazar algorithm

Similarity and neighbourhood based techniques have a long
and successful history in Chemoinformatics [12]. Despite
their conceptual simplicity they are frequently capable of
outperforming much more complex QSAR techniques. Sim-
ilarity based predictions are also appealing from a technical
point of view, as in contrast to other QSAR methods (e.g.
regression and projection based techniques) very few model
assumptions are required. The rationale behind these tech-
niques is in addition very close to the reasoning of human
experts about toxicity, who also argue frequently with com-
pounds that belong to the same chemical class and act by
similar mechanisms. We assume therefore that it is relatively
easy for a trained toxicologist to interpret and evaluate the
results of similarity based predictions, e.g. by inspecting the
proposed neighbours and searching for additional informa-
tion about these compounds, if necessary.

Existing similarity based techniques can consider
activity-specific similarities only by using predefined li-
braries of structural alerts for toxicity, but their definition
and formal representation is laborious and error-prone.lazar
overcomes this limitation by determining relevant fragments
and activity related similarities automatically from experi-
mental data.

The LOO results in Tables 1–11 indicate that lazar is ca-
pable of predicting a variety of carcinogenicity endpoints and
to identify structures that fall beyond the applicability domain
of the training set in a reliable manner. If the applicability do-
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main is considered predictive accuracies can exceed 85% for
almost all carcinogenicity endpoints.

An analysis of predictions for the external test set [20]
substantiates the importance of considering the applicability
domain (Table 12). At a first glance the accuracy for exter-
nal predictions (69%) is substantially lower than the LOO
results (78%, Table 2). This seems to support a common con-
ception in the (Q)SAR community that LOO (and crossvali-
dation schemes in general) gives overly optimistic results. It is
however very likely that an external test set of sufficient size
contains a rather large fraction of poorly predictable com-
pounds that fall beyond the applicability domain of the train-
ing set. Table 12 provides evidence that this is indeed the case
for the Kazius/Bursi validation set. If structures with a confi-
dence < 0.05 are not accepted as reliable predictions, the pre-
dictive accuracy reaches 85% for external predictions. LOO
with consideration of the applicability domain leads to almost
the same value (87%, Table 2). Both results show no statis-
tically significant differences (chi-square = 0.2647, p-value
= 0.61).

This result is not only an indication of the good perfor-
mance of the lazar algorithm, but also another indication
that LOO provides indeed a reliable estimate of (Q)SAR pre-
dictions [19], if

• all information from the test structure has been removed
from the test set9 and

• only predictions that fall within the applicability domain
of the training set are accepted.

It is presently impossible to perform a direct comparison
of lazarwith other carcinogenicity prediction techniques, as
none of the other techniques were evaluated with the CPDB,
and it seems that the size and composition of training and
test sets has a major impact on the validation results [9]. The
author has however used various combinations of MOLFEA

derived linear fragments in conjunction with Support Vector
Machines (SVM) to predict Salmonella mutagenicity [22] for
an old version of the CPDB. The best results of this investiga-
tion are comparable (predictive accuracy: 0.785) to thelazar
predictions without consideration of the applicability domain
(predictive accuracy: 0.782) in terms of accuracy, but the im-
pact of various MOLFEA and SVM parameters on predictive
accuracy did not show a consistent trend. It is also likely
that the crossvalidation results of the former investigation
are too optimistic because class sensitive feature selection
was performed prior to crossvalidation. Bayesian prediction
techniques as they were implemented in previous lazar ver-
sions [10, 11] perform similarly, but they make heavy use of
a priori probabilities, which leads to poor results on test sets
with different fractions of actives and inactives (unpublished
results).

Generally, the prediction of carcinogenic activity from
chemical structures alone is known as a hard problem and
many predictions fail to exceed the default probabilities [7–
9, 23, 24]. Benigni and Zito [8] consider 65% as a reasonable

upper limit of current technologies for rodent carcinogenicity
predictions. Compared to these numbers, the performance of
lazar is indeed an improvement.

Inspection of misclassifications

Despite the favourable lazar validation results it is obvious
from Figures 5–7 that there are still structures that are mis-
classified despite high confidence indices. The purpose of this
section is to discuss the most problematic misclassifications
of the LOO results for the endpoints Rodent Carcinogenic-
ity and Salmonella Mutagenicity as well as for the external
validation exercise (Table 13).

Rodent carcinogenicity (LOO)

The most problematic misclassifications of LOO crossval-
idation are most likely the result of inconsistencies in the
database. Quercetin (CAS 117-39-5) and sodium saccha-
rin (CAS 128-44-9) e.g. are labelled as carcinogens in the
database, although other compounds with the same parent
structure (quercetin dihydrate, saccharin and calcium sac-
charin) are inactive. In these cases the “inactive” lazar pre-
diction is probably correct. Retinol acetate (CAS 127-47-9,
Vitamin A, prediction: inactive) has been found to induce
tumors in the adrenal gland of rats at high doses in a sin-
gle study, but it is likely not a carcinogen at physiological
concentrations.

Salmonella mutagenicity (LOO)

The Chemical Carcinogenesis Research Information Sys-
tem (CCRIS http://toxnet.nlm.nih.gov/) lists sev-
eral positive results in a variety of Salmonella strains
for Chlorodibromomethane (CAS 124-48-1, lazar classi-
fication: active), although the CPDB classification is in-
active. The misclassifications of 2-Mercaptobenzothiazole
(CAS 149-30-4) and its dimer Benzothiazyl disulfide (CAS
120-78-5) for Salmonella mutagenicity depend on each
other, because both compounds are classified differently
in the CPDB, despite their structural similarity. The clas-
sification of Benzothiazyl disulfide as Salmonella mu-
tagen, is however very questionable, because a recent
evaluation (http://www.epa.gov/chemrtk/bnzthict/
c13324tc. htm) reports 9 negative and a single posi-
tive result. If we assume a negative category for Ben-
zothiazyl disulfide, 2-Mercaptobenzothiazole will also be
correctly classified as negative, because it is its closest
neighbour.

Salmonella mutagenicity (external testset)

The most problematic misclassification from the external
testset is Azauraxil (CAS 461-89-2, prediction: inactive).



157

Table 13. Misclassified instances with high prediction confidences.

Classification

Compound name CAS Confidence lazar CPDB Remarks

Rodent Carcinogenicity (LOO)

Quercetin 117-39-5 −0.6605 Inactive Active Quercetin dihydrate inactive

Sodium 128-44-9 −0.4938 Inactive Active Saccharin and Calcium

saccharin saccharin inactive

Retinol 127-47-9 −0.3734 Inactive Active Vitamin A probably not carcinogenic

acetate at physiological doses

Salmonella mutagenicity (LOO)

Chlorodibromomethane 124-48-1 0.4580 Active Inactive Active in several Salmonella strains with

and without metabolic activation (CCRIS)

2-Mercaptobenzothiazole 149-30-4 0.3445 Active Inactive Classification based on Benzothiazyl disulfide

(see below)

Benzothiazyl disulfide 120-78-5 −0.3222 Inactive Active Classification based on 2-Mercaptobenzothiazole

(see above)

Salmonella mutagenicity (Kazius/Bursi testset)

Azaurazil 461-89-2 −0.5479 Inactive Active Azaurazil negative, IPO 3834 inactive

in 17 from 19 Salmonella assays (CCRIS)

Diazoxon 962-58-3 −0.4249 Inactive Active Active in TA100 without metabolic activation,

TA100 with and TA98 with/without metabolic

activation negative, Diazinon negative

Benzo(b)chrysene 214-17-5 0.4061 Active Inactive Tested only in a single strain (TA100),

related PAHs like Dibenz(a,h)

anthracene and Benzo(a)pyrene are active

CCRIS. . . Chemical Carcinogenesis Research Information System http://toxnet.nlm.nih.gov/.

CCRIS lists no positive Salmonella mutagenicity findings
for Azauraxil, but the structurally identical IPO 3834 was
active in strains TA1538 and TA98 with metabolic activa-
tion by rat liver S9 (but not with mouse liver S9). The
remaining 17 assays were negative. Diazoxon (CAS 962-
58-0, prediction: inactive) was active in TA100 without
metabolic activation, but inactive in TA100 with and in
TA98 with and without metabolic activation. The struc-
turally similar Diazinon (CAS 333-41-5) was negative in all
assays. According to the CCRIS Benzo(b)chrysene (CAS
214-17-5, prediction: active) was tested only in a single
Salmonella strain (TA100) and structurally related PAHs like
Dibenz(a,h)anthracene and Benzo(a)pyrene are well known
mutagens.

This brief discussion clearly indicates that many of the
most problematic misclassifications can be attributed to in-
consistencies in the database. The experimental findings for
many of these compounds are frequently limited and some-
times contradictory.

There is still the possibility for systematic errors, be-
cause linear fragments cannot account for all structural dif-
ferences. If e.g. the nonmutagenicity of Benzo(b)chrysene is
experimentally confirmed, there might be a problem to dif-
ferentiate it from other PAHs like Dibenz(a,h)anthracene and
Benzo(a)pyrene. In this case it will be necessary to substitute
linear fragments with a richer fragment language (e.g. sub-
graphs), but the main classification algorithm can remain the
same.

Conclusions

lazar is a new tool for the prediction of toxic properties of
chemical structures. It derives predictions for query struc-
tures from a database with experimentally determined toxi-
city data. For this purpose, lazar searches the database for
compounds that are similar with respect to a given toxic activ-
ity and calculates the prediction from their activities. lazar
is able to determine wheter a query structure falls within the
applicability domain of the training set, by assigning a con-
fidence index to each prediction.

Leave-one-out crossvalidation and validation with an ex-
ternal testset of almost 4000 compounds, indicate that lazar
is capable of achieving predictive accuracies of more than
85% for most of the investigated carcinogenicity and mu-
tagenicity endpoints and that it is capable of discriminating
reliably between trustworthy and not trustworthy predictions.
It is interesting to note that the crossvalidation and external
validation results are in good agreement for structures within
the applicability domain of the training set.

As high prediction accuracies are achievable for com-
pounds within the applicability domain of the test set, it may
be justified to conclude that the poor performance of previous
attempts to predict rodent carcinogenicity is not primarily the
consequence of poor prediction techniques, complex biolog-
ical mechanisms [25] or unreliable data [7, 26], but rather
the consequence of an insufficient coverage of the chemical
space in the training sets. This hypothesis is in accordance
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with Benigni and Giulianis [27] observation that it is in fact
possible to obtain reliable carcinogenicity predictions for cer-
tain types of (congeneric) compounds (e.g. aromatic amines
and nitroaromatics).

A web interface for the Carcinogenic Potency Database
(CPDB) can be accessed at http://www.predictive-
toxicology.org/lazar. The source code for the command
line version of the complete program can be obtained on re-
quest from the author.
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Notes

1. A regression algorithm is available in the current lazar version, but it

will not be a subject of this article.

2. An aromatic atom e.g. is an indication of a ring system.

3. No optimisation of this parameter was performed to avoid overfitting.

4. The exponent of 4 ensures that the contribution of fragements decreases

exponentially with their significance. No optimisation of this parameter was

performed to avoid overfitting.

5. No optimisation of this parameter was performed to avoid overfitting.

6. The exponent of 4 reduces the weight of dissimilar neighbours. No opti-

misation of this parameter was performed to avoid overfitting.

7. This value is adjustable to account for variable application scenarios.

8. Plots for the remaining endpoints show a similar shape. The high vari-

ability at the left hand side of the charts is the consequence of small sample

sizes.

9. If feature selection and/or parameter optimisations are performed these

steps have to be recalculated after the test structure has been removed from

the training set. This may cause methodological problems for expert derived

structural alerts, because he/she cannot forget information that has been

derived from the test structure.
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