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 A  MODAL ANALYSIS OF FORCED VIBRATION 

OF A PIEZOELECTRIC PLATE WITH INITIAL STRESS 

BY THE FINITE-ELEMENT SIMULATION

A. Daşdemir*

Keywords: forced vibration, initial stress, piezoelectric material, frequency response, poling direction

A modal analysis of forced vibrations caused by a time-harmonic force from a piezoelectric plate standing on 
a rigid foundation is presented. A 3D linearized elasticity theory for solids under initial stress (TLTESIS) is 
used. It is assumed that a uniformly distributed normal loadings acting on the lateral surfaces of the plate yield 
the initial stress state. The piezoelectric plate is under the action of a time-harmonic force poled in various 
directions. A mathematical model is developed, and the problem is solved employing the 3D finite-element 
method (3D-FEM). Some numerical results illustrating the influence of changes in the poling direction and 
other important factors, such as the initial stress, on the dynamic behavior of the plate are presented.

1. Introduction

Recently, the number of studies regarding piezoelectric structures have shown an upward trend owing to their wide 
engineering applications. Unlike pure elastic solids, piezoelectric ones can detect changes in the external environment and 
then react in accordance with these changes. With this amazing property, many issues can be addressed, e.g., vibration and 
noise control, smart devices, transducers, and acoustic filters. Studies on these materials and the corresponding mechanical 
problems are increasing constantly. As examples, two interesting studies [1] and [2] can be mentioned. Many theoretical 
and experimental investigations of systems including piezoelectric materials have been performed. The fundamental mono-
graphs by Yang [3] and Tiersten [4] contain comprehensive information related to the background of mechanical structures 
from such materials.
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Problems related to the electroelastic wave propagation in isotropic and piezoelectric media have also been inves-
tigated. However, various factors cause nonlinear effects during solving related problems; e.g., a static initial stress state in 
the body or configuration of the system, which have to be taken into consideration. At the beginning of the XXth century, 
the first attempts to construct 3D linearized equations (TDLEs) began. Southwell [5], Biezeno and Henky [6], many sci-
entists have contributed to the development of this theory. Here, we should mention the fundamental studies by Biot [7], 
Neuber [8], Trefftz [9], and Green [10]. This theory has been updated by Guz [11], Zubov [12], Tiersten [13], Ogden [14], 
Akbarov and Guz [15], and Reddy [16]. In particular, the 3D linearized elasticity theory for solids under initial stress (TL-
TESIS) laid down by Guz [17] and investigated extensively by Akbarov [18] is very modern today. There are many papers 
regarding this mentioned theory and its variants. Akbarov et al. presented their analysis considering the dynamical stress in 
forced vibration of a bilayered plate-strip with initial stresses based on a rigid foundation [19]. Gupta et al. investigated the 
dispersion relationships corresponding to the velocity of torsional surface waves in a homogeneous layer of finite thickness 
on a prestressed non-homogenous half-space [20]. Hu and Chan analyzed the effect of a uniform applied initial stress to 
the radial surfaces of a hollow compound cylinder [21]. Guo and Wei studied the influence of the initial stress state on the 
dispersion relations of elastic waves in a piezoelectric phononic crystal [22]. Yesil solved both natural and forced vibration 
problems for a prestressed slab with two parallel cylindrical cavities [23]. Daşdemir considered the dynamical response of 
a prestressed system with a piezoelectric core and elastic faces [24] and then extended the study to the case with imperfect 
contact interactions at layers of the system [25]. The detailed information on the problem under consideration can be also 
found in the works of Guz [26] and Akbarov [27, 28].

In our work, a modal analysis of the problem of forced vibration of a two-axially prestressed piezoelectric plate with  
finite lengths is performed using a piecewise homogeneous body model. The plate is exposed to a time-harmonic force and 
can be polled in various directions. Considering the current literature, to our knowledge, this problem has yet to be analyzed, 
because a mathematical model explaining the influence of various poling directions on the effective properties of the system is 
still missing. To fill this gap, we will develop a modal mathematical model for the current problem in terms of the TLTESIS and 
will solve this problem approximately by employing the 3D finite element method (3D-FEM). In particular, we will compare 
and discuss the influence of various poling directions on the dynamical behavior of the plate.

2. Statement of the Forced Vibration Problem

Let us consider a prestressed transversely isotropic piezoelectric plate resting on a rigid foundation in a Cartesian 
coordinate system Ox x x

1 2 3
. The side lengths of the plate are 2

1
a  and 2

3
a  along the Ox1  and Ox3  axes, and its thickness is 

h  in the direction of Ox2  axis. The geometry of the plate is described as

	 V x x x x a h x x a
1 2 3 1 1 2 3 3

0 2 0 0 2, , : , , .	  (1)

Let 
1 2 3

 be the boundary of the volume V , where i  indicates the outer surface parts in the positive 
and negative directions of respectively Oxi  axis. 

The plate is uniaxially loaded in the directions of Ox1  and Ox3  axes, creating a two-axial initial stress state in it. As 
a result, initial electrical displacements arise in the piezoelectric plate. Note that the initial stresses and electrical displacements 
are interrelated. We will explain these relationships later. The plate is placed on a rigid foundation, and a time-harmonic me-
chanical load is applied to the system. All the fields in the problem are then time-harmonic. Hence, we can assume the dy-
namic force, displacements, and the electric potential in the forms p t p eo

i t
0

* , u x x x t u x x x ej j
i t

1 2 3 1 2 3
, , , , , , and 

x x x t x x x ei t
1 2 3 1 2 3
, , , , , , respectively, and discretize the time multiplier from the governing equations and the re-

lated boundary-contact conditions. Here, i  is the complex unit and δ *  is the Dirac delta function of two variables defined as 
x a x a
1 1 3 3

. Let us use the coordinate transformation rule x x hj j= /  to investigate the problem in a simpler ge-
ometry. For simplicity, we omit the circumflex over the space components. Instead of the general expressions, we can inves-
tigate our problem in a simpler case. Let us consider the boundary-value problem

	 T h uji j i,

2 2
0 , 	  (2)
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	 Si i, = 0 , 	  (3)

	
2

2

0


,   
22

2

po
* ,	  (4)

	 Tij


0 ,   Si


0 ,	  (5)

	 ui
2

0 ,   
2

0 ,	  (6)

where Tij  is the first Piola–Kirchhoff stress tensor, Si  is the electrical density tensor, σ ij  is the stress tensor, ρ  is the den-
sity of the plate, and the subscripts after a comma mean partial differentiation. Summation over subscripts repeated twice is 
carried out. Here and below,  =1 3, . These boundary conditions can be explained as follows: Eq. (4) presents mechanical 
traction-free conditions at the free surface of the plate, Eq. (5) gives mechanically and electrically open conditions at the 
lateral surfaces, the first equation in (6) is a mechanically short condition at the bottom surface of the plate, and the second 
one is an electrically short condition at the free and bottom surface of the plate. 

In the above relations, we use the designations

	 T uji ij jk i k
0

,
 	  (7)

and
	 S D D ui i i j i

0

,
, 	  (8)

where Di  is the tensor of electric displacements and the superscript “0” indicates the quantities related to the initial stresses. 
The strain–displacement and electric field–electric potential relationships are related as

	 ij i j j iu u1

2
, ,

 and Ei i, .	  (9)
The constitutive relations are 

	 ij ijkl kl kij kC e E

 	  (10)
and
	 D e Ei ikl kl ik k  ,	  (11)

where Cijkl  is the tensor of elastic constants, ekij  is the tensor of piezoelectric constants, and γ ij  is the tensor of dielectric 
constants. Note that Eqs. (10) and (11) are described by fourth- and third-order tensors of the material constants. The ten-
sors Cijkl  and ekij  can be written as Cpq  and ekp , by employing the Voight notation

	 ij p kl qand 11 1 22 2 33 3 23 4 13 5 12 6, , , , , . 	  (12)

Then, relations (10) and (11) can be presented in the matrix form 

	 S
D E

M  and 




 

M
C e

eT
,	  (13)

where the superscript T  means transposition,  C cpq  is a 6 6×  matrix of mechanical constants,  e eip  is a 3 6×  
matrix of piezoelectric constants, and 

 ij  is a 3 3×  matrix of dielectric constants γ ij . Depending on the poling direc-
tion of the piezoelectric material, the entries of the matrices C , e , and γγ  can change. It should be mentioned that  M mfh  
is a symmetric 9 9×  matrix, where f h, , , ,=1 2 9 . Other notations used here are

	 S
11 22 33 23 13 12

T , 	  (14)

	 D D D D T
1 2 3

, 	  (15)

	
11 22 33 23 13 12

2 2 2
T , 	  (16)
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and
	 E E E E T

1 2 3
. 	  (17)

3. Solution Methodology

Let us use the finite-element method (FEM) to solve the problem described by Eqs. (2)-(6). For this purpose, a weak 
form of the problem is constructed. To do this, we introduce test functions wi  and φ  that satisfy the boundary-contact condi-
tions in Eqs. (4)-(6). Integrating the resultant equation obtained multiplying Eqs. (2) and (3) by respectively wi  and φ  and 
summation over the volume V  yields

	 0
2 2T w u w S dVhij j i i i i i

V
, ,

	

	 T w T w S S dV u w dVhij i j ij i j i i i i
V

i i
V

,
, , ,

2 2 	 (18)

Using the well-known Gauss theorem, Eq. (18) is written in the form

	 T w S dV T w n x S n x dij i j i i
V

ij i j i i, ,
cos , cos ,

22 2h u w dVi i
V

, 	  (19)

where cos ,n xi  is the direction cosine. Now, the boundary integral in the right-hand side of Eq. (19) can be computed. For 
the boundary 

1 2 3
 and the boundary-contact conditions in Eqs. (4)-(6), the integral mentioned takes the form

	
T w n x S n x d T w n x dij i j i i ij i j k

k

cos , cos , cos ,

	
	 S n x d p w di i k o

k

cos , .
*

2 2

2

 	  (20)

As a result, we obtain that

	 T w S dV p w d u w dVhij i j i i
V

o i i
V

, ,

*

2 2

2 2

2

. 	  (21)

In the explicit form, Eq. (21) can be written as

	 ij ij
w

ij i j i i ij
D

i
V

ow D dV p w d h
, , ,

*

2 2

2 2

2

uu w dVi i
V

, 	  (22)

where ij kj i ku0
,

, ij
D

i j iD u0
,

, and ij
w

i j j iw w
, ,

/ 2  is the strain relation for the test function wi . This completes 
the construction of the weak form of the problem.

Next, based on the Hamilton variational principle, the variational formulation of the 3D piezoelectric plate with the 
utilization of one of the above weak forms is constructed. Considering the test functions wi  and φ  with the respective dis-
placement functions δui  and electric potential  that satisfy the boundary-contact terms in (4)-(6), we can write Eq. (22) 
as
	 ij ij ij i j i i ij

D
i

V
ou D dV p u d

, , ,

*

2 2

2

22 2h u u dVi i
V

. 	  (23)

Let us take the integral in the left-hand side of Eq. (23) into account. Note that we employ a circumflex to distinguish 
the mechanical parts of a quantity, respectively, e.g. ij ijkl k lC u , . Now, we write that:

	 ij ij ij i j i i ij
D

iu D, , , 	
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	 

ij kj i k kij i j knkij ij i j n kr uu r u s0

, ,, , ,
	

	 

ij kj i k i j kni j kij k i j k n ku u su r u0

, ,, , , , , ,
	

	 p u u r u u smjkl k l i j kij k i j k n ki j kn, , , , , , ,, 	

	 1

2

1

2
p u u r u sijkl k l i j kij k i j n kkn, , , , , ,

	

	 1

2
2p u u r u sijkl k l i j kij k i j n kkn, , , , , ,

,	  (24)

where

	 p Cijkn ijkn in
0 , r Deijk kijk

1

2

0 , and skn kn .	  (25)

Eq. (23) can be put in the form 

	 1

2

1

2
2

2 22h su dV p u u r u dVi
V

ijkl k l i j kij k i j n kkn, , , , , ,

VV
op u d*

2 2

2

0 .	  (26)

Introducing the expressions

	 1

2
2p u u r u dVsijkl k l i j kij k i j n k

V
kn, , , , , ,

,	

	 1

2

2 2h u dVi
V

, and p u do
*

2 2

2

,	

the initial problem can be written as
	 2

0 , 	  (27)

where Ρ , Κ , and Μ  are the potential and kinetic energies, and the virtual work done by the external force, respectively. Note 
that Eq. (27) can also be expressed as

	 2
0m e , 	  (28)

with 

	 1

2

2 2h u dVi
V

, 1

2
2 2

2

p u u dV p u dijkl k l i j
V

o, ,

* ,	

	 m kij k i j
V
r u dV, , , and e n k

V
kns dV1

2
, ,

,	

where , Ρm , and Ρe  are the mechanical, mixed, and electrical energies, respectively. It is noted that Eq. (28) can occa-
sionally be a more suitable than Eq. (27). For instance, when   c c c

11 22 33
2 ,      c c c c c c

12 21 13 31 23 32
, 

  c c c
44 55 66

, and  eij ij 0  in the matrices C , e , and γγ , our original problem is reduced to the case of forced 
vibration in the 3D prestressed elastic plate. However, in this case, the related rows and columns in the matrix-vector state-
ments should be deleted. Otherwise, there can sometimes lead indefinite cases in the solution procedure. Here, λ  and  
are the Lamé constants.

To solve the problem numerically, we will employ the finite-element technique. For this purpose, let Vh  be the domain 
of a finite element mesh, namely, V Vh ⊂  and V Vh

em
m

=


. According to the usual procedure, we will search for the weak 
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solution for the displacements uh h h h uhu u u V
1 2 3

, electrical fields Eh h h h EhE E E V
1 2 3

, and their virtual 
structures δuh  and δEh  in the form

	 u N Uh uh≅  , E N Eh Eh≅  , u N Uh uh
 , and E N Eh Eh

 ,	  (29)

where U  and E  are the global vectors of nodal displacements and nodal electrical fields, Nuh  is the matrix of shape functions 
for the displacements, and NEh  is the row vector of shape functions for the electrical fields. In this paper, we used eight-node 
quadrilateral elements, but, depending on the convergence desired, this choice was changed. The nodal degrees of freedom 
are collected in the form of a single vector as

	 u u u uh
e e e e T

1 2 3
	

	 u u u u u u u u ue e e e e e e e e T
11 12 18 21 22 28 31 32 38

  | | 	
and

	 E E E Eh
e e e e T

1 2 3
	

	 E E E E E E E E Ee e e e e e e e e T
11 12 18 21 22 28 31 32 38

  | | .  	

Substituting Eq. (29) for Vh  and Γh  in Eq. (27) (or Eq. (28)), we obtain

	 K M U K E Fuu uu uE u
2

  , 	 (30)

	 K U K E FuE EE E
  , 	 (31)

where K Kuu uu
em , K KuE uE

em , K KEE EE
em , and M Muu uu

em  are the global stiffness and global mass matrices, 
obtained from the corresponding ensemble “ ” of local stiffness matrices. Fu  and FE  are the nodal force vectors. From 
Eq. (27), the explicit forms of the element matrices above are found, namely, 

	 M N Nuu
em

uh
e

uh
e T em

V
dV

em
, K S C Suu

em
uh
e T

uh
e em

V
dV

em
  	  (32)

	 K N NuE
em

Eh
e T T

Eh
e em

V
e dV

em
, K S ³ SEE

em
Eh
e T

Eh
e em

V
dV

em
 	  (33)

	 S L Nuh
e

uh
e T , S NEh

e
Eh
e T , 	  (34)

	 L
1 3 2

2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

T

. 	  (35)

Equation system (30) and (31) can be written in the reduced form

	 K M U F2 , 	  (36)
where 

	 K
K K
K K

uu uE

uE EE , 
M

Muu 0
0 0 , U U

E





, and F
F
F
u

E
.	  (37)

Note that the global stiffness matrices K  and M  in Eq. (37) are symmetric and positive definite, because the weak 
form in Eq. (21) is positive definite. Hence, matrix equation (36) has a solution for the finite-element algorithm in the elastic-
ity theory. When evaluating the matrix equation mentioned, we obtain the displacements related to the dynamic response of 
the piezoelectric plate, and can then express the relative stresses and electrical displacements using the generalized Hooke’s 
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law. Finally, our solution procedure can be used to solve some variants of the problem under consideration or an analogous 
problem for elastic media.

4. Numerical Applications and Examples

It was stated in Sect. 2 that the constitutive relations (10), (11), and (13) can differ according to the choice of the 
polarization direction. In Sect. 3, the solution process for the most general case was presented. Utilizing of our results, 
numerical solutions can be found for any case. We will present numerical solutions based on the assumption that the 
piezoelectric plate is polled only in the directions of Ox1 , Ox2 , and Ox3  axes, the matrices in Eq. (13) for the cases con-
sidered are given in Appendix A. The letters a , b , and c  in the parts of figures indicate that the graphs were plotted for 
polarizations in the directions of Ox1 , Ox2 , and Ox3  axes. To be able to notice the related numerical results, we use the 
designation “ ” as a superscript; for instance, 

22

1

0
h p/  is the value of σ

22 0
h p/  for polarization in the direction of 

the Ox1  axis. We also assume that the numbers of finite elements in the directions of the Ox1 , Ox2 , and Ox3  axes are 
equal to fifty, twelve, and fifty, respectively. Thus, the number of total nodal degrees of freedom is 135,252.

Let us, introduce the designations 

	 h
c33

, 
0

33
c

, D
c

0

33
2

, a a
a*

= 1

3

, and h h
a*

*

=
2

,	  (38)

where  is the dimensionless frequency parameter, η


 is the parameter of initial stress, κ


 is the parameter of initial 
electric displacement, a*  is the aspect ratio, and h*  is the thickness ratio. As already mentioned previously, there exist 
relations between the mechanical initial stresses and the electrical initial displacements. When considering the constitutive 
equations for polarizations in the directions of the Ox1  and Ox3  axes with the boundary-contact conditions in Eq. (5), we 
can easily obtain relations as 

	 D
e c c c e
c c c c1

0

11

033 11 12 13 31

33 11 12 13

2

2

2

 and D
c c c c e c c c e

c c c c
3

0
11 12 22 13 31 12

2

11 22 33

11 12 22 13

2

2
22

12

2

11 22 33

33

0

c c c c
.	  (39)

It should be noted that the equations in (39) are linear. This agrees with the well-known electromechanical consider-
ations. For examples, barium titanate (BaTiO3 ), with c44 44=  GPa , e

15
11 4= .  C/m2 , and 

11
1 115.  nF/m  was 

chosen as the material of the plate, as also considered by the author of [25]. Throughout the paper, the bottom surface of the 
plate under at 0 , 

1 3
, 0 , a

*
=1 , and h

*
.= 0 2  is considered unless specified otherwise. 

2.5 1.5 0.5 5 1.5 2.50.

0

0.1

0.2

0.3

0.4

0.5 x h1/

22 0h p/

1

2
5

10
100

0.5
0.2

0.10.1

0.010.01

0.0010.001

[29]

Fig. 1. Distributions of the stress σ
22 0
h p/  along the line x h

1
/  for polarization in the direction of 

Ox2  axis at x h a h
3 3
/ /= .
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First, the PC programs and algorithms used were validated. The author of [29] investigated the dynamic behavior of 
a prestressed piezoelectric plate-strip subjected to a time-harmonic force. The problem considered here takes a similar form 
when a*  for fixed values of other relevant parameters. Therefore, the numerical results in graphs found at x h a h

3 3
/ /=  

and a*  must approach the corresponding ones given in [29] for the same assumptions. Figure 1 complies with this esti-
mation, confirming the validity of our PC algorithm. Note that the dashed graph in Fig. 1 was taken from Fig. 4d in [29].

Figure 2 shows the projection of the 3D graphs of the normal stress σ
22 0
h p/  on the Ox x

1 3
 plane. It is seen from 

the graphs that the smallest value of the stress σ
22 0
h p/  occur for the polarization in the direction of Ox2  axis, 

22

2

0 22

1

0 22

3

0
h p h p h p/ / / . This means that, in terms of stress insulation, the ideal polarization direction is 

along the Ox2  axis. The stress distributions in each graph can be categorized as follows. There is a region where the stress 
is higher than in other regions. This region is colored blue in the graphs and can be called the essential effect zone. The 
region where the stress is relatively low is colored green in the graph and can be called the medium effect zone. The region 
where the stress almost zero is colored orange in the graph and can be called the faint zone. It is seen that the shapes of 
the essential and medium effect zones are composed of circular structures in Fig. 2b, but of ellipses with center at the 
point 2 5 2 5. , .  in Figs. 2a and 2c. According to the distributions of the graphs, the principal axis of the ellipses in Fig. 2a 
lies on the line x h

3
2 5/ .=  while that in Fig. 2c is on the line x h

1
2 5/ .= . We have a very curious situation here. The 

focal points of the boundary ellipse of the medium effect zone coincide with vertices of one of the essential effect zone. 
For example, in Fig. 2c, the foci of the corresponding ellipse are F

1
2 5 2 15. , .  and F

2
2 5 2 85. , . , which are ap-

proximately the vertices of the other related ellipse. Although the 3D graphs for the polarization in the direction of Ox2  
axis take the shape a right circular cone, those for the polarization in the directions of Ox1  and Ox3  axes form a right 

1 2 3 4 5

5

4

3

2

1

x h1/x h1/

0

ax h3/
b

1 2 3 4 5

5

4

3

2

1

x h1/x h1/

0

x h3/

22 0h p/
c

0.008000

0.03037

0.06875

0.1071

0.1455

0.1839

0.2223

0.2606

0.2990

1 2 3 4 5

5

4

3

2

1

x h1/x h1/

0

x h3/

Fig. 2. Distributions of the stress σ
22 0
h p/  on the Ox x

1 3
 plane for polarizations in the directions of 

Ox1  (a), Ox2  (b), and Ox3  (c) axes.
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elliptic cone. According to the foregoing discussions, the Ox2  axis as the polarization direction can be the best choice to 
ensure lower stresses in the body with a rather homogeneous distribution.

Let us focus now on the frequency response of the plate to a time-harmonic force. In Fig. 3, relations between 
σ

22 0
h p/  and  for the polarizations in the directions of the Ox1 , Ox2 , and Ox3  axes are displayed. Apparently, we 

obtain the same graphs of the stresses under consideration for the polarizations in the directions of the Ox1  and Ox3  axes. 
It can be said from the graphs that although the stress in the plate increases with , these relations are non-monotonous. 
The absolute values of σ

22 0
h p/  increase as the thickness ratio decreases. The distributions of the graph curves shows that 

the stress has an extremal value for certain values of  and then start to oscillate frequently. These values of , desig-
nated as *  are called the “resonant value.” We can observe that, for polarization, instead of Ox1  or Ox3  axes, the choice 
of the Ox2  axis increases the values of * . This means that, in this case, the system is more stable than in other cases. 
Note that the greatest number of oscillations in distributions of the graphs arises for the polarization in the direction of Ox2  
axis; namely, in the case where the polarization is in the same direction than the operating time-harmonic force.

Figure 4 displays the relation between σ
22 0
h p/  and η  for certain values of the aspect ratio a* . The graphs pre-

sented here are drawn on the assumption that the length a3  changes at a fixed value of a1 . Note that the positive (negative) 
sign of the initial stress parameter η  indicates that a tensile (compression) force is applied to the plate. It is seen that the 

Fig. 3. Relations between σ
22 0
h p/  and  for polarizations in the directions of Ox1  (a), Ox2  (b), 

and Ox3  (c) axes.

c

0
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Fig. 4. Relations between σ
22 0
h p/  and η  for polarizations in the directions of Ox1  (a), Ox2  (b), 

and Ox3  (c) axes.
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stress σ
22 0
h p/  in the plate decrease with increasing values of aspect ratio a* . Although the stress in the plate increases in 

accord with the initial compression, the initial tension decreases its value. These are natural result and coincide well with the 
well-known mechanical considerations. However, there are some interesting cases in the graphs. As is seen from slopes of 
the graphs, the influence of the initial stress parameter η  increases with aspect ratio a* . Further, the crosscheck of the graphs 
in Figs. 4a and 4b proves that, instead of Ox3  axis, the choice of the Ox1  axis for the polarization of plate decreases the 
values of σ

22 0
h p/  for a

*
<1; i.e., 

22

2

0 22

1

0 22

3

0
h p h p h p/ / / . For a

*
>1, 

22

2

0 22

3

0 22

1

0
h p h p h p/ / / . 

This means that lower stresses arise in the plate polarized along the longest edge, because the polarization of the plate along 
the longest edge has a larger effective area.

Conclusions

In this paper, the forced vibration behavior of a prestressed piezoelectric plate resting on a rigid foundation is 
described. This is a challenging task because, unlike elastic media, there is no analytical expression for estimating the 
dynamic response of such a mechanical system within the scope of TLTESIS. Further, piezoelectric materials may have 
various constitutive relationships depending on poling directions. A modal investigation was presented herein for evaluat-
ing such and similar problems. 

Certain results for three special cases were given. The numerical data found prove that the best stress insulation 
occurs for the polarization paralleled to the dynamic force applied. All these results show that the system becomes more 
steady for the case mentioned. Unlike the other cases examined, the vertical polarization in the plate increases the resonant 
values of the system. It was also observed that there are close relationships both quantitative and qualitative between the 
aspect ratio and the poling direction. In addition, the effect of the initial stress parameter on the stress distribution dimini
shes as the aspect ratio decreases. It should be mentioned that the numerical results presented here are valid generally, 
even though they are presented for barium titanate (BaTiO3 ) as a material.

Appendix A

Depending on the case considered, the matrix M  of constitutive equations changes accordingly. Although our 
analysis is modal, the numerical results and discussions given here were presented for three different cases. The matrices M  
for polarization in the directions of Ox1 , Ox2 , and Ox3  axes are

	

c c c e
c c e

c e
c

c e

33 13 13 33

11 12 31

11 31

66

44 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0
55

44 15

33

11

11

0 0

0 0

0

c e

sym

,	
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c c c e
c c e

c e
c e

c

11 13 12 31

33 13 33

11 31

44 15

66

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 00

0 0

0 0

0

44 15

11

33

11

c e

sym

,	

and

	

c c c e
c c e

c e
c e

c e

11 12 13 31

22 13 31

33 33

44 15

44 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0
55

66

11

11

33

0 0

0 0 0

0 0

0

c

sym

,	

respectively. 
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