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INVESTIGATING THE INSTABILITY OF PARAMETRIC 

VIBRATIONS OF COMPOSITE PLATES UNDER ARBITRARY 

PULSATING LOADS BASED ON HIGH-ORDER PLATE 

THEORIES

C. S. Chen,1 H. Wang,2 J. Y. Kao,1 and W. R. Chen3*
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The instability of composite plates subjected to an arbitrary periodic dynamic loading is investigated based on 
Lo’s high-order shear-deformation plate theory. The differential equations of motion of Mathieu-type are formed 
by Hamilton’s principle and employing the Galerkin method. Using Bolotin’s method, the excitation frequencies 
of composite plates are evaluated to determine their dynamic stability region and dynamic instability index. 
Omitting the high-order terms of Lo’s displacement field, the system equations can be simplified to governing 
equations in the first-order plate theory. The dynamic instability determined by the present theory is compared 
with results of the first-order plate theory. Results show that high order terms have a significant impact on the 
dynamic instability of composite plates.

1. Introduction

Since composite plates can provide a higher strength- and stiffness-to-weight ratios than the traditional metal plates, 
they are widely used in many engineering fields. The dynamic instability of the plates is a phenomenon that requires special 
attention in the design of structural components. The instability in the form of parametric resonance may occur when a 
such structure is subjected to a periodic dynamic loading. How to accurately determine the dynamic instability region of 
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the plates is a very important topic in practical applications. A comprehensive study of dynamic stability problems under 
periodical loadings has been performed by Bolotin [1]. Vijayaraghavan [2] studied the dynamic instability of cylindrical 
thin shells subjected to in-plane loads under sinusoidal base excitations. The linear bending theory used in this analysis 
is sufficient to predict the onset of their dynamic instability.

The dynamic resonance is one of the most important subjects in studying the dynamic instability characteristics of 
structures. Mohamad [3] presented a broad review on the studies of the dynamic behavior of composite shells. Fazilati [4] 
investigated the dynamic instability of composite laminated structures subjected to axially harmonic loadings using two 
types of finite-strip method. Results showed that the present model is capable of predicting the parametric resonance of the 
structures investigated. The parametric instability of composite curved panels under nonuniform axial loadings were also 
studied by Ovesy [5] based on the finite-strip method. The static and dynamic components of the load varied according 
to a parabolic function. Bolotin’s method was used to investigate the effects of loading and geometric parameters on the 
instability regions. Kao [6] applied Bolotin’s method to studying the dynamic instability of foam-filled sandwich plates 
under a periodic loading. The dynamic instability index was used to investigate the effects of various parameters affecting 
the dynamic stability behavior of the plate. Chen [7] investigated the dynamic instability of composite plates subjected to 
periodic loads based on the first-order theory. Bolotin’s method was used to solve Mathieu–Hill differential equations to 
determine the dynamic instability region. Darabi [8] studied the nonlinear dynamic instability of composite plates under 
harmonic loadings. The nonlinear Mathieu–Hill equations were obtained based on the Galerkin method. Then, Bolotin’s 
method was applied to determining the dynamic instability regions and unstable vibration amplitudes. The dynamic 
instability behavior of laminated composite sandwich plates was investigated by Sahoo [9] based on the zigzag theory, 
which takes into account the nonlinear distribution of transverse shear stresses. An efficient finite-element method was 
developed for studying the dynamic instability. The excitation frequency boundaries of principal instability regions were 
determined using Bolotin’s method. The dynamic instability of composite plates with variable stiffness under periodic 
loads was studied by Rasool [10]. A set of Mathieu–Hill equations of motion was obtained by the modal transformation 
technique and was solved by a multiple scales method to determine the dynamic instability regions associated with various 
types of resonance. Mohanty [11] studied the dynamic instability of delaminated composite plates under periodic loads 
by the finite-element method based on the first-order shear deformation plate theory. Bolotin’s method was also employed 
to evaluate the boundaries of instability zones. Results showed that the increasing delamination shifted the instability 
region lower excitation frequencies.

However, the classical and first-order plate theories cannot adequately model the behavior of composite structures. 
Therefore, various high-order plate theories have been proposed to improve their accuracy. Lee [12] analyzed the dynamic 
stability of laminated composite skew plates under periodic loads based on a high-order plate theory. The dynamic instabil-
ity regimes were determined by Bolotin’s method, and the influence of the pulsating load on the dynamic instability index 
was discussed. The dynamic instability of sandwich plates with carbon-nanotube-reinforced face sheets under periodic 
forces was studied by Sankar [13]. The effect of carbon nanotube volume fraction and core-surface layer thickness on the 
instability region and its excitation frequency was investigated. Based on first-order and high-order theories, Ramach-
andra [14] studied the dynamic instability of composite plates under uniform, linear, and parabolic dynamic loads. The 
dynamic instability regions were determined for various periodic loads using Bolotin’s method. The influences of load 
types, aspect ratio, and restraint conditions were investigated. Noh [15] investigated the dynamic instability of delami-
nated composite skew plates subjected to periodic loads by using a high-order plate theory. The boundaries of the unstable 
regions were obtained by Bolotin’s method. The effects of skew angle, fiber angle, delamination lengths, and static and 
dynamic load factors on the dynamic instability characteristics were discussed. The dynamic stability of composite skew 
plates under parabolic and linear periodic loads based on higher order plate theory was studied by Kumar [16]. Following 
Bolotin’s method, the dynamic unstable regions were evaluated based on a high-order approximation method. The effects 
of various geometric parameters, loading types, and boundary conditions were investigated. Based on a polynomial high-
order plate theory, Adhikari [17] examined the dynamic instability of composite plates under periodic loads with various 
nonuniform distributions. Mathieu-type equations were formulated and then solved using Bolotin’s method to obtain the 
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dynamic instability regions. The influence of various kinds of nonuniform harmonic loading on the parametric instability 
behavior of the plates was studied.

The dynamic instability of composite plates has been investigated by many researchers, but studies on the dynamic 
instability of composite plates under arbitrary periodic loads with bending and normal stress by using a high-order plate 
theory are rare. Therefore, the present work is devoted to the dynamic vibration instability of composite plates subjected to 
an arbitrary periodic load based on a high-order Lo, Christensen and Wu [18] plate theory. Hamilton’s principle is utilized 
to establish the governing partial differential equations of motion, which are then reduced to ordinary differential equa-
tions by using the Galerkin method. Employing Bolotin’s method, a set of ordinary differential equations of Mathieu–Hill 
type is established and solved to obtain the excitation frequencies of composite plates. Their dynamic instability region 
and dynamic instability index are determined through the excitation frequencies to investigate the dynamic instability 
behavior of composite plates. The difference between the effects of high-order and first-order plate theories on the dynamic 
instability regions and indices is studied. 

2. Basic Formulation

Let us establish the dynamic governing equation of a composite plate under the general state of time-varying ex-
ternal force using Hamilton’s principle as described by Brunelle [19], to derive the governing equations of motion of the 
plate, namely,

	
t

t
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0
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0 ,	 (1)
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Here, δ  is the variation of a function; US  and Kt  are potential and kinetic energies; Wi  and We  are internal and 
external works; σ ij  and ε ij  are the stress and strain fields; ρ  and vi  are the mass density and displacements; Xi  is the 
body force per unit initial volume; pi  is the surface force per unit area; V0 and S0 are the volume and the boundary surface. 
Inserting the integral forms of US , Kt, �Wi , and We  into Eq. (1), performing variational operations, and assuming that δ vi  
disappears at times t0 and t1, Eq. (1) becomes

	
t

t
ij ij i i iV i iS

X v v v dV p v dS dt
0

1

0 0

0 .	 (2)

According to the Lo, Christensen and Wu theory, the incremental displacements u v, ,  and w  at any position as-
sume the following forms:

	 u x y z t u x y t z x y t z x y t z x y tx x x x, , , , , , , , , , ,
2 3 ,	 (3)

	 x y z t u x y t z x y t z x y t z x y ty y y y, , , , , , , , , , ,
2 3 ,	 (4)

	 w x y z t w x y t z x y t z x y tz z, , , , , , , , ,
2 .	 (5)

Equations (3)-(5) are obtained by expanding the displacements u v, ,  and w  into Taylor series in terms of the thick-
ness variable z  to take into account the parabolic variation of transverse shear strains and the nonlinear change of transverse 
normal strains across the plate thickness. Therefore, in the Lo, Christensen, and Wu theory, in-plane displacements are 
expanded into cubic functions of the thickness variable by Taylor series, and the lateral displacement is expanded as a square 
function. Eleven unknowns, including high-order flexural deformation modes, are considered in the displacement field. 
Concerning other displacement-based theories in this field, it is worth mentioning that the expansion of different power of 
the thickness coordinate results in different theories with various unknowns. The simplest is the first-order shear deforma-
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tion theory with five unknowns [20, 21]. A high-order shear deformation theory with seven unknowns was presented by 
Essenburg [22], and another one with nine unknowns was developed by Pandya [23]. In addition, a third-order shear de-
formation theory with five unknowns was developed by Levinson [24] and Reddy [25] considering the requirement that the 
transverse shear stresses have to vanish at the top and bottom surfaces of the plate to reduce the displacement field of nine 
unknowns to that with five variables. Further, Lo’s high-order transverse shear and normal deformations theory will be 
designated as NSNT. Ignoring higher order normal strains in Eqs. (3) and (4), and dropping the transverse shear strains in 
Eq. (5), the displacement field of the simple first-order shear deformation theory (FSDT) is obtained. The stress–strain 
relationship for a k th layer of a composite plate, made of a monoclinic material can be written as
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It is assumed that the external forces system applied to the composite plate changes with time in the form
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Here, σ ij
n  is the periodic normal or shear stress, and σ ij

S  and σ ij
D  are the corresponding static and dynamic com-

ponents; σ ij
m  is the periodic pure bending or torsion stress, and σ ij

Sm  and σ ij
Dm  are the associated static and dynamic 

components; ϖ  is the disturbing frequency of the periodic loading. Inserting Eqs. (3)-(7) into Eq. (2), performing partial 
integrations, removing derivatives from the variation of the displacements, and grouping terms by the displacement 
variations leads to the following governing equations for the composite plate:
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where Q are related to the strain–displacement of the composite plate; the terms R S U V, , , ,  and W  are arbitrary external 
forces associated with initial stresses; I  are the inertia-related terms; fx , f y , fz , mx , �my , �mz , nx , �ny , �nz , qx , and qy  are 
body forces and lateral loads. More detailed information about the relevant parameters in Eqs. (8)-(18) is given in the Ap-
pendix, which is recalled and rewritten from [26].

3. Solution Procedure

It is difficult to give results for all cases, because the dynamic behavior of the composite plate studied in this paper 
is affected by too many parameters. Therefore, the case studied is the dynamics of a simply supported cross-ply laminated 
plate subjected to a spatially uniform periodic in-plane stress system, which is composed of a pulsating uniaxial stress and a 
pure bending stress. The lateral external load and body force are set to zero. Therefore, the periodic stress system (7) becomes

	 xx xx
n xx

m

n m
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2 / .	 (19)

Here, n
S D tcos  and m

Sm Dm tcos  are the normal and bending stresses, respectively, σ S , σ Sm , 
and σ D , σ Dm  are the corresponding static dynamic components assumed to be constants. The nonzero periodic loads are 
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7
448. 

In the ratio S m n/ , σ m  and σ n  are periodic bending normal stresses.
Regarding the composite plate with simply supported edges, displacement field (20) that satisfying geometric bound-

ary conditions can be expressed as follows.

	 u hU m x a n y bx mn cos / sin / ,	

	 u hV m x a n y by mn sin / cos / ,	

	 w hW m x a n y bmn sin / sin / ,	

	 x xmn m x a n y bcos / sin / ,	

	 y ymn m x a n y bsin / cos / ,	

	 z zmn m x a n y bsin / sin / ,	 (20)

	 x xmn h m x a n y b/ cos / sin / ,	

	 y ymn h m x a n y b/ sin / cos / ,	

	 z zmn h m x a n y b/ sin / sin / ,	

	 x xmn h m x a n y b/ cos / sin /
2 ,	

	 y ymn h m x a n y b/ sin / cos /
2 .	



550

Inserting the displacement field and periodic loads into governing equations (8)-(18), employing the Galerkin method, 
and grouping coefficients, the governing matrix equation of motion is obtained in the form

	 M C G 0 ,	
(21)

	 U V Wmn mn mn xmn ymn zmn xmn ymn zmn xmn ymn, , , , , , , , , ,
T

,	

where  is a time-dependent displacement vector of HSNT. The time-dependent displacement vector of FSDT is 

U V Wmn mn mn xmn ymn
T

, , , , . [ M ], [ C ], and [ G ] are the inertia, elastic stiffness, and geometric stiffness matrices, 
respectively. Matrix equation (21) can be used to analyze the eigenvalue problems of free vibration, static buckling 
stability, and dynamic instability. 

Neglecting the in-plane external loads and the [ G ] matrix and inserting t ei t  into Eq. (21), Eq. (21) 
reduces to 
	 C M2

0 ,	 (22)

which is the eigenvalue equation associated with free vibrations of the composite plate. The condition for the existence of a 
nonzero solution is that the determinant of the coefficient matrix has to be equal to zero, namely, 

	 C M2
0 	 (23)

from which the natural frequency ω  can be found,
To analyze the static buckling, the matrix of inertia terms of Eq. (21) is asumed zero. The eigenvalue equation for the 

static buckling load Nxx is 

	 C N Gxx
*

0 .	 (24)

Likewise, the static buckling load can be obtained by equating the determinant of the coefficient matrix of Eq. (24) 
to zero. The nonzero periodic load Nxx is obtained by integrating Eq. (19), which gives that 

	 N h h t P P txx n
S D

S cr D crcos cos 	 (25)

where Pcr , aS , and aD  are the buckling load and parameters of static and dynamic loads, respectively. Inserting Eq. (25) 
into Eq. (21) leads to the relation

	  C P G P G tS cr D cr cos 0 ,	 (26)

which is a second-order ordinary differential equation of Mathieu–Hill type. Then, Bolotin’s method is used to find the bound-
aries between the stable and the unstable regions of the parametrically excited structure through the periodic solutions of pe-
riod T  and 2T  in Fourier series, where T w2 / . The periodic solutions  of Eq. (26) with periods T  and 2T  can be 
found by Fourier series as

	
k

k ka k t b k t

1 3 5 2 2, ,

sin cos ,	 (27)

	
k

k ka k t b k t

0 2 4 2 2, ,

sin cos ,	 (28)

where ak  and bk  are arbitrary time-invariant constants. Inserting expansions (27) and (28) into Eq. (26) and grouping the sin 
and cosine parts, respectively, two sets of linear algebraic equations in ak  and bk  are obtained. Generally, the primary un-
stable region defined by the solution with a period 2T  is much larger than the secondary unstable region defined by the solu-
tion with a period T . Therefore, the primary instability region with the period 2T  has the greatest practical significance and 
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gives a sufficiently accurate solution. Since the first-order approximation to a1  and b1  of the primary instability region can be 
solved with a sufficient accuracy, the first-order solution of the primary instability region can be obtained as 

	 C P G P G MS cr D cr
1

2

1

4
0

2 .	 (29)

4. Analyses and Discussion

Let us investigate the dynamic instability of composite plates based on a high-order plate theory. The material proper-
ties of laminates are E Ex y/ = open, �E Ey z= , G G Exy xz y= = 0 6. , G Eyz y= 0 5. , and xy  xz yz 0 25. . The current 
HSNT can be simplified to FSDT by neglecting the higher-order terms and introducing a shear correction factor into the re-
sultants of shear stresses. In the following, the results obtained based on the HSNT and FSDT are presented to show the dif-
ference between the two theories. The nondimensional parameter b h Ey

2
/ /  of excitation frequency and the dy-

namic instability index DI = 100 / /nf crP  are utilized in the following study. Among them, nf yb h E2
/ /  

and Pcr = 10σ n yb E h2 4
/  are the fundamental natural frequency and critical buckling load, respectively; � = U L �  

is the width of the instability region bounded by the upper U �  and lower L  excitation frequency. The dynamic instability 
index DI  quantifies the instability measure through the instability area, natural frequency, and buckling load. 

To verify the accuracy of the present model, some representative examples were investigated. First, the free vibra-
tion of antisymmetric cross-ply laminated plates according to FSDT and HSNT is considered. Table 1 present the natural 
frequencies of laminated plates with various layer numbers and modulus ratios. The frequencies calculated by the present 
model agree well with those by Whitney [27] and Kant [28]. It can be seen in Table 1 that the frequency increases with 
E Ex y/  and layer number. Second, the dynamic stability of a symmetrically four-layer cross-ply laminate plate under 
various static and dynamic loads was studied. Table 2 show the upper and lower excitation frequencies of the laminate plate 
by using the HSNT along with the results obtained by Wang [29] and Chen [30] based on the FSDT. The numerical values 
of HSNT were in a good agreement with those of FSDT. As seen in Table 2, with increasing dynamic load (aS = 0), the 
upper excitation frequency increases but the lower one reduces. Additionally, the upper and lower excitation frequencies 

TABLE 1. Natural Frequencies of Antisymmetric Cross-Ply Square Laminated Plates with Various Numbers of Layers 
and Modulus Ratios. (a/b = 1, a/h = 5)

Composite Theory
Ex/Ey

10 20 30 40
(0°/90°) FSDT 6.9301 7.6934 8.3052 8.8142

[27] 6.9156 7.6922 8.3112 8.8255
HSNT 6.9802 7.7188 8.2815 8.7305
[28] 6.9741 7.7140 8.2775 8.7272

(0°/90°)2 FSDT 8.1590 9.6627 10.5857 11.2298
[27] 8.1363 9.6729 10.6095 11.2635

HSNT 8.1563 9.4760 10.2819 10.8306
[28] 8.1482 9.4675 10.2733 10.8221

(0°/90°)3 FSDT 8.4015 9.9148 10.8460 11.4825
[27] 8.3883 9.9266 10.8723 11.5189

HSNT 8.3939 9.8430 10.7196 11.3131
[28] 8.3852 9.8346 10.7113 11.3051
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decrease as both the static and dynamic loads increase. The results obtained by the present method match well with other 
research results. It verifies the reliability and accuracy of the present computer program.

Figure 1 presents the effect of static loading on the ratio / nf  excitation frequencies. The plot shows that 
excitation frequency first appears near 2 at aS = aD = 0. It can be observed that, as the compressive static (aS  < 0) load 
increases, the upper and lower excitation frequency ratios decrease. However, an increasing tensile static load leads to an 
opposite effect. The width between boundaries of both excitation frequency ratios increases with growing static load pa-
rameter. Meanwhile, the static compression load reduces the stiffness of the plate, so it has a more significant influence on 
the boundary width than the static tension load. The effect of dynamic loads on the excitation frequency ratio of the instability 
region is shown in Fig. 2. Under a compressive static load, the initial excitation frequency ratio is smaller than 2 (aD = 0), 
while under a tensile static load, the initial excitation frequency ratio is greater than 2. An increase in the dynamic load 
parameter increases the upper excitation frequency ratio, reduces the lower one, and enlarges the width of the unstable 
region. The dynamic load parameter has a greater influence on the excitation frequency ratio than the static load para
meter. As shown in Figs. 1 and 2, the width of the unstable region obtained by FSDT is larger than that given by HSNT, 
especially under a compressive static load.

The effects of layer number and modulus ratio on the excitation frequency, instability region, and dynamic instabil-
ity index of antisymmetric cross-ply laminated plates under the static load parameter aS = 0.5 and load parameter ratio 

0.2 0.4 0.6 0.80

3.0

2.5

2.0

1.5

1.0

0.5

__
nf

S

S> 0 FSDT

S< 0

S> 0 HSNT

S< 0

Fig. 1. Effect of static loads on / nf  (a/b = 1, a/h = 10, n = 1, aD /|aS |= 0.3, S =0, aS < 0 tensile 
load, and aS > 0 compressive load).

TABLE 2. Excitation Frequencies for a Symmetrical Four-Layer Cross-Ply Laminated Plates with Various Static 
and Dynamic Load Parameters 

aS aD
[29] FSDT [30] HSNT 

W U W L W U W L W U W L

 0  0 144.57 144.57 144.36 144.36 144.97 144.97
 0 0.3 155.03 133.29 155.64 133.79 155.45 133.67
 0 0.6 164.83 120.95 165.12 121.45 165.27 121.32
 0 0.9 174.08 107.21 174.43 107.63 174.53 107.56
 0 1.2 182.87 91.43 183.21 91.86 183.33 91.76
 0 1.5 191.25 72.28 191.75 72.62 191.73 72.60

0.2 0.06 131.71 126.86 132.12 127.26 132.09 127.23
0.4 0.12 117.45 106.24 117.96 106.82 117.80 106.58
0.6 0.18 101.20 80.49 101.84 81.10 101.53 80.81
0.8 0.24 81.78 40.89 82.31 41.32 82.10 41.27
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aD /aS = 0.3 are presented in Table 3. As the modulus ratio increases, the excitation frequencies and instability region 
grow, but the dynamic instability index diminishes. With increasing number of layers, the excitation frequencies and un-

0.2 0.4 0.6 0.8 1.00

2.8

2.3

1.8

1.3

0.8

__
nf

S = 0.3 FSDT

S = 0.3 HSNT

S = 0.3 FSDT

S = 0.3 HSNT

DD

Fig. 2. Effect of dynamic loads on / nf  (a/b = 1, a/h = 10, n =1, S = 0, aD /|aS |= 0.3.

TABLE 3. Excitation Frequencies, Instability Regions, and Dynamic Instability Index of Antisymmetric Cross-Ply 
Laminated Plates with Various Numbers of Layer and Modulus Ratios (a/b = 1, a/h = 5, aS =0.5, aD /aS = 0.3)

Composite A Theory Ex/Ey
10 20 30 40

(0°/90°) WU FSDT 10.5100 11.6677 12.5955 13.3674
HSNT 10.8081 12.0573 13.0216 13.7978

WL FSDT 9.0358 10.0310 10.8287 11.4924
HSNT 9.4476 10.6102 11.5145 12.2460

DWU FSDT 1.4743 1.6367 1.7668 1.8751
HSNT 1.3605 1.4471 1.5071 1.5518

WDI FSDT 1.0929 0.8868 0.7610 0.6756
HSNT 1.0471 0.8462 0.7286 0.6512

(0°/90°)2 WU FSDT 12.4496 14.6543 16.0539 17.0309
HSNT 12.3692 14.3698 15.5911 16.4225

WL FSDT 10.7032 12.5987 13.8020 14.6419
HSNT 10.6338 12.3532 13.4026 14.1169

DWU FSDT  1.7464 2.0556 2.2520 2.3890
HSNT  1.7354 2.0166 2.1885 2.3057

WDI FSDT  3.1158 2.2488 1.8737 1.6650
HSNT  3.1566 2.3391 1.9872 1.7912

(0°/90°)3 WU FSDT 12.7415 15.0365 16.4488 17.4141
HSNT 12.7296 14.9267 16.2554 17.1548

WL FSDT 10.9542 12.9273 14.1415 14.9714
HSNT 10.9437 12.8321 13.9740 14.7468

DWU FSDT 1.7873 2.1092 2.3073 2.4427
HSNT 1.7859 2.0945 2.2814 2.4080

WDI FSDT 2.9746 2.1359 1.7848 1.5925
HSNT 2.9803 2.1677 1.8280 1.6414
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stable region grow, but the dynamic instability index first increases and then decreases. For plates with different numbers 
of layers and modulus ratios, there is no obvious difference between the values obtained based on the HSNT and FSDT for 
the respective excitation frequency, instability area, and dynamic instability index, except for the instability area of the plate 
with two layer laminates and higher modulus ratio. The size of the instability region evaluated by FSDT is greater than that 
of HSNT, and the difference increases with increasing modulus ratio and decreasing layer number. 

Tables 4 and 5 show the effects of static and dynamic loads on the dynamic instability characteristics of laminated 
plates with various modulus ratio. As can be seen, when the static or dynamic load increases, both the instability region 
and dynamic instability index increase. Thus, the composite plate is more dynamically unstable when it is subjected to a 
high static or dynamic load. An increase in the modulus ratio enhances the rigidity of the laminated plate, decreases the 
dynamic instability index and make the laminated plate dynamically more stable. An increase in the static or dynamic load 
enhances the difference between calculation results of FSDT and HSNT, which is most obvious at low excitation frequen-
cies and an unstable region. It can be seen in Tables 4 and 5 that the difference between FSDT and HSNT results caused 
by the compressive static load is significantly greater than by a dynamic load. This is because, when studying the influence 
of a dynamic load in Table 5, the static load applied was relatively small. In the case of a large static load, an increasing 

TABLE 4. Effect of the Modulus Ratio E Ex y/  on the Excitation Frequencies, Instability Regions, and Dynamic 
Instability Index of Laminated Plates under Various Static Loads (a/b = 1, a/h = 5, n =1, S =0, aD /aS = 0.3)

Ex/Ey A Theory
aS

0 0.2 0.4 0.6 0.8 Diff.*, %
10 WU FSDT 13.8602 12.6273 11.2601 9.7022 7.8405 6.27

HSNT 13.9604 12.7930 11.5078 10.0597 8.3646
WL FSDT 13.8602 12.1623 10.1852 7.7170 3.9202 22.93

HSNT 13.9604 12.3547 10.5064 8.2541 5.0868
DWU FSDT 0 0.4650 1.0750 1.9851 3.9203 19.60

HSNT 0 0.4383 1.0014 1.8057 3.2778
WDI FSDT 0 0.3447 0.7969 1.4717 2.9063 15.20

HSNT 0 0.3374 0.7708 1.3898 2.5228
20 WU FSDT 15.3869 14.0181 12.5003 10.7708 8.7041 8.05

HSNT 15.4376 14.1825 12.8050 11.2601 9.4665
WL FSDT 15.3869 13.5019 11.3070 8.5670 4.3520 28.58

HSNT 15.4376 13.7121 11.7356 9.3503 6.0935
DWU FSDT 0 0.5162 1.1934 2.2038 4.3521 29.03

HSNT 0 0.4704 1.0693 1.9099 3.3730
WDI FSDT 0 0.2797 0.6466 1.1941 2.3582 19.57

HSNT 0 0.2750 0.6253 1.1168 1.9723
40 WU FSDT 17.6284 16.0603 14.3214 12.3399 9.9722 9.60

HSNT 17.4611 16.0961 14.6042 12.9414 11.0306
WL FSDT 17.6284 15.4689 12.9542 9.8151 4.9862 33.96

HSNT 17.4611 15.5859 13.4518 10.9078 7.5506
DWU FSDT 0 0.5914 1.3672 2.5248 4.9860 43.27

HSNT 0 0.5103 1.1524 2.0335 3.4801
WDI FSDT 0 0.2131 0.4926 0.9097 1.7966 23.03

HSNT 0 0.2141 0.4836 0.8533 1.4603

*Percentage difference of the absolute value of (FSDT-HSNT)/HSNT at aS  = 0.8
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TABLE 5. Effect of the Modulus Ratio E Ex y/  on the Excitation Frequencies. Instability Regions. and Dynamic 
Instability Index of Laminated Plates under Various Dynamic Loads (a/b = 1. a/h = 5. n = 1. S = 0. aS = 0.1)

Ex/Ey A Theory
aD

0 0.4 0.8 1.2 1.6 Diff.*, %
10 WU FSDT 13.1490 14.5368 15.8031 16.9753 18.0716 0.48

HSNT 13.2861 14.6036 15.8116 16.9337 17.9859
WL FSDT 13.1490 11.5963 9.8007 7.5916 4.3830 19.37

HSNT 13.2861 11.8228 10.1506 8.1420 5.4360
DWU FSDT 0 2.9404 6.0025 9.3837 13.6886 9.07

HSNT 0 2.7808 5.6610 8.7917 12.5499
WDI FSDT 0 2.1799 4.4499 6.9566 10.1480 5.06

HSNT 0 2.1403 4.3570 6.7666 9.6592
20 WU FSDT 14.5973 16.1379 17.5438 18.8450 20.0621 1.41

HSNT 14.7123 16.1304 17.4335 18.6457 19.7838
WL FSDT 14.5973 12.8736 10.8801 8.4277 4.8657 24.47

HSNT 14.7123 13.1421 11.3568 9.2326 6.4424
DWU FSDT 0 3.2643 6.6636 10.4173 15.1964 13.90

HSNT 0 2.9883 6.0766 9.4131 13.3414
WDI FSDT 0 1.7688 3.6107 5.6446 8.2342 5.55

HSNT 0 1.7473 3.5532 5.5042 7.8012
40 WU FSDT 16.7238 18.4888 20.0995 21.5903 22.9846 3.47

HSNT 16.6717 18.2163 19.6397 20.9668 22.2147
WL FSDT 16.7238 14.7490 12.4652 9.6555 5.5747 29.43

HSNT 16.6717 14.9686 13.0450 10.7836 7.8994
DWU FSDT 0 3.7398 7.6343 11.9348 17.4099 21.62

HSNT 0 3.2477 6.5947 10.1832 14.3153
WDI FSDT 0 1.3628 2.7508 4.5004 6.4732 6.11

HSNT 0 1.3458 2.7051 4.3868 6.1005

*Percentage difference of the absolute value of (FSDT-HSNT)/HSNT at aD = 1.6
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Fig. 3. Effect of modulus ratios on the instability regions at various static load types. (a/b = 1, a/h = 5, 
n = 1, S =0, aD /|aS |= 0.3).



556

dynamic load also increases the difference between FSDT and HSNT results. Figures 3 and 4 present the effects of modulus 
ratios on the instability regions of laminated plates under various static and dynamic loads, based on the HSNT. Whether a 
laminated plate is under a tensile or compressive static load, increasing the modulus ratio always enhances the instability 
region. The unstable region of a laminated plate under a compressive load is larger than that under a tensile load, and as 

Fig. 4. Effect of modulus ratios on the instability region at various dynamic loads. (a/b = 1, a/h = 5, 
n = 1, S = 0).

Fig. 5. Effect of modulus ratios on the dynamic instability index at various static load types. (a/b = 1, 
a/h = 5, n = 1, S = 0, aD /|aS |= 0.3).

0.2 0.4 0.6 0.8 1.00

3.0

2.5

2.0

1.5

1.0

0.5

D

E E
E E
E E

E E
E E
E E

1 2/ = 10 S = 0.4

1 2/ = 20

1 2/ = 40

1 2/ = 10 S = 0.4

1 2/ = 20

1 2/ = 40

0.2 0.4 0.6 0.80

2.0

1.5

1.0

0.5

S

DI

E E

E E

E E

E E

E E

E E

1 2/ = 10 S > 0

1 2/ = 20

1 2/ = 40

1 2/ = 10 S < 0

1 2/ = 20

1 2/ = 40

0.2 0.4 0.6 0.8 1.00

3.0

2.5

2.0

1.5

1.0

0.5
D

E E

E E

E E

E E

E E

E E

1 2/ = 10 S = 0.4

1 2/ = 20

1 2/ = 40

1 2/ = 10 S = 0.4

1 2/ = 20

1 2/ = 40

DI

Fig. 6. Effect of modulus ratios on the dynamic instability index at various dynamic loads (a/b = 1, 
a/h = 5, n = 1, S = 0).



557

the magnitude of the applied load increases, the difference between them becomes greater. The effects of modulus ratios on 
the dynamic instability index are presented in Figs. 5 and 6. As is seen, increasing the modulus ratio decreases the dynamic 

TABLE 6. Effect of the Load Parameter Ratio on the Excitation Frequencies. Instability Regions. and Dynamic Instability 
Index of Laminated Plates under Various Dynamic Loads (a/b = 1. a/h = 5. n = 1. S = 0. E Ex y/ = 40)

aD/aS A Theory
aS

–0.6 –0.3 0.3 0.6
0.2 WU FSDT 22.7126 20.3301 15.0617 11.9562

HSNT 21.9708 19.8444 15.2362 12.6252
WL FSDT 21.8763 19.8662 14.4295 10.2791

HSNT 21.2222 19.4329 14.6961 11.2723
DWU FSDT 0.8363 0.4639 0.6322 1.6771

HSNT 0.7485 0.4116 0.5401 1.3529
WDI FSDT 0.3014 0.1671 0.2278 0.6043

HSNT 0.3141 0.1727 0.2266 0.5677
0.5 WU FSDT 23.3202 20.6711 15.5190 13.0736

HSNT 22.5159 20.1476 15.6290 13.5516
WL FSDT 21.2274 19.5111 13.9365 8.8143

HSNT 20.6430 19.1184 14.2777 10.1398
DWU FSDT 2.0928 1.1601 1.5825 4.2593

HSNT 1.8728 1.0293 1.3514 3.4118
WDI FSDT 0.7541 0.4180 0.5702 1.5347

HSNT 0.7859 0.4319 0.5671 1.4317
1 WU FSDT 24.2991 21.2274 16.2526 14.7490

HSNT 23.3961 20.6430 16.2627 14.9686
WL FSDT 20.0995 18.9044 13.0736 5.5747

HSNT 19.6397 18.5824 13.5516 7.8994
DWU FSDT 4.1996 2.3230 3.1790 9.1743

HSNT 3.7564 2.0606 2.7111 7.0693
WDI FSDT 1.5132 0.8371 1.1455 3.3057

HSNT 1.5763 0.8647 1.1377 2.9664
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Fig. 7. Effect of the load parameter ratio on the instability region at various static loads (a/b = 1, 
a/h = 5, n = 1, S = 0).
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instability index, which is the opposite of the influence of the modulus ratio on the instability region. The influence 
of a static load on the dynamic instability index is similar to that on the instability region, as is seen in Figs. 3 and 4. 
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D S x y/ = 0.5 / = 40E E
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Fig. 8. Effect of the load parameter ratio on the dynamic instability index at various static loads 
(a/b = 1, a/h = 5, n = 1, S = 0).

TABLE 7. Effect of the Bending Stress Parameter on the Excitation Frequencies, Instability Regions and Dynamic Instability 
Index of Laminated Plates under Various Compressive Loads (a/b = 1, a/h = 5, n = 1, E Ex y/ = 40, aD /aS = 0.3)

S A Тheory
aS

0 0.15 0.3 0.45 0.6
0 WU FSDT 17.6284 16.4663 15.2157 13.8526 12.3399

HSNT 17.4611 16.4480 15.3683 14.2067 12.9414
WL FSDT 17.6284 16.0361 14.2671 12.2451 9.8151

HSNT 17.4611 16.0752 14.5580 12.8630 10.9078
DWU FSDT 0 0.4303 0.9486 1.6075 2.5248

HSNT 0 0.3728 0.8103 1.3437 2.0335
WDI FSDT 0 0.1550 0.3418 0.5792 0.9097

HSNT 0 0.1564 0.3400 0.5638 0.8533
5 WU FSDT 17.6284 16.4644 15.2075 13.8325 12.2996

HSNT 17.4611 16.4401 15.3317 14.1153 12.7599
WL FSDT 17.6284 16.0325 14.2511 12.2033 9.7219

HSNT 17.4611 16.0598 14.4858 12.6749 10.5051
DWU FSDT 0 0.4319 0.9564 1.6292 2.5777

HSNT 0 0.3803 0.8459 1.4404 2.2548
WDI FSDT 0 0.1556 0.3446 0.5870 0.9288

HSNT 0 0.1596 0.3550 0.6044 0.9462
10 WU FSDT 17.6284 16.4588 15.1830 13.7715 12.1768

HSNT 17.4611 16.4138 15.2157 13.8275 12.1843
WL FSDT 17.6284 16.0219 14.2031 12.0758 9.4325

HSNT 17.4611 16.0099 14.2587 12.0776 9.1641
DWU FSDT 0 0.4369 0.9799 1.6957 2.7444

HSNT 0 0.4040 0.9570 1.7500 3.0202
WDI FSDT 0 0.1574 0.3531 0.6110 0.9889

HSNT 0 0.1695 0.4016 0.7343 1.1674
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In addition, a compressive static load increases the dynamic instability index more than a tensile static load, which means 
that a compressive load increases the instability of the laminated plate more than a tensile one.

The effect of the load parameter ratio aD /aS  on the excitation frequency, instability region, and dynamic insta-
bility index of the laminated plates under different static loads is illustrated in Table 6. As the load parameter ratio in-
creases, the upper excitation frequency, instability region and dynamic instability index increase, but the lower excitation 
frequency shows a reverse trend. When the magnitude of the static load in compression or tension increases, the instabil-
ity region and the dynamic instability index increase. As can be seen in Table 6, the difference between results of FSDT 
and HSNT increases with the increasing magnitude of the static load. When a laminated plate with a high load parameter 
ratio is subjected to a high compressive static load, the discrepancy between the two theories becomes more pronounced. 
Variation trends of the instability region and dynamic instability index against the static loads for the laminated plates 
with different load parameter ratios and modulus ratios based on HSNT are presented in Figs. 7 and 8, respectively. At 
various load parameter ratios, the influence of the compressive load on the instability area and dynamic instability index 
is greater than that of the tensile load. Regardless the value of the load parameter ratio, an increase in the modulus ratio 
increases the instability region, but decreases the dynamic instability index.

Tables 7 and 8 show the effect of bending stress on the dynamic instability of laminated plates subjected to various 
static and dynamic loads. With increasing bending stress ratio, the excitation frequency decreases, but the instability region 

TABLE 8 Effect of the Bending Stress Parameter on the Excitation Frequencies, Instability Regions and Dynamic 
Instability Index of Laminated Plates under Various Dynamic Loads (a/b = 1, a/h = 5, n = 1, E Ex y/ = 40, aS = 0.3)

S A Theory
aD

0 0.2 0.4 0.6 0.8
0 WU FSDT 14.7490 15.0617 15.3681 15.6685 15.9632

HSNT 14.9686 15.2362 15.4992 15.7578 16.0122
WL FSDT 14.7490 14.4295 14.1028 13.7683 13.4254

HSNT 14.9686 14.6961 14.4185 14.1354 13.8466
DWU FSDT 0 0.6322 1.2654 1.9002 2.5378

HSNT 0 0.5401 1.0807 1.6224 2.1657
WDI FSDT 0 0.2278 0.4559 0.6847 0.9144

HSNT 0 0.2266 0.4535 0.6812 0.9088
5 WU FSDT 14.7374 15.0525 15.3610 15.6631 15.9593

HSNT 14.9160 15.1947 15.4673 15.7340 15.9953
WL FSDT 14.7374 14.4151 14.0852 13.7471 13.4003

HSNT 14.9160 14.6309 14.3390 14.0397 13.7328
DWU FSDT 0 0.6374 1.2758 1.9160 2.5590

HSNT 0 0.5638 1.1283 1.6943 2.2625
WDI FSDT 0 0.2297 0.4597 0.6904 0.9221

HSNT 0 0.2366 0.4735 0.7110 0.9494
10 WU FSDT 14.7023 15.0247 15.3394 15.6470 15.9477

HSNT 14.7501 15.0632 15.3656 15.6579 15.9406
WL FSDT 14.7023 14.3716 14.0322 13.6833 13.3243

HSNT 14.7501 14.4255 14.0887 13.7388 13.3746
DWU FSDT 0 0.6531 1.3072 1.9636 2.6234

HSNT 0 0.6377 1.2769 1.9191 2.5660
WDI FSDT 0 0.2353 0.4710 0.7075 0.9453

HSNT 0 0.2676 0.5358 0.8053 1.0768
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and dynamic instability index increase. However, the effect of the bending stress ratio is small. As the bending stress ratio 
increases, the difference between the calculates results based on FSDT and HSNT decreases for the excitation frequency 
and the unstable region and increases for the dynamic instability index. Meanwhile, the greater the bending stress ratio, the 
more obvious the difference between the results of FSDT and HSNT for the dynamic instability index. For example, for 
laminated plates with a bending stress S = 10 and load parameters aD /aS = 0.3 and S  0.3, or aS = 0.3 and D  0.2, 
the difference between the dynamic instability indices obtained by FSDT and HSNT exceeds 10%. The plots of the bending 
stress ratio versus the dynamic instability index for the laminated plates under different static and dynamic loads based on 
the HSNT are shown in Figs. 9 and 10. The results reveal that, when a laminated plate is under a higher bending stress 
ratio, the compressive static load has a greater hardening effect on the dynamic instability index , but the tensile static load 
has a reverse effect. In addition, it can be found that the difference between the calculated results under the respective 
tensile and compressive static load with the same magnitude becomes greater when the bending stress increases. Hence, 
the laminated plate is more dynamically stable, because it is under a tensile load and a higher bending stress.
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Fig. 9. Effect of the bending stress parameter on the dynamic instability index at various static loads 
(a/b = 1, a/h = 5, E Ex y/ = 40, n = 1, aD /|aS |= 0.3).
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Fig. 10. Effect of the bending stress parameter on the dynamic instability index at various dynamic 
loads (a/b = 1, a/h = 5, E Ex y/ = 40, n = 1, aS = 0.1).
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5. Conclusions

The dynamic behavior of laminate plates under a periodic load based on the higher order plate theory has been 
described and examined. From the results obtained, the following conclusions can be drawn.

1. The static and, dynamic loads and the modulus ratio have a significant effect on the excitation frequency, 
instability region, and dynamic instability index. The bending stress has only a slight influence. 

2. As the modulus ratio decreases under a static load in tension or compression, the instability region increases 
and the dynamic instability index decreases. Under a static compressive load, the bending stress enhances the instability 
region and the dynamic instability index. However, under a static tensile load, the bending stress has an opposite effect.

3. As the static load, dynamic load or the modulus ratio increases, the difference between the results by FSDT 
and HSNT becomes more pronounced. This is especially significant for laminated plates under a compressing static load. 
The HSNT theory has an important influence on the instability region and dynamic instability, especially for laminated 
plates with a high modulus ratio, bending stress, and static and dynamic loads.
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Matrices [ Ai ], [ Bi ], [ Di ], [ Ei ], [ Fi ], [Gi ], and [ Hi ] can be obtained by the following expressions.
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Here, Cij  is the stiffness matrix of elastic constants. A B D E F Gij ij ij ij ij ij, , , , , ,  and Hij  are the matrices of laminate 
stiffness coefficients. The expressions of terms R S U V, , , ,  and W  are
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	 { } , , ,O V V V
25 1 2 3

 { } , , ,O V V V
26 4 5 6

 { } , , ,O W W W
27 9 10 11
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T
u i j x y  { } ,,zi i i i

T i x y2 3 ,	

	 i i i
T i x y2 , , , i i z i z i

T
w i x y, , � ,� � � , ,	
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ij ij

ij ij

ij ij

ij ij

ij ij

ij ij

ij ij

i

N M
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M P

P P

M P

P P

P R

R
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*

*

*

*

*

jj ijR
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*

, , , ; , ,	

	
iz
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iz
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iz iz iz

N
M

M
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M
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P P R
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*
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*

, , ,i x y z ,	

	 ij

ij ij ij

ij ij ij

ij ij ij

N M M

M M P

M P P

i x y

*
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* *

, , , zz j x y; , ,	

	
iz
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iz iz

iz iz
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M P
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*

, , , .	

Here, Nij , Mij �  and M jj
* , Pij , Pij

* , Rij
�  and Rij

*  are the stress resultants associated with arbitrary periodic stresses 
and are defined as follows:

	 N M M P P R R z z z z z z dij ij ij ij ij ij ij ij, , , , , , , , , , , ,
* * *

1
2 3 4 5 6 zz i j x y z, , , , ,	

where the higher-order resultants mean high-order moments and shear forces. It should be noted that the high-order resultants 
are purely mathematical terms and cannot be prescribed on the physical boundaries. The quantities f f fx y z, , , �mx , �my , �mz ,
�nx , �ny , �nz , qx � , and qy  are the loads consisting of lateral loads at the top and bottom face of the plate and the body force, 
and they are given below. The superscripts + and – mean that the stresses are calculated at the top and bottom faces of plate.

	 f X X dzx
h

h

x x zx zx
/

/

2

2

,	

	 f X X dzy
h

h

y y zy zy
/

/

2

2

,	
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	 f X X dz w z zz
h

h

z z zx zx x z x z x
/

/

, , ,

2

2
2 	

	 w z zy z y z y zy zy zz zz, , ,

2 ,	

	 m X X zdz hx
h

h

x x zx zx
/

/

/

2

2

2 ,	

	 m X X z z h
h

h

y y y zy zyd
/

/

/

2

2

2 ,	

	 m X X zdz hw z hz
h

h

Z Z zx zx x z x z
/

/

, ,
/ /

2

2
3 2

8 4
,,x zx zx 	

	 hw z h zy z y zy zy z y zy zy zz z, , ,
/ /

3 2
8 4 zz / 2 ,	

	 n X X z dz hx
h

h

x x zx zx
/

/

/

2

2
2 2

4 ,	

	 n X X z dz hy
h

h

y y zy zy
/

/

/

2

2
2 2

4 ,	

	 n X X z dz h w z hz
h

h

Z Z zx zx x z x
/

/

, ,
/ / /

2

2
2 2 4 3

4 16 88 z x zx zx,
	

	 h w z h zy z y zy zy z y zy zy zz
2 4 3 2

4 16 8
, , ,
/ / / zz / 4 ,	

	 q X X z dz hx
h

h

x x zx zx
/

/

/

2

2
3 3

8 ,	

	 q X X z dz hy
h

h

y y zy zy
/

/

/

2

2
3 3

8 .	

The inertia related terms are defined as 

	 I I I I z z z dz
1 3 5 7

2 4 6
1, , , , , , .	
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